mirror of
https://github.com/Evolution-X/hardware_interfaces
synced 2026-02-01 11:36:00 +00:00
Replace sync_enums_to_hal.py with generate_api.{py,sh} and regenerate */types.hal am: 8c0a48bceb
am: b14faf16d3
Change-Id: I1f22cc68be18e646a35928cb068d05d60d70f541
This commit is contained in:
@@ -574,8 +574,11 @@ cfa81f229b69f9011c58f48264fcb552447430fe68610eac514e811e65bc306a android.hardwar
|
||||
# ABI preserving changes to HALs during Android R
|
||||
b69a7615c508acf5c5201efd1bfa3262167874fc3594e2db5a3ff93addd8ac75 android.hardware.keymaster@4.0::IKeymasterDevice
|
||||
eb2fa0c883c2185d514be0b84c179b283753ef0c1b77b45b4f359bd23bba8b75 android.hardware.neuralnetworks@1.0::IPreparedModel
|
||||
f1109cbb10297b7429a11fab42afa912710b303c9bf20bd5cdb8bd57b9c84186 android.hardware.neuralnetworks@1.0::types
|
||||
9d8ee57c490ffeaa28f702eaea8d198cb510e4bbfb99e6cb5f63e73341057c7c android.hardware.neuralnetworks@1.1::types
|
||||
fb382e986c10b8fbb797a8546e8f9ea6d1107bfe6f3fb7e57f6bbbf1f807a906 android.hardware.neuralnetworks@1.2::IDevice
|
||||
40e71cd693de5b832325c5d8f081f2ff20a7ba2b89d401cee5b4b3eb0e241681 android.hardware.neuralnetworks@1.2::IPreparedModel
|
||||
71c0f7127335e5b74d1615d5e7f129831b43ffbae5318ad0924d7d8d8910a859 android.hardware.neuralnetworks@1.2::types
|
||||
a785a57447a81e9c130eef6904c3a5c256076c6a04588c40620ebd6fa2660d77 android.hardware.radio@1.2::types
|
||||
1a6e2bd289f22931c526b21916910f1d4c436b7acb9556e4243de4ce8e6cc2e4 android.hardware.soundtrigger@2.0::ISoundTriggerHwCallback
|
||||
fd65298e1e09e0e3c781ab18305920d757dbe55a3b459ce17814ec5cf6dfee99 android.hardware.wifi@1.0::IWifiP2pIface
|
||||
|
||||
@@ -25,25 +25,24 @@ package android.hardware.neuralnetworks@1.0;
|
||||
* with at least one dimension). Types not prefaced by TENSOR_* represent
|
||||
* scalar values and must have no dimensions.
|
||||
*
|
||||
* Although many types are defined, most operators accept just a few
|
||||
* Although we define many types, most operators accept just a few
|
||||
* types. Most used are {@link OperandType::TENSOR_FLOAT32},
|
||||
* {@link OperandType::TENSOR_QUANT8_ASYMM},
|
||||
* and {@link OperandType::INT32}.
|
||||
*/
|
||||
enum OperandType : int32_t {
|
||||
/** A 32 bit floating point scalar value. */
|
||||
FLOAT32 = 0,
|
||||
FLOAT32 = 0,
|
||||
/** A signed 32 bit integer scalar value. */
|
||||
INT32 = 1,
|
||||
INT32 = 1,
|
||||
/** An unsigned 32 bit integer scalar value. */
|
||||
UINT32 = 2,
|
||||
|
||||
UINT32 = 2,
|
||||
/** A tensor of 32 bit floating point values. */
|
||||
TENSOR_FLOAT32 = 3,
|
||||
TENSOR_FLOAT32 = 3,
|
||||
/** A tensor of 32 bit integer values. */
|
||||
TENSOR_INT32 = 4,
|
||||
TENSOR_INT32 = 4,
|
||||
/**
|
||||
* A tensor of 8 bit integers that represent real numbers.
|
||||
* A tensor of 8 bit unsigned integers that represent real numbers.
|
||||
*
|
||||
* Attached to this tensor are two numbers that can be used to convert the
|
||||
* 8 bit integer to the real value and vice versa. These two numbers are:
|
||||
@@ -51,21 +50,21 @@ enum OperandType : int32_t {
|
||||
* - zeroPoint: a 32 bit integer, in range [0, 255].
|
||||
*
|
||||
* The formula is:
|
||||
* real_value = (integer_value - zeroPoint) * scale.
|
||||
* real_value = (integer_value - zeroPoint) * scale.
|
||||
*/
|
||||
TENSOR_QUANT8_ASYMM = 5,
|
||||
|
||||
/**
|
||||
* DEPRECATED. Since NNAPI 1.2, extensions are the preferred alternative to
|
||||
* OEM operation and data types.
|
||||
* DEPRECATED. Since HAL version 1.2, extensions are the preferred
|
||||
* alternative to OEM operation and data types.
|
||||
*
|
||||
* OEM specific scalar value.
|
||||
*/
|
||||
OEM = 10000,
|
||||
|
||||
/**
|
||||
* DEPRECATED. Since NNAPI 1.2, extensions are the preferred alternative to
|
||||
* OEM operation and data types.
|
||||
* DEPRECATED. Since HAL version 1.2, extensions are the preferred
|
||||
* alternative to OEM operation and data types.
|
||||
*
|
||||
* A tensor of OEM specific values.
|
||||
*/
|
||||
@@ -78,7 +77,6 @@ enum OperandType : int32_t {
|
||||
* The type of an operation in a model.
|
||||
*/
|
||||
enum OperationType : int32_t {
|
||||
|
||||
/**
|
||||
* Adds two tensors, element-wise.
|
||||
*
|
||||
@@ -110,14 +108,16 @@ enum OperationType : int32_t {
|
||||
* * 0: A tensor.
|
||||
* * 1: A tensor of the same {@link OperandType}, and compatible dimensions
|
||||
* as input0.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scales and zeroPoint can be different from input0 scale and zeroPoint.
|
||||
* * 2: An {@link OperandType::INT32} scalar, and has to be one of the
|
||||
* {@link FusedActivationFunc} values. Specifies the activation to
|
||||
* invoke on the result.
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: The sum, a tensor of the same {@link OperandType} as input0.
|
||||
*
|
||||
* Available since API level 27.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint can be different from inputs' scale and zeroPoint.
|
||||
*/
|
||||
ADD = 0,
|
||||
|
||||
@@ -187,8 +187,8 @@ enum OperationType : int32_t {
|
||||
* Outputs:
|
||||
* * 0: The output 4-D tensor, of shape
|
||||
* [batches, out_height, out_width, depth].
|
||||
*
|
||||
* Available since API level 27.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint must be the same as input0.
|
||||
*/
|
||||
AVERAGE_POOL_2D = 1,
|
||||
|
||||
@@ -206,22 +206,23 @@ enum OperationType : int32_t {
|
||||
*
|
||||
* Inputs:
|
||||
* * 0 ~ n-1: The list of n input tensors, of shape
|
||||
* [D0, D1, ..., Daxis(i), ..., Dm]. For inputs of
|
||||
* {@link OperandType::TENSOR_QUANT8_ASYMM}, all input tensors
|
||||
* must have the same scale and zeroPoint.
|
||||
* [D0, D1, ..., Daxis(i), ..., Dm].
|
||||
* All input tensors of
|
||||
* {@link OperandType::TENSOR_QUANT8_ASYMM}
|
||||
* must have the same scale and zeroPoint as the output tensor.
|
||||
* * n: An {@link OperandType::INT32} scalar, specifying the
|
||||
* concatenation axis.
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: The output, a tensor of the same {@link OperandType} as the input
|
||||
* tensors. The output shape is [D0, D1, ..., sum(Daxis(i)), ..., Dm].
|
||||
*
|
||||
* Available since API level 27.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor, the scale and zeroPoint
|
||||
* values must be the same as the input tensors'.
|
||||
*/
|
||||
CONCATENATION = 2,
|
||||
|
||||
/**
|
||||
* Performs an 2-D convolution operation.
|
||||
* Performs a 2-D convolution operation.
|
||||
*
|
||||
* The CONV_2D op sweeps a 2-D filter that can mix channels together over a
|
||||
* batch of images, applying the filter to each window of each image of the
|
||||
@@ -238,11 +239,17 @@ enum OperationType : int32_t {
|
||||
* filter[channel, di, dj, k]
|
||||
* ) + bias[channel]
|
||||
*
|
||||
* Supported tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
|
||||
* Supported tensor {@link OperandType} configurations:
|
||||
* * 32 bit floating point:
|
||||
* * * {@link OperandType::TENSOR_FLOAT32} for input, filter, output, and bias.
|
||||
*
|
||||
* Supported tensor rank: 4, with "NHWC" data layout.
|
||||
* * Quantized:
|
||||
* * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, filter, and output.
|
||||
* * * {@link OperandType::TENSOR_INT32} for bias (with scale set to
|
||||
* * * input.scale * filter.scale).
|
||||
*
|
||||
* Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
|
||||
* and Channels) data layout.
|
||||
*
|
||||
* Both explicit padding and implicit padding are supported.
|
||||
*
|
||||
@@ -252,12 +259,12 @@ enum OperationType : int32_t {
|
||||
* * 1: A 4-D tensor, of shape
|
||||
* [depth_out, filter_height, filter_width, depth_in], specifying the
|
||||
* filter.
|
||||
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias.
|
||||
* For input tensor of {@link OperandType::TENSOR_FLOAT32}, the bias
|
||||
* should also be of {@link OperandType::TENSOR_FLOAT32}. For input
|
||||
* tensor of {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias
|
||||
* should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of
|
||||
* 0 and bias_scale == input_scale * filter_scale.
|
||||
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
|
||||
* tensor of type {@link OperandType::TENSOR_FLOAT32}
|
||||
* the bias must be of the same
|
||||
* type. For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
|
||||
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
|
||||
* of 0 and bias_scale == input_scale * filter_scale.
|
||||
* * 3: An {@link OperandType::INT32} scalar, specifying the padding on
|
||||
* the left, in the ‘width’ dimension.
|
||||
* * 4: An {@link OperandType::INT32} scalar, specifying the padding on
|
||||
@@ -281,11 +288,11 @@ enum OperationType : int32_t {
|
||||
* [depth_out, filter_height, filter_width, depth_in], specifying the
|
||||
* filter.
|
||||
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
|
||||
* tensor of {@link OperandType::TENSOR_FLOAT32}, the bias should
|
||||
* also be of {@link OperandType::TENSOR_FLOAT32}. For input tensor
|
||||
* of {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias should be
|
||||
* of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and
|
||||
* bias_scale == input_scale * filter_scale.
|
||||
* tensor of type {@link OperandType::TENSOR_FLOAT32}
|
||||
* the bias must be of the same
|
||||
* type. For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
|
||||
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
|
||||
* of 0 and bias_scale == input_scale * filter_scale.
|
||||
* * 3: An {@link OperandType::INT32} scalar, specifying the implicit
|
||||
* padding scheme, has to be one of the
|
||||
* following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
|
||||
@@ -299,11 +306,9 @@ enum OperationType : int32_t {
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: The output 4-D tensor, of shape
|
||||
* [batches, out_height, out_width, depth_out]. For output tensor of
|
||||
* {@link OperandType::TENSOR_QUANT8_ASYMM}, the following condition
|
||||
* must be satisfied: output_scale > input_scale * filter_scale.
|
||||
*
|
||||
* Available since API level 27.
|
||||
* [batches, out_height, out_width, depth_out].
|
||||
* For output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
|
||||
* the following condition must be satisfied: output_scale > input_scale * filter_scale
|
||||
*/
|
||||
CONV_2D = 3,
|
||||
|
||||
@@ -329,11 +334,17 @@ enum OperationType : int32_t {
|
||||
* filter[1, di, dj, k * channel_multiplier + q]
|
||||
* ) + bias[k * channel_multiplier + q]
|
||||
*
|
||||
* Supported tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
|
||||
* Supported tensor {@link OperandType} configurations:
|
||||
* * 32 bit floating point:
|
||||
* * * {@link OperandType::TENSOR_FLOAT32} for input, filter, output, and bias.
|
||||
*
|
||||
* Supported tensor rank: 4, with "NHWC" data layout.
|
||||
* * Quantized:
|
||||
* * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, filter, and output.
|
||||
* * * {@link OperandType::TENSOR_INT32} for bias (with scale set to
|
||||
* * * input.scale * filter.scale).
|
||||
*
|
||||
* Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
|
||||
* and Channels) data layout.
|
||||
*
|
||||
* Both explicit padding and implicit padding are supported.
|
||||
*
|
||||
@@ -343,11 +354,11 @@ enum OperationType : int32_t {
|
||||
* * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out],
|
||||
* specifying the filter.
|
||||
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
|
||||
* tensor of {@link OperandType::TENSOR_FLOAT32}, the bias should
|
||||
* also be of {@link OperandType::TENSOR_FLOAT32}. For input tensor
|
||||
* of {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias should be
|
||||
* of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and
|
||||
* bias_scale == input_scale * filter_scale.
|
||||
* tensor of type {@link OperandType::TENSOR_FLOAT32}
|
||||
* the bias must be of the same
|
||||
* type. For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
|
||||
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
|
||||
* of 0 and bias_scale == input_scale * filter_scale.
|
||||
* * 3: An {@link OperandType::INT32} scalar, specifying the padding on
|
||||
* the left, in the ‘width’ dimension.
|
||||
* * 4: An {@link OperandType::INT32} scalar, specifying the padding on
|
||||
@@ -372,11 +383,11 @@ enum OperationType : int32_t {
|
||||
* * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out],
|
||||
* specifying the filter.
|
||||
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
|
||||
* tensor of {@link OperandType::TENSOR_FLOAT32}, the bias should
|
||||
* also be of {@link OperandType::TENSOR_FLOAT32}. For input tensor
|
||||
* of {@link OperandType::TENSOR_QUANT8_ASYMM}, the bias should be
|
||||
* of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0 and
|
||||
* bias_scale == input_scale * filter_scale.
|
||||
* tensor of type {@link OperandType::TENSOR_FLOAT32}
|
||||
* the bias must be of the same
|
||||
* type. For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
|
||||
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
|
||||
* of 0 and bias_scale == input_scale * filter_scale.
|
||||
* * 3: An {@link OperandType::INT32} scalar, specifying the implicit
|
||||
* padding scheme, has to be one of the
|
||||
* following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
|
||||
@@ -392,11 +403,10 @@ enum OperationType : int32_t {
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: The output 4-D tensor, of shape
|
||||
* [batches, out_height, out_width, depth_out]. For output tensor of
|
||||
* {@link OperandType::TENSOR_QUANT8_ASYMM}, the following condition
|
||||
* must be satisfied: output_scale > input_scale * filter_scale.
|
||||
*
|
||||
* Available since API level 27.
|
||||
* [batches, out_height, out_width, depth_out]. For
|
||||
* output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
|
||||
* the following condition must be satisfied:
|
||||
* output_scale > input_scale * filter_scale
|
||||
*/
|
||||
DEPTHWISE_CONV_2D = 4,
|
||||
|
||||
@@ -419,7 +429,8 @@ enum OperationType : int32_t {
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
|
||||
*
|
||||
* Supported tensor rank: 4, with "NHWC" data layout.
|
||||
* Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
|
||||
* and Channels) data layout.
|
||||
*
|
||||
* Inputs:
|
||||
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
|
||||
@@ -431,8 +442,8 @@ enum OperationType : int32_t {
|
||||
* Outputs:
|
||||
* * 0: The output 4-D tensor, of shape [batch, height*block_size,
|
||||
* width*block_size, depth/(block_size*block_size)].
|
||||
*
|
||||
* Available since API level 27.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint must be the same as input0.
|
||||
*/
|
||||
DEPTH_TO_SPACE = 5,
|
||||
|
||||
@@ -443,19 +454,19 @@ enum OperationType : int32_t {
|
||||
*
|
||||
* output = (input - zeroPoint) * scale.
|
||||
*
|
||||
* Supported tensor {@link OperandType}:
|
||||
* Supported input tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
|
||||
*
|
||||
* Supported output tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_FLOAT32}.
|
||||
*
|
||||
* Supported tensor rank: up to 4
|
||||
*
|
||||
* Inputs:
|
||||
* * 0: A tensor of {@link OperandType::TENSOR_QUANT8_ASYMM}.
|
||||
* * 0: A tensor.
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: The output tensor of same shape as input0, but with
|
||||
* {@link OperandType::TENSOR_FLOAT32}.
|
||||
*
|
||||
* Available since API level 27.
|
||||
* * 0: A tensor with the same shape as input0.
|
||||
*/
|
||||
DEQUANTIZE = 6,
|
||||
|
||||
@@ -479,6 +490,13 @@ enum OperationType : int32_t {
|
||||
* If a value in Lookups is out of bounds, the operation must fail
|
||||
* and an error must be reported.
|
||||
*
|
||||
* Supported value tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
* * {@link OperandType::TENSOR_INT32}
|
||||
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
|
||||
*
|
||||
* Supported value tensor rank: from 2
|
||||
*
|
||||
* Inputs:
|
||||
* * 0: Lookups. A 1-D tensor of {@link OperandType::TENSOR_INT32}.
|
||||
* The values are indices into the first dimension of Values.
|
||||
@@ -489,8 +507,8 @@ enum OperationType : int32_t {
|
||||
* * 0: A n-D tensor with the same rank and shape as the Values
|
||||
* tensor, except for the first dimension which has the same size
|
||||
* as Lookups' only dimension.
|
||||
*
|
||||
* Available since API level 27.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint must be the same as input1.
|
||||
*/
|
||||
EMBEDDING_LOOKUP = 7,
|
||||
|
||||
@@ -508,8 +526,6 @@ enum OperationType : int32_t {
|
||||
* Outputs:
|
||||
* * 0: The output tensor, of the same {@link OperandType} and dimensions as
|
||||
* the input tensor.
|
||||
*
|
||||
* Available since API level 27.
|
||||
*/
|
||||
FLOOR = 8,
|
||||
|
||||
@@ -549,12 +565,9 @@ enum OperationType : int32_t {
|
||||
* invoke on the result.
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: The output tensor, of shape [batch_size, num_units]. For output
|
||||
* tensor of {@link OperandType::TENSOR_QUANT8_ASYMM}, the following
|
||||
* condition must be satisfied:
|
||||
* output_scale > input_scale * filter_scale.
|
||||
*
|
||||
* Available since API level 27.
|
||||
* * 0: The output tensor, of shape [batch_size, num_units]. For
|
||||
* output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM}, the following
|
||||
* condition must be satisfied: output_scale > input_scale * filter_scale.
|
||||
*/
|
||||
FULLY_CONNECTED = 9,
|
||||
|
||||
@@ -585,6 +598,13 @@ enum OperationType : int32_t {
|
||||
* must be selected. If no entry in Keys has 123456, a slice of zeroes
|
||||
* must be concatenated.
|
||||
*
|
||||
* Supported value tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
* * {@link OperandType::TENSOR_INT32}
|
||||
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
|
||||
*
|
||||
* Supported value tensor rank: from 2
|
||||
*
|
||||
* Inputs:
|
||||
* * 0: Lookups. A 1-D {@link OperandType::TENSOR_INT32} tensor with
|
||||
* shape [ k ].
|
||||
@@ -598,13 +618,13 @@ enum OperationType : int32_t {
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: Output. A tensor with shape [ k …].
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint must be the same as input2.
|
||||
* * 1: Hits. A boolean tensor with shape [ k ] indicates whether the lookup
|
||||
* hits (True) or not (False).
|
||||
* Stored as {@link OperandType::TENSOR_QUANT8_ASYMM} with offset 0
|
||||
* and scale 1.0f.
|
||||
* A non-zero byte represents True, a hit. A zero indicates otherwise.
|
||||
*
|
||||
* Available since API level 27.
|
||||
*/
|
||||
HASHTABLE_LOOKUP = 10,
|
||||
|
||||
@@ -617,9 +637,6 @@ enum OperationType : int32_t {
|
||||
* input[batch, row, col, channel] /
|
||||
* sqrt(sum_{c} pow(input[batch, row, col, c], 2))
|
||||
*
|
||||
* For input tensor with more dimensions, independently normalizes each 1-D
|
||||
* slice along dimension dim.
|
||||
*
|
||||
* Supported tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
*
|
||||
@@ -627,13 +644,10 @@ enum OperationType : int32_t {
|
||||
* Height, Width, and Channels).
|
||||
*
|
||||
* Inputs:
|
||||
* * 0: A 4-D tensor, of shape [batches, height, width, depth].
|
||||
* * 0: A 4-D tensor, specifying the tensor to be normalized.
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: The output 4-D tensor, of the same shape as input
|
||||
* [batches, height, width, depth].
|
||||
*
|
||||
* Available since API level 27.
|
||||
* * 0: A tensor of the same {@link OperandType} and same shape as input0.
|
||||
*/
|
||||
L2_NORMALIZATION = 11,
|
||||
|
||||
@@ -652,7 +666,8 @@ enum OperationType : int32_t {
|
||||
* Supported tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
*
|
||||
* Supported tensor rank: 4, with "NHWC" data layout.
|
||||
* Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
|
||||
* and Channels) data layout.
|
||||
*
|
||||
* Both explicit padding and implicit padding are supported.
|
||||
*
|
||||
@@ -700,8 +715,6 @@ enum OperationType : int32_t {
|
||||
* Outputs:
|
||||
* * 0: The output 4-D tensor, of shape
|
||||
* [batches, out_height, out_width, depth].
|
||||
*
|
||||
* Available since API level 27.
|
||||
*/
|
||||
L2_POOL_2D = 12,
|
||||
|
||||
@@ -729,17 +742,18 @@ enum OperationType : int32_t {
|
||||
* the input.
|
||||
* * 1: An {@link OperandType::INT32} scalar, specifying the radius of
|
||||
* the normalization window.
|
||||
* * 2: An {@link OperandType::FLOAT32} scalar, specifying the bias, must
|
||||
* not be zero.
|
||||
* * 3: An {@link OperandType::FLOAT32} scalar, specifying the scale
|
||||
* factor, alpha.
|
||||
* * 4: An {@link OperandType::FLOAT32} scalar, specifying the exponent,
|
||||
* beta.
|
||||
* * 2: A scalar, specifying the bias, must not be zero.
|
||||
* For input tensor of {@link OperandType::TENSOR_FLOAT32}, the bias
|
||||
* value must be of {@link OperandType::FLOAT32}.
|
||||
* * 3: A scalar, specifying the scale factor, alpha.
|
||||
* For input tensor of {@link OperandType::TENSOR_FLOAT32}, the
|
||||
* alpha value must be of {@link OperandType::FLOAT32}.
|
||||
* * 4: A scalar, specifying the exponent, beta.
|
||||
* For input tensor of {@link OperandType::TENSOR_FLOAT32}, the beta
|
||||
* value must be of {@link OperandType::FLOAT32}.
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: The output tensor of same shape as input0.
|
||||
*
|
||||
* Available since API level 27.
|
||||
*/
|
||||
LOCAL_RESPONSE_NORMALIZATION = 13,
|
||||
|
||||
@@ -763,45 +777,53 @@ enum OperationType : int32_t {
|
||||
* * 0: The output tensor of same shape as input0.
|
||||
* For {@link OperandType::TENSOR_QUANT8_ASYMM},
|
||||
* the scale must be 1.f / 256 and the zeroPoint must be 0.
|
||||
*
|
||||
* Available since API level 27.
|
||||
*/
|
||||
LOGISTIC = 14,
|
||||
|
||||
/**
|
||||
* Projects an input to a bit vector via locality senstive hashing.
|
||||
*
|
||||
* Supported input tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
* * {@link OperandType::TENSOR_INT32}
|
||||
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
|
||||
*
|
||||
* Supported input tensor rank: from 1
|
||||
*
|
||||
* Inputs:
|
||||
* * 0: Hash functions. Dim.size == 2, DataType: Float.
|
||||
* Tensor[0].Dim[0]: Number of hash functions.
|
||||
* Tensor[0].Dim[1]: Number of seeds per hash functions.
|
||||
* Tensor[0].Dim[1] <= 32 in sparse case.
|
||||
* Tensor[0].Dim[0]: Number of hash functions.
|
||||
* Tensor[0].Dim[1]: Number of projected output bits generated by each
|
||||
* hash function.
|
||||
* If the projection type is Sparse:
|
||||
* Tensor[0].Dim[1] + ceil(log2(Tensor[0].Dim[0])) <= 32
|
||||
*
|
||||
* * 1: Input. Dim.size >= 1, no restriction on DataType.
|
||||
* * 2: Weight. Optional. Dim.size == 1, DataType: Float.
|
||||
* If not set, each input element is considered to have the same weight
|
||||
* of 1.0.
|
||||
* Tensor[1].Dim[0] == Tensor[2].Dim[0]
|
||||
* If not set, each input element is considered to have the same weight
|
||||
* of 1.0.
|
||||
* Tensor[1].Dim[0] == Tensor[2].Dim[0]
|
||||
* * 3: Type:
|
||||
* Sparse: Value LSHProjectionType_SPARSE(=1).
|
||||
* Sparse:
|
||||
* Value LSHProjectionType_SPARSE(=1).
|
||||
* Computed bit vector is considered to be sparse.
|
||||
* Each output element is an int32 made up of multiple bits
|
||||
* computed from hash functions.
|
||||
*
|
||||
* Dense: Value LSHProjectionType_DENSE(=2).
|
||||
* Dense:
|
||||
* Value LSHProjectionType_DENSE(=2).
|
||||
* Computed bit vector is considered to be dense. Each output
|
||||
* element represents a bit and can take the value of either
|
||||
* 0 or 1.
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: If the projection type is sparse:
|
||||
* Output.Dim == { Tensor[0].Dim[0] }
|
||||
* A tensor of int32 that represents hash signatures.
|
||||
* If the projection type is Dense:
|
||||
* Output.Dim == { Tensor[0].Dim[0] * Tensor[0].Dim[1] }
|
||||
* A flattened tensor that represents projected bit vectors.
|
||||
* * 0: If the projection type is Sparse:
|
||||
* Output.Dim == { Tensor[0].Dim[0] }
|
||||
* A tensor of int32 that represents hash signatures.
|
||||
*
|
||||
* Available since API level 27.
|
||||
* If the projection type is Dense:
|
||||
* Output.Dim == { Tensor[0].Dim[0] * Tensor[0].Dim[1] }
|
||||
* A flattened tensor that represents projected bit vectors.
|
||||
*/
|
||||
LSH_PROJECTION = 15,
|
||||
|
||||
@@ -901,71 +923,54 @@ enum OperationType : int32_t {
|
||||
* Supported tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
*
|
||||
* All input and output tensors must be of the same type.
|
||||
*
|
||||
* Inputs:
|
||||
* * 0: The input (\f$x_t\f$).
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [batch_size, input_size], where “batch_size” corresponds to the
|
||||
* batching dimension, and “input_size” is the size of the input.
|
||||
* A 2-D tensor of shape [batch_size, input_size], where “batch_size”
|
||||
* corresponds to the batching dimension, and “input_size” is the size
|
||||
* of the input.
|
||||
* * 1: The input-to-input weights (\f$W_{xi}\f$). Optional.
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units, input_size], where “num_units” corresponds to the
|
||||
* number of cell units.
|
||||
* A 2-D tensor of shape [num_units, input_size], where “num_units”
|
||||
* corresponds to the number of cell units.
|
||||
* * 2: The input-to-forget weights (\f$W_{xf}\f$).
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units, input_size].
|
||||
* A 2-D tensor of shape [num_units, input_size].
|
||||
* * 3: The input-to-cell weights (\f$W_{xc}\f$).
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units, input_size].
|
||||
* A 2-D tensor of shape [num_units, input_size].
|
||||
* * 4: The input-to-output weights (\f$W_{xo}\f$).
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units, input_size].
|
||||
* A 2-D tensor of shape [num_units, input_size].
|
||||
* * 5: The recurrent-to-input weights (\f$W_{hi}\f$). Optional.
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units, output_size], where “output_size” corresponds to either
|
||||
* the number of cell units (i.e., “num_units”), or the second
|
||||
* dimension of the “projection_weights”, if defined.
|
||||
* A 2-D tensor of shape [num_units, output_size], where “output_size”
|
||||
* corresponds to either the number of cell units (i.e., “num_units”),
|
||||
* or the second dimension of the “projection_weights”, if defined.
|
||||
* * 6: The recurrent-to-forget weights (\f$W_{hf}\f$).
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units, output_size].
|
||||
* A 2-D tensor of shape [num_units, output_size].
|
||||
* * 7: The recurrent-to-cell weights (\f$W_{hc}\f$).
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units, output_size].
|
||||
* A 2-D tensor of shape [num_units, output_size].
|
||||
* * 8: The recurrent-to-output weights (\f$W_{ho}\f$).
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units, output_size].
|
||||
* A 2-D tensor of shape [num_units, output_size].
|
||||
* * 9: The cell-to-input weights (\f$W_{ci}\f$). Optional.
|
||||
* A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units].
|
||||
* A 1-D tensor of shape [num_units].
|
||||
* * 10:The cell-to-forget weights (\f$W_{cf}\f$). Optional.
|
||||
* A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units].
|
||||
* A 1-D tensor of shape [num_units].
|
||||
* * 11:The cell-to-output weights (\f$W_{co}\f$). Optional.
|
||||
* A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units].
|
||||
* A 1-D tensor of shape [num_units].
|
||||
* * 12:The input gate bias (\f$b_i\f$). Optional.
|
||||
* A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units].
|
||||
* A 1-D tensor of shape [num_units].
|
||||
* * 13:The forget gate bias (\f$b_f\f$).
|
||||
* A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units].
|
||||
* A 1-D tensor of shape [num_units].
|
||||
* * 14:The cell bias (\f$b_c\f$).
|
||||
* A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units].
|
||||
* A 1-D tensor of shape [num_units].
|
||||
* * 15:The output gate bias (\f$b_o\f$).
|
||||
* A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units].
|
||||
* A 1-D tensor of shape [num_units].
|
||||
* * 16:The projection weights (\f$W_{proj}\f$). Optional.
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [output_size, num_units].
|
||||
* A 2-D tensor of shape [output_size, num_units].
|
||||
* * 17:The projection bias (\f$b_{proj}\f$). Optional.
|
||||
* A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [output_size].
|
||||
* A 1-D tensor of shape [output_size].
|
||||
* * 18:The output state (in) (\f$h_{t-1}\f$).
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [batch_size, output_size].
|
||||
* A 2-D tensor of shape [batch_size, output_size].
|
||||
* * 19:The cell state (in) (\f$C_{t-1}\f$).
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [batch_size, num_units].
|
||||
* A 2-D tensor of shape [batch_size, num_units].
|
||||
* * 20:The activation function (\f$g\f$).
|
||||
* A value indicating the activation function:
|
||||
* <ul>
|
||||
@@ -984,21 +989,15 @@ enum OperationType : int32_t {
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: The scratch buffer.
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [batch_size, num_units * 3] with CIFG, or
|
||||
* A 2-D tensor of shape [batch_size, num_units * 3] with CIFG, or
|
||||
* [batch_size, num_units * 4] without CIFG.
|
||||
* * 1: The output state (out) (\f$h_t\f$).
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [batch_size, output_size].
|
||||
* A 2-D tensor of shape [batch_size, output_size].
|
||||
* * 2: The cell state (out) (\f$C_t\f$).
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [batch_size, num_units].
|
||||
* A 2-D tensor of shape [batch_size, num_units].
|
||||
* * 3: The output (\f$o_t\f$).
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [batch_size, output_size]. This is effectively the same as the
|
||||
* current “output state (out)” value.
|
||||
*
|
||||
* Available since API level 27.
|
||||
* A 2-D tensor of shape [batch_size, output_size]. This is effectively
|
||||
* the same as the current “output state (out)” value.
|
||||
*/
|
||||
LSTM = 16,
|
||||
|
||||
@@ -1019,7 +1018,8 @@ enum OperationType : int32_t {
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
|
||||
*
|
||||
* Supported tensor rank: 4, with "NHWC" data layout.
|
||||
* Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
|
||||
* and Channels) data layout.
|
||||
*
|
||||
* Both explicit padding and implicit padding are supported.
|
||||
*
|
||||
@@ -1067,8 +1067,8 @@ enum OperationType : int32_t {
|
||||
* Outputs:
|
||||
* * 0: The output 4-D tensor, of shape
|
||||
* [batches, out_height, out_width, depth].
|
||||
*
|
||||
* Available since API level 27.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint must be the same as input0.
|
||||
*/
|
||||
MAX_POOL_2D = 17,
|
||||
|
||||
@@ -1106,8 +1106,6 @@ enum OperationType : int32_t {
|
||||
* For output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
|
||||
* the following condition must be satisfied:
|
||||
* output_scale > input1_scale * input2_scale.
|
||||
*
|
||||
* Available since API level 27.
|
||||
*/
|
||||
MUL = 18,
|
||||
|
||||
@@ -1129,8 +1127,8 @@ enum OperationType : int32_t {
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: The output tensor of same shape as input0.
|
||||
*
|
||||
* Available since API level 27.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint must be the same as input0.
|
||||
*/
|
||||
RELU = 19,
|
||||
|
||||
@@ -1151,9 +1149,9 @@ enum OperationType : int32_t {
|
||||
* * 0: A tensor, specifying the input.
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: The output tensor of same shape as input0.
|
||||
*
|
||||
* Available since API level 27.
|
||||
* * 0: The output tensor of the same shape as input0.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint must be the same as input0.
|
||||
*/
|
||||
RELU1 = 20,
|
||||
|
||||
@@ -1175,8 +1173,8 @@ enum OperationType : int32_t {
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: The output tensor of same shape as input0.
|
||||
*
|
||||
* Available since API level 27.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint must be the same as input0.
|
||||
*/
|
||||
RELU6 = 21,
|
||||
|
||||
@@ -1205,8 +1203,8 @@ enum OperationType : int32_t {
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: The output tensor, of shape specified by the input shape.
|
||||
*
|
||||
* Available since API level 27.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint must be the same as input0.
|
||||
*/
|
||||
RESHAPE = 22,
|
||||
|
||||
@@ -1220,9 +1218,10 @@ enum OperationType : int32_t {
|
||||
* Supported tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
*
|
||||
* Supported tensor rank: 4, with "NHWC" data layout.
|
||||
* Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
|
||||
* and Channels) data layout.
|
||||
*
|
||||
* Inputs:
|
||||
* Inputs (resizing by shape):
|
||||
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
|
||||
* the input.
|
||||
* * 1: An {@link OperandType::INT32} scalar, specifying the output
|
||||
@@ -1233,8 +1232,6 @@ enum OperationType : int32_t {
|
||||
* Outputs:
|
||||
* * 0: The output 4-D tensor, of shape
|
||||
* [batches, new_height, new_width, depth].
|
||||
*
|
||||
* Available since API level 27.
|
||||
*/
|
||||
RESIZE_BILINEAR = 23,
|
||||
|
||||
@@ -1257,25 +1254,23 @@ enum OperationType : int32_t {
|
||||
* Supported tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
*
|
||||
* The input tensors must all be the same type.
|
||||
*
|
||||
* Inputs:
|
||||
* * 0: input.
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32} of shape
|
||||
* [batch_size, input_size], where “batch_size” corresponds to the
|
||||
* batching dimension, and “input_size” is the size of the input.
|
||||
* A 2-D tensor of shape [batch_size, input_size], where “batch_size”
|
||||
* corresponds to the batching dimension, and “input_size” is the size
|
||||
* of the input.
|
||||
* * 1: weights.
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units, input_size], where “num_units” corresponds to the
|
||||
* number of units.
|
||||
* A 2-D tensor of shape [num_units, input_size], where “num_units”
|
||||
* corresponds to the number of units.
|
||||
* * 2: recurrent_weights.
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units, num_units], with columns corresponding to the weights
|
||||
* from each unit.
|
||||
* A 2-D tensor of shape [num_units, num_units], with columns
|
||||
* corresponding to the weights from each unit.
|
||||
* * 3: bias.
|
||||
* A 1-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units].
|
||||
* A 1-D tensor of shape [num_units].
|
||||
* * 4: hidden state (in).
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [batch_size, num_units].
|
||||
* A 2-D tensor of shape [batch_size, num_units].
|
||||
* * 5: fused_activation_function.
|
||||
* An optional {@link FusedActivationFunc} value indicating the
|
||||
* activation function. If “NONE” is specified then it results in a
|
||||
@@ -1283,15 +1278,11 @@ enum OperationType : int32_t {
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: hidden state (out).
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [batch_size, num_units].
|
||||
* A 2-D tensor of shape [batch_size, num_units].
|
||||
*
|
||||
* * 1: output.
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [batch_size, num_units]. This is effectively the same as the
|
||||
* current state value.
|
||||
*
|
||||
* Available since API level 27.
|
||||
* A 2-D tensor of shape [batch_size, num_units]. This is effectively
|
||||
* the same as the current state value.
|
||||
*/
|
||||
RNN = 24,
|
||||
|
||||
@@ -1306,6 +1297,9 @@ enum OperationType : int32_t {
|
||||
* exp((input[batch, i] - max(input[batch, :])) * beta) /
|
||||
* sum_{k}{exp((input[batch, k] - max(input[batch, :])) * beta)}
|
||||
*
|
||||
* For input tensor with rank other than 2, the activation will be applied
|
||||
* independently on each 1-D slice along specified dimension.
|
||||
*
|
||||
* Supported tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
|
||||
@@ -1314,15 +1308,15 @@ enum OperationType : int32_t {
|
||||
*
|
||||
* Inputs:
|
||||
* * 0: A 2-D or 4-D tensor, specifying the tensor to be reshaped.
|
||||
* * 1: An {@link OperandType::FLOAT32} scalar, specifying the positive
|
||||
* scaling factor for the exponent, beta.
|
||||
* * 1: A scalar, specifying the positive scaling factor for the exponent,
|
||||
* beta. If input0 is of {@link OperandType::TENSOR_FLOAT32} or
|
||||
* {@link OperandType::TENSOR_QUANT8_ASYMM}, the scalar must be of
|
||||
* {@link OperandType::FLOAT32}.
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: The output tensor of same shape as input0.
|
||||
* For {@link OperandType::TENSOR_QUANT8_ASYMM},
|
||||
* the scale must be 1.f / 256 and the zeroPoint must be 0.
|
||||
*
|
||||
* Available since API level 27.
|
||||
*/
|
||||
SOFTMAX = 25,
|
||||
|
||||
@@ -1344,7 +1338,8 @@ enum OperationType : int32_t {
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
|
||||
*
|
||||
* Supported tensor rank: 4, with "NHWC" data layout.
|
||||
* Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
|
||||
* and Channels) data layout.
|
||||
*
|
||||
* Inputs:
|
||||
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
|
||||
@@ -1356,8 +1351,8 @@ enum OperationType : int32_t {
|
||||
* Outputs:
|
||||
* * 0: The output 4-D tensor, of shape [batches, height/block_size,
|
||||
* width/block_size, depth_in*block_size*block_size].
|
||||
*
|
||||
* Available since API level 27.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint must be the same as input0.
|
||||
*/
|
||||
SPACE_TO_DEPTH = 26,
|
||||
|
||||
@@ -1403,25 +1398,23 @@ enum OperationType : int32_t {
|
||||
* Supported tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
*
|
||||
* All input tensors must be the same type.
|
||||
*
|
||||
* Inputs:
|
||||
* * 0: input.
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [batch_size, input_size], where “batch_size” corresponds to the
|
||||
* batching dimension, and “input_size” is the size of the input.
|
||||
* A 2-D tensor of shape [batch_size, input_size], where “batch_size”
|
||||
* corresponds to the batching dimension, and “input_size” is the size
|
||||
* of the input.
|
||||
* * 1: weights_feature.
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units, input_size], where “num_units” corresponds to the
|
||||
* number of units.
|
||||
* A 2-D tensor of shape [num_units, input_size], where “num_units”
|
||||
* corresponds to the number of units.
|
||||
* * 2: weights_time.
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [num_units, memory_size], where “memory_size” corresponds to the
|
||||
* fixed-size of the memory.
|
||||
* A 2-D tensor of shape [num_units, memory_size], where “memory_size”
|
||||
* corresponds to the fixed-size of the memory.
|
||||
* * 3: bias.
|
||||
* An optional 1-D tensor of {@link OperandType::TENSOR_FLOAT32},
|
||||
* of shape [num_units].
|
||||
* An optional 1-D tensor of shape [num_units].
|
||||
* * 4: state (in).
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* [batch_size, (memory_size - 1) * num_units * rank].
|
||||
* A 2-D tensor of shape [batch_size, (memory_size - 1) * num_units * rank].
|
||||
* * 5: rank.
|
||||
* The rank of the SVD approximation.
|
||||
* * 6: fused_activation_function.
|
||||
@@ -1431,13 +1424,11 @@ enum OperationType : int32_t {
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: state (out).
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* A 2-D tensor of the same {@link OperandType} as the inputs, with shape
|
||||
* [batch_size, (memory_size - 1) * num_units * rank].
|
||||
* * 1: output.
|
||||
* A 2-D tensor of {@link OperandType::TENSOR_FLOAT32}, of shape
|
||||
* A 2-D tensor of the same {@link OperandType} as the inputs, with shape
|
||||
* [batch_size, num_units].
|
||||
*
|
||||
* Available since API level 27.
|
||||
*/
|
||||
SVDF = 27,
|
||||
|
||||
@@ -1458,8 +1449,6 @@ enum OperationType : int32_t {
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: The output tensor of same shape as input0.
|
||||
*
|
||||
* Available since API level 27.
|
||||
*/
|
||||
TANH = 28,
|
||||
|
||||
|
||||
431
neuralnetworks/1.0/types.t
Normal file
431
neuralnetworks/1.0/types.t
Normal file
@@ -0,0 +1,431 @@
|
||||
%% template file for generating types.hal.
|
||||
%% see frameworks/ml/nn/tools/api/README.md.
|
||||
/*
|
||||
* Copyright (C) 2017 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package android.hardware.neuralnetworks@1.0;
|
||||
|
||||
%insert Operand_1.0_Comment
|
||||
enum OperandType : int32_t {
|
||||
%insert Operand_1.0
|
||||
|
||||
/**
|
||||
* DEPRECATED. Since HAL version 1.2, extensions are the preferred
|
||||
* alternative to OEM operation and data types.
|
||||
*
|
||||
* OEM specific scalar value.
|
||||
*/
|
||||
OEM = 10000,
|
||||
|
||||
/**
|
||||
* DEPRECATED. Since HAL version 1.2, extensions are the preferred
|
||||
* alternative to OEM operation and data types.
|
||||
*
|
||||
* A tensor of OEM specific values.
|
||||
*/
|
||||
TENSOR_OEM_BYTE = 10001,
|
||||
};
|
||||
|
||||
%insert Operation_1.0_Comment
|
||||
enum OperationType : int32_t {
|
||||
%insert Operation_1.0
|
||||
|
||||
/**
|
||||
* DEPRECATED. Since NNAPI 1.2, extensions are the preferred alternative to
|
||||
* OEM operation and data types.
|
||||
*
|
||||
* This operation is OEM specific. It should only be used for OEM
|
||||
* applications.
|
||||
*/
|
||||
OEM_OPERATION = 10000,
|
||||
};
|
||||
|
||||
/**
|
||||
* Fused activation function types.
|
||||
*/
|
||||
enum FusedActivationFunc : int32_t {
|
||||
NONE = 0,
|
||||
RELU = 1,
|
||||
RELU1 = 2,
|
||||
RELU6 = 3,
|
||||
};
|
||||
|
||||
/**
|
||||
* How an operand is used.
|
||||
*/
|
||||
enum OperandLifeTime : int32_t {
|
||||
/**
|
||||
* The operand is internal to the model. It's created by an operation and
|
||||
* consumed by other operations. It must be an output operand of
|
||||
* exactly one operation.
|
||||
*/
|
||||
TEMPORARY_VARIABLE,
|
||||
|
||||
/**
|
||||
* The operand is an input of the model. It must not be an output
|
||||
* operand of any operation.
|
||||
*
|
||||
* An operand can't be both input and output of a model.
|
||||
*/
|
||||
MODEL_INPUT,
|
||||
|
||||
/**
|
||||
* The operand is an output of the model. It must be an output
|
||||
* operand of exactly one operation.
|
||||
*
|
||||
* An operand can't be both input and output of a model.
|
||||
*/
|
||||
MODEL_OUTPUT,
|
||||
|
||||
/**
|
||||
* The operand is a constant found in Model.operandValues. It must
|
||||
* not be an output operand of any operation.
|
||||
*/
|
||||
CONSTANT_COPY,
|
||||
|
||||
/**
|
||||
* The operand is a constant that was specified via a Memory
|
||||
* object. It must not be an output operand of any operation.
|
||||
*/
|
||||
CONSTANT_REFERENCE,
|
||||
|
||||
/**
|
||||
* The operand does not have a value. This is valid only for optional
|
||||
* arguments of operations.
|
||||
*/
|
||||
NO_VALUE,
|
||||
};
|
||||
|
||||
/**
|
||||
* Status of a device.
|
||||
*/
|
||||
enum DeviceStatus : int32_t {
|
||||
AVAILABLE,
|
||||
BUSY,
|
||||
OFFLINE,
|
||||
UNKNOWN,
|
||||
};
|
||||
|
||||
/**
|
||||
* Performance information for the reference workload.
|
||||
*
|
||||
* Used by a driver to report its performance characteristics.
|
||||
*/
|
||||
struct PerformanceInfo {
|
||||
/**
|
||||
* Ratio of the time taken by the driver to execute the
|
||||
* workload compared to the time the CPU would take for the
|
||||
* same workload. A lower number is better.
|
||||
*/
|
||||
float execTime;
|
||||
|
||||
/**
|
||||
* Ratio of the energy used by the driver compared to what
|
||||
* the CPU would use for doing the same workload. A lower number
|
||||
* is better.
|
||||
*/
|
||||
float powerUsage;
|
||||
};
|
||||
|
||||
/**
|
||||
* The capabilities of a driver.
|
||||
*/
|
||||
struct Capabilities {
|
||||
/**
|
||||
* Driver performance when operating on float32 data.
|
||||
*/
|
||||
PerformanceInfo float32Performance;
|
||||
|
||||
/**
|
||||
* Driver performance when operating on asymmetric 8-bit quantized data.
|
||||
*/
|
||||
PerformanceInfo quantized8Performance;
|
||||
};
|
||||
|
||||
/**
|
||||
* Describes the location of a data object.
|
||||
*/
|
||||
struct DataLocation {
|
||||
/**
|
||||
* The index of the memory pool where this location is found.
|
||||
*/
|
||||
uint32_t poolIndex;
|
||||
|
||||
/**
|
||||
* Offset in bytes from the start of the pool.
|
||||
*/
|
||||
uint32_t offset;
|
||||
|
||||
/**
|
||||
* The length of the data in bytes.
|
||||
*/
|
||||
uint32_t length;
|
||||
};
|
||||
|
||||
/**
|
||||
* Describes one operand of the model's graph.
|
||||
*/
|
||||
struct Operand {
|
||||
/**
|
||||
* Data type of the operand.
|
||||
*/
|
||||
OperandType type;
|
||||
|
||||
/**
|
||||
* Dimensions of the operand.
|
||||
*
|
||||
* For a scalar operand, dimensions.size() must be 0.
|
||||
*
|
||||
* For a tensor operand, dimensions.size() must be at least 1;
|
||||
* however, any of the dimensions may be unspecified.
|
||||
*
|
||||
* A tensor operand with all dimensions specified has "fully
|
||||
* specified" dimensions. Whenever possible (i.e., whenever the
|
||||
* dimensions are known at model construction time), a tensor
|
||||
* operand should have (but is not required to have) fully
|
||||
* specified dimensions, in order to enable the best possible
|
||||
* performance.
|
||||
*
|
||||
* If a tensor operand's dimensions are not fully specified, the
|
||||
* dimensions of the operand are deduced from the operand
|
||||
* dimensions and values of the operation for which that operand
|
||||
* is an output.
|
||||
*
|
||||
* In the following situations, a tensor operand's dimensions must
|
||||
* be fully specified:
|
||||
*
|
||||
* . The operand has lifetime CONSTANT_COPY or
|
||||
* CONSTANT_REFERENCE.
|
||||
*
|
||||
* . The operand has lifetime MODEL_INPUT or MODEL_OUTPUT. Fully
|
||||
* specified dimensions must either be present in the
|
||||
* Operand or they must be provided in the corresponding
|
||||
* RequestArgument.
|
||||
* EXCEPTION: If the input or output is optional and omitted
|
||||
* (by setting the hasNoValue field of the corresponding
|
||||
* RequestArgument to true) then it need not have fully
|
||||
* specified dimensions.
|
||||
*
|
||||
* A tensor operand with some number of unspecified dimensions is
|
||||
* represented by setting each unspecified dimension to 0.
|
||||
*/
|
||||
vec<uint32_t> dimensions;
|
||||
|
||||
/**
|
||||
* The number of times this operand appears as an operation input.
|
||||
*
|
||||
* (For example, if this operand appears once in one operation's
|
||||
* input list, and three times in another operation's input list,
|
||||
* then numberOfConsumers = 4.)
|
||||
*/
|
||||
uint32_t numberOfConsumers;
|
||||
|
||||
/**
|
||||
* Quantized scale of the operand.
|
||||
*
|
||||
* Only applicable if the operand is of type TENSOR_QUANT8_ASYMM or
|
||||
* TENSOR_INT32.
|
||||
*/
|
||||
float scale;
|
||||
|
||||
/**
|
||||
* Quantized zero-point offset of the operand.
|
||||
*
|
||||
* Only applicable if the operand is of type TENSOR_QUANT8_ASYMM.
|
||||
*/
|
||||
int32_t zeroPoint;
|
||||
|
||||
/**
|
||||
* How the operand is used.
|
||||
*/
|
||||
OperandLifeTime lifetime;
|
||||
|
||||
/**
|
||||
* Where to find the data for this operand.
|
||||
* If the lifetime is TEMPORARY_VARIABLE, MODEL_INPUT, MODEL_OUTPUT, or
|
||||
* NO_VALUE:
|
||||
* - All the fields must be 0.
|
||||
* If the lifetime is CONSTANT_COPY:
|
||||
* - location.poolIndex is 0.
|
||||
* - location.offset is the offset in bytes into Model.operandValues.
|
||||
* - location.length is set.
|
||||
* If the lifetime is CONSTANT_REFERENCE:
|
||||
* - location.poolIndex is set.
|
||||
* - location.offset is the offset in bytes into the specified pool.
|
||||
* - location.length is set.
|
||||
*/
|
||||
DataLocation location;
|
||||
};
|
||||
|
||||
/**
|
||||
* Describes one operation of the model's graph.
|
||||
*/
|
||||
struct Operation {
|
||||
/**
|
||||
* The operation type.
|
||||
*/
|
||||
OperationType type;
|
||||
|
||||
/**
|
||||
* Describes the table that contains the indexes of the inputs of the
|
||||
* operation. The offset is the index in the operandIndexes table.
|
||||
*/
|
||||
vec<uint32_t> inputs;
|
||||
|
||||
/**
|
||||
* Describes the table that contains the indexes of the outputs of the
|
||||
* operation. The offset is the index in the operandIndexes table.
|
||||
*/
|
||||
vec<uint32_t> outputs;
|
||||
};
|
||||
|
||||
/**
|
||||
* A Neural Network Model.
|
||||
*
|
||||
* This includes not only the execution graph, but also constant data such as
|
||||
* weights or scalars added at construction time. The only information that
|
||||
* might not be known is the shape of the input tensors.
|
||||
*/
|
||||
struct Model {
|
||||
/**
|
||||
* All operands included in the model.
|
||||
*/
|
||||
vec<Operand> operands;
|
||||
|
||||
/**
|
||||
* All operations included in the model.
|
||||
*
|
||||
* The operations are sorted into execution order. Every operand
|
||||
* with lifetime MODEL_OUTPUT or TEMPORARY_VARIABLE must be
|
||||
* written before it is read.
|
||||
*/
|
||||
vec<Operation> operations;
|
||||
|
||||
/**
|
||||
* Input indexes of the model. There must be at least one.
|
||||
*
|
||||
* Each value corresponds to the index of the operand in "operands".
|
||||
*/
|
||||
vec<uint32_t> inputIndexes;
|
||||
|
||||
/**
|
||||
* Output indexes of the model. There must be at least one.
|
||||
*
|
||||
* Each value corresponds to the index of the operand in "operands".
|
||||
*/
|
||||
vec<uint32_t> outputIndexes;
|
||||
|
||||
/**
|
||||
* A byte buffer containing operand data that were copied into the model.
|
||||
*
|
||||
* An operand's value must be located here if and only if Operand::lifetime
|
||||
* equals OperandLifeTime::CONSTANT_COPY.
|
||||
*/
|
||||
vec<uint8_t> operandValues;
|
||||
|
||||
/**
|
||||
* A collection of shared memory pools containing operand values.
|
||||
*
|
||||
* An operand's value must be located here if and only if Operand::lifetime
|
||||
* equals OperandLifeTime::CONSTANT_REFERENCE.
|
||||
*/
|
||||
vec<memory> pools;
|
||||
};
|
||||
|
||||
/**
|
||||
* Metadata information specifying the location of the input or output data and
|
||||
* any updates to the input or output operand.
|
||||
*/
|
||||
struct RequestArgument {
|
||||
/**
|
||||
* If true, the argument does not have a value. This can be used for
|
||||
* operations that take optional arguments. If true, the fields of location
|
||||
* are set to 0 and the dimensions vector is left empty.
|
||||
*/
|
||||
bool hasNoValue;
|
||||
|
||||
/**
|
||||
* The location within one of the memory pools passed in the Request.
|
||||
*/
|
||||
DataLocation location;
|
||||
|
||||
/**
|
||||
* Updated dimension information.
|
||||
*
|
||||
* If dimensions.size() > 0, dimension information was provided
|
||||
* along with the argument. This can be the case for models that
|
||||
* accept inputs of varying size. This can't change the rank, just
|
||||
* the value of the dimensions that were unspecified in the
|
||||
* model. If dimensions.size() > 0, then all dimensions must be
|
||||
* specified here; and any dimension that was specified in the
|
||||
* model must have the same value here.
|
||||
*
|
||||
* If the dimensions in the model are not fully specified, then
|
||||
* they must be fully specified here, unless hasNoValue is set to
|
||||
* true. If the dimensions in the model are fully specified, then
|
||||
* either dimensions.size() may be 0, or the dimensions in the
|
||||
* model must be identical to the dimensions here.
|
||||
*/
|
||||
vec<uint32_t> dimensions;
|
||||
};
|
||||
|
||||
/**
|
||||
* Inputs to be sent to and outputs to be retrieved from a prepared model.
|
||||
*
|
||||
* A Request serves two primary tasks:
|
||||
* 1) Provides the input and output data to be used when executing the model.
|
||||
* 2) Specifies any updates to the input operand metadata that were left
|
||||
* unspecified at model preparation time.
|
||||
*
|
||||
* An output must not overlap with any other output, with an input, or
|
||||
* with an operand of lifetime CONSTANT_REFERENCE.
|
||||
*/
|
||||
struct Request {
|
||||
/**
|
||||
* Input data and information to be used in the execution of a prepared
|
||||
* model.
|
||||
*
|
||||
* The index of the input corresponds to the index in Model.inputIndexes.
|
||||
* E.g., input[i] corresponds to Model.inputIndexes[i].
|
||||
*/
|
||||
vec<RequestArgument> inputs;
|
||||
|
||||
/**
|
||||
* Output data and information to be used in the execution of a prepared
|
||||
* model.
|
||||
*
|
||||
* The index of the output corresponds to the index in Model.outputIndexes.
|
||||
* E.g., output[i] corresponds to Model.outputIndexes[i].
|
||||
*/
|
||||
vec<RequestArgument> outputs;
|
||||
|
||||
/**
|
||||
* A collection of shared memory pools containing operand data for both the
|
||||
* inputs and the outputs to a model.
|
||||
*/
|
||||
vec<memory> pools;
|
||||
};
|
||||
|
||||
/**
|
||||
* Return status of a function.
|
||||
*/
|
||||
enum ErrorStatus : int32_t {
|
||||
NONE,
|
||||
DEVICE_UNAVAILABLE,
|
||||
GENERAL_FAILURE,
|
||||
OUTPUT_INSUFFICIENT_SIZE,
|
||||
INVALID_ARGUMENT,
|
||||
};
|
||||
@@ -26,7 +26,6 @@ import @1.0::PerformanceInfo;
|
||||
* The type of an operation in a model.
|
||||
*/
|
||||
enum OperationType : @1.0::OperationType {
|
||||
|
||||
/**
|
||||
* BatchToSpace for N-dimensional tensors.
|
||||
*
|
||||
@@ -41,7 +40,8 @@ enum OperationType : @1.0::OperationType {
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
|
||||
*
|
||||
* Supported tensor rank: 4
|
||||
* Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
|
||||
* and Channels) data layout.
|
||||
*
|
||||
* Inputs:
|
||||
* * 0: An n-D tensor, specifying the tensor to be reshaped
|
||||
@@ -51,8 +51,8 @@ enum OperationType : @1.0::OperationType {
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: A tensor of the same {@link OperandType} as input0.
|
||||
*
|
||||
* Available since API level 28.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint must be the same as input0.
|
||||
*/
|
||||
BATCH_TO_SPACE_ND = 29,
|
||||
|
||||
@@ -91,8 +91,6 @@ enum OperationType : @1.0::OperationType {
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: A tensor of the same {@link OperandType} as input0.
|
||||
*
|
||||
* Available since API level 28.
|
||||
*/
|
||||
DIV = 30,
|
||||
|
||||
@@ -126,8 +124,8 @@ enum OperationType : @1.0::OperationType {
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: A tensor of the same {@link OperandType} as input0.
|
||||
*
|
||||
* Available since API level 28.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint must be same as input0.
|
||||
*/
|
||||
MEAN = 31,
|
||||
|
||||
@@ -138,7 +136,8 @@ enum OperationType : @1.0::OperationType {
|
||||
*
|
||||
* Supported tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
* * {@link OperandType::TENSOR_QUANT8_ASYMM} (the pad value is undefined)
|
||||
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
|
||||
* (the pad value is undefined)
|
||||
*
|
||||
* Supported tensor rank: up to 4
|
||||
*
|
||||
@@ -160,11 +159,8 @@ enum OperationType : @1.0::OperationType {
|
||||
* of the padding:
|
||||
* output0.dimension[i] =
|
||||
* padding[i, 0] + input0.dimension[i] + padding[i, 1]
|
||||
*
|
||||
* NOTE: The pad value for {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
|
||||
* is undefined.
|
||||
*
|
||||
* Available since API level 28.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint must be the same as input0.
|
||||
*/
|
||||
PAD = 32,
|
||||
|
||||
@@ -182,8 +178,10 @@ enum OperationType : @1.0::OperationType {
|
||||
* Supported tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_FLOAT32}
|
||||
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
|
||||
* (the pad value is undefined)
|
||||
*
|
||||
* Supported tensor rank: 4
|
||||
* Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
|
||||
* and Channels) data layout.
|
||||
*
|
||||
* Inputs:
|
||||
* * 0: An n-D tensor, specifying the input.
|
||||
@@ -201,8 +199,8 @@ enum OperationType : @1.0::OperationType {
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: A tensor of the same {@link OperandType} as input0.
|
||||
*
|
||||
* Available since API level 28.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint must be the same as input0.
|
||||
*/
|
||||
SPACE_TO_BATCH_ND = 33,
|
||||
|
||||
@@ -232,8 +230,8 @@ enum OperationType : @1.0::OperationType {
|
||||
* * 0: A tensor of the same {@link OperandType} as input0. Contains the
|
||||
* same data as input, but has one or more dimensions of size 1
|
||||
* removed.
|
||||
*
|
||||
* Available since API level 28.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint must be the same as input0.
|
||||
*/
|
||||
SQUEEZE = 34,
|
||||
|
||||
@@ -278,8 +276,8 @@ enum OperationType : @1.0::OperationType {
|
||||
* Outputs:
|
||||
* * 0: A tensor of the same {@link OperandType} as input0 and rank (n - k),
|
||||
* where k is the number of bits set in shrink_axis_mask.
|
||||
*
|
||||
* Available since API level 28.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint must be the same as input0.
|
||||
*/
|
||||
STRIDED_SLICE = 35,
|
||||
|
||||
@@ -318,8 +316,6 @@ enum OperationType : @1.0::OperationType {
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: A tensor of the same {@link OperandType} as input0.
|
||||
*
|
||||
* Available since API level 28.
|
||||
*/
|
||||
SUB = 36,
|
||||
|
||||
@@ -345,11 +341,10 @@ enum OperationType : @1.0::OperationType {
|
||||
*
|
||||
* Outputs:
|
||||
* * 0: A tensor of the same {@link OperandType} as input0.
|
||||
*
|
||||
* Available since API level 28.
|
||||
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
|
||||
* the scale and zeroPoint must be the same as input0.
|
||||
*/
|
||||
TRANSPOSE = 37,
|
||||
|
||||
};
|
||||
|
||||
/**
|
||||
|
||||
158
neuralnetworks/1.1/types.t
Normal file
158
neuralnetworks/1.1/types.t
Normal file
@@ -0,0 +1,158 @@
|
||||
%% template file for generating types.hal.
|
||||
%% see frameworks/ml/nn/tools/api/README.md.
|
||||
/*
|
||||
* Copyright (C) 2018 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package android.hardware.neuralnetworks@1.1;
|
||||
|
||||
import @1.0::Operand;
|
||||
import @1.0::OperationType;
|
||||
import @1.0::PerformanceInfo;
|
||||
|
||||
/**
|
||||
* Operation types.
|
||||
*
|
||||
* The type of an operation in a model.
|
||||
*/
|
||||
enum OperationType : @1.0::OperationType {
|
||||
%insert Operation_1.1
|
||||
};
|
||||
|
||||
/**
|
||||
* The capabilities of a driver.
|
||||
*/
|
||||
struct Capabilities {
|
||||
/**
|
||||
* Driver performance when operating on float32 data.
|
||||
*/
|
||||
PerformanceInfo float32Performance;
|
||||
|
||||
/**
|
||||
* Driver performance when operating on asymmetric 8-bit quantized data.
|
||||
*/
|
||||
PerformanceInfo quantized8Performance;
|
||||
|
||||
/**
|
||||
* Driver performance when operating on float32 data but performing
|
||||
* calculations with range and/or precision as low as that of the IEEE
|
||||
* 754 16-bit floating-point format.
|
||||
*/
|
||||
PerformanceInfo relaxedFloat32toFloat16Performance;
|
||||
};
|
||||
|
||||
/**
|
||||
* Describes one operation of the model's graph.
|
||||
*/
|
||||
struct Operation {
|
||||
/**
|
||||
* The operation type.
|
||||
*/
|
||||
OperationType type;
|
||||
|
||||
/**
|
||||
* Describes the table that contains the indexes of the inputs of the
|
||||
* operation. The offset is the index in the operandIndexes table.
|
||||
*/
|
||||
vec<uint32_t> inputs;
|
||||
|
||||
/**
|
||||
* Describes the table that contains the indexes of the outputs of the
|
||||
* operation. The offset is the index in the operandIndexes table.
|
||||
*/
|
||||
vec<uint32_t> outputs;
|
||||
};
|
||||
|
||||
/**
|
||||
* A Neural Network Model.
|
||||
*
|
||||
* This includes not only the execution graph, but also constant data such as
|
||||
* weights or scalars added at construction time. The only information that
|
||||
* may not be known is the shape of the input tensors.
|
||||
*/
|
||||
struct Model {
|
||||
/**
|
||||
* All operands included in the model.
|
||||
*/
|
||||
vec<Operand> operands;
|
||||
|
||||
/**
|
||||
* All operations included in the model.
|
||||
*
|
||||
* The operations are sorted into execution order. Every operand
|
||||
* with lifetime MODEL_OUTPUT or TEMPORARY_VARIABLE must be
|
||||
* written before it is read.
|
||||
*/
|
||||
vec<Operation> operations;
|
||||
|
||||
/**
|
||||
* Input indexes of the model. There must be at least one.
|
||||
*
|
||||
* Each value corresponds to the index of the operand in "operands".
|
||||
*/
|
||||
vec<uint32_t> inputIndexes;
|
||||
|
||||
/**
|
||||
* Output indexes of the model. There must be at least one.
|
||||
*
|
||||
* Each value corresponds to the index of the operand in "operands".
|
||||
*/
|
||||
vec<uint32_t> outputIndexes;
|
||||
|
||||
/**
|
||||
* A byte buffer containing operand data that were copied into the model.
|
||||
*
|
||||
* An operand's value must be located here if and only if Operand::lifetime
|
||||
* equals OperandLifeTime::CONSTANT_COPY.
|
||||
*/
|
||||
vec<uint8_t> operandValues;
|
||||
|
||||
/**
|
||||
* A collection of shared memory pools containing operand values.
|
||||
*
|
||||
* An operand's value must be located here if and only if Operand::lifetime
|
||||
* equals OperandLifeTime::CONSTANT_REFERENCE.
|
||||
*/
|
||||
vec<memory> pools;
|
||||
|
||||
/**
|
||||
* 'true' indicates TENSOR_FLOAT32 may be calculated with range and/or
|
||||
* precision as low as that of the IEEE 754 16-bit floating-point format.
|
||||
* 'false' indicates TENSOR_FLOAT32 must be calculated using at least the
|
||||
* range and precision of the IEEE 754 32-bit floating-point format.
|
||||
*/
|
||||
bool relaxComputationFloat32toFloat16;
|
||||
};
|
||||
|
||||
/**
|
||||
* Execution preferences.
|
||||
*/
|
||||
enum ExecutionPreference : int32_t {
|
||||
/**
|
||||
* Prefer executing in a way that minimizes battery drain.
|
||||
* This is desirable for compilations that will be executed often.
|
||||
*/
|
||||
LOW_POWER = 0,
|
||||
/**
|
||||
* Prefer returning a single answer as fast as possible, even if this causes
|
||||
* more power consumption.
|
||||
*/
|
||||
FAST_SINGLE_ANSWER = 1,
|
||||
/**
|
||||
* Prefer maximizing the throughput of successive frames, for example when
|
||||
* processing successive frames coming from the camera.
|
||||
*/
|
||||
SUSTAINED_SPEED = 2,
|
||||
};
|
||||
File diff suppressed because it is too large
Load Diff
745
neuralnetworks/1.2/types.t
Normal file
745
neuralnetworks/1.2/types.t
Normal file
@@ -0,0 +1,745 @@
|
||||
%% template file for generating types.hal.
|
||||
%% see frameworks/ml/nn/tools/api/README.md.
|
||||
/*
|
||||
* Copyright (C) 2018 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package android.hardware.neuralnetworks@1.2;
|
||||
|
||||
import @1.0::DataLocation;
|
||||
import @1.0::ErrorStatus;
|
||||
import @1.0::OperandLifeTime;
|
||||
import @1.0::OperandType;
|
||||
import @1.0::PerformanceInfo;
|
||||
import @1.1::OperationType;
|
||||
|
||||
import android.hidl.safe_union@1.0::Monostate;
|
||||
|
||||
enum Constant : uint32_t {
|
||||
/**
|
||||
* The byte size of the cache token.
|
||||
*/
|
||||
BYTE_SIZE_OF_CACHE_TOKEN = 32,
|
||||
|
||||
/**
|
||||
* The maximum number of files for each type of cache in compilation caching.
|
||||
*/
|
||||
MAX_NUMBER_OF_CACHE_FILES = 32,
|
||||
};
|
||||
|
||||
enum OperandType : @1.0::OperandType {
|
||||
%insert Operand_1.2
|
||||
|
||||
/*
|
||||
* DEPRECATED. Since HAL version 1.2, extensions are the preferred
|
||||
* alternative to OEM operation and data types.
|
||||
*
|
||||
* OEM specific scalar value.
|
||||
* OEM = 10000,
|
||||
*/
|
||||
/*
|
||||
* DEPRECATED. Since HAL version 1.2, extensions are the preferred
|
||||
* alternative to OEM operation and data types.
|
||||
*
|
||||
* A tensor of OEM specific values.
|
||||
* TENSOR_OEM_BYTE = 10001,
|
||||
*/
|
||||
/* ADDING A NEW FUNDAMENTAL TYPE REQUIRES UPDATING THE VALUE OF
|
||||
* OperandTypeRange::FUNDAMENTAL_MAX.
|
||||
*/
|
||||
/* ADDING A NEW OEM TYPE REQUIRES UPDATING THE VALUE OF
|
||||
* OperandTypeRange::OEM_MAX.
|
||||
*/
|
||||
};
|
||||
|
||||
/**
|
||||
* The range of operand values in the OperandType enum.
|
||||
*/
|
||||
enum OperandTypeRange : uint32_t {
|
||||
BASE_MIN = 0,
|
||||
FUNDAMENTAL_MIN = 0,
|
||||
%insert Operand_1.2_MAX
|
||||
OEM_MIN = 10000,
|
||||
OEM_MAX = 10001,
|
||||
BASE_MAX = 0xFFFF,
|
||||
};
|
||||
|
||||
/**
|
||||
* Operation types.
|
||||
*
|
||||
* The type of an operation in a model.
|
||||
*/
|
||||
enum OperationType : int32_t {
|
||||
|
||||
%insert Operation_1.0
|
||||
|
||||
%insert Operation_1.1
|
||||
|
||||
%insert Operation_1.2
|
||||
|
||||
/**
|
||||
* DEPRECATED. Since NNAPI 1.2, extensions are the preferred alternative to
|
||||
* OEM operation and data types.
|
||||
*
|
||||
* This operation is OEM specific. It should only be used for OEM
|
||||
* applications.
|
||||
*/
|
||||
OEM_OPERATION = @1.1::OperationType:OEM_OPERATION,
|
||||
/* ADDING A NEW FUNDAMENTAL OPERATION REQUIRES UPDATING THE VALUE OF
|
||||
* OperationTypeRange::FUNDAMENTAL_MAX.
|
||||
*/
|
||||
/* ADDING A NEW OEM OPERATION REQUIRES UPDATING THE VALUE OF
|
||||
* OperationTypeRange::OEM_MAX.
|
||||
*/
|
||||
};
|
||||
|
||||
/**
|
||||
* The range of values in the OperationType enum.
|
||||
*/
|
||||
enum OperationTypeRange : uint32_t {
|
||||
BASE_MIN = 0,
|
||||
FUNDAMENTAL_MIN = 0,
|
||||
%insert Operation_1.2_MAX
|
||||
OEM_MIN = 10000,
|
||||
OEM_MAX = 10000,
|
||||
BASE_MAX = 0xFFFF,
|
||||
};
|
||||
|
||||
/**
|
||||
* Device types.
|
||||
*
|
||||
* The type of NNAPI device.
|
||||
*/
|
||||
enum DeviceType : int32_t {
|
||||
// Leaving 0 unused as it means unknown type in NDK NNAPI. There is no
|
||||
// HAL equivalent of unknown type and a 1.2 HAL implementation must belong
|
||||
// to one of the categories below.
|
||||
/** The device does not fall into any category below. */
|
||||
OTHER = 1,
|
||||
/** The device runs NNAPI models on single or multi-core CPU. */
|
||||
CPU = 2,
|
||||
/** The device can run NNAPI models and also accelerate graphics APIs such
|
||||
* as OpenGL ES and Vulkan. */
|
||||
GPU = 3,
|
||||
/** Dedicated accelerator for Machine Learning workloads. */
|
||||
ACCELERATOR = 4,
|
||||
};
|
||||
|
||||
/**
|
||||
* The capabilities of a driver.
|
||||
*
|
||||
* Performance of an operation comes from the type of its first operand.
|
||||
* This represents performance for non extension operand types.
|
||||
*/
|
||||
struct Capabilities {
|
||||
/**
|
||||
* Driver performance when operating on float32 data but performing
|
||||
* calculations with range and/or precision as low as that of the IEEE
|
||||
* 754 16-bit floating-point format.
|
||||
*/
|
||||
PerformanceInfo relaxedFloat32toFloat16PerformanceScalar;
|
||||
PerformanceInfo relaxedFloat32toFloat16PerformanceTensor;
|
||||
|
||||
/**
|
||||
* Driver performance when operating on a particular data type.
|
||||
* In the case of float32 data, this is used when the calculations
|
||||
* are not relaxed.
|
||||
*/
|
||||
struct OperandPerformance {
|
||||
OperandType type;
|
||||
PerformanceInfo info;
|
||||
};
|
||||
|
||||
/**
|
||||
* Performance by operand type. Must be sorted by OperandType.
|
||||
* If a particular OperandType is not present in operandPerformance,
|
||||
* its performance is treated as { .execTime = FLT_MAX, .powerUsage = FLT_MAX }.
|
||||
*/
|
||||
vec<OperandPerformance> operandPerformance;
|
||||
};
|
||||
|
||||
/**
|
||||
* Describes one operation of the model's graph.
|
||||
*/
|
||||
struct Operation {
|
||||
/**
|
||||
* The operation type.
|
||||
*
|
||||
* Besides the values listed in {@link OperationType}, any value above
|
||||
* {@link OperationTypeRange::BASE_MAX} is possible and should be interpreted
|
||||
* as an extension type according to {@link Model::extensionNameToPrefix}.
|
||||
*/
|
||||
OperationType type;
|
||||
|
||||
/**
|
||||
* Describes the table that contains the indexes of the inputs of the
|
||||
* operation. The offset is the index in the operandIndexes table.
|
||||
*/
|
||||
vec<uint32_t> inputs;
|
||||
|
||||
/**
|
||||
* Describes the table that contains the indexes of the outputs of the
|
||||
* operation. The offset is the index in the operandIndexes table.
|
||||
*/
|
||||
vec<uint32_t> outputs;
|
||||
};
|
||||
|
||||
/**
|
||||
* Parameters for TENSOR_QUANT8_SYMM_PER_CHANNEL operand.
|
||||
*/
|
||||
struct SymmPerChannelQuantParams {
|
||||
/** Array of scaling values for each channel. Each value must be greater than zero. */
|
||||
vec<float> scales;
|
||||
/** Index of the channel dimension */
|
||||
uint32_t channelDim;
|
||||
};
|
||||
|
||||
/**
|
||||
* Describes one operand of the model's graph.
|
||||
*/
|
||||
struct Operand {
|
||||
/**
|
||||
* The data type.
|
||||
*
|
||||
* Besides the values listed in {@link OperandType}, any value above
|
||||
* {@link OperandTypeRange::BASE_MAX} is possible and should be interpreted
|
||||
* as an extension type according to {@link Model::extensionNameToPrefix}.
|
||||
*/
|
||||
OperandType type;
|
||||
|
||||
/**
|
||||
* Dimensions of the operand.
|
||||
*
|
||||
* For a scalar operand, dimensions.size() must be 0.
|
||||
*
|
||||
* A tensor operand with all dimensions specified has "fully
|
||||
* specified" dimensions. Whenever possible (i.e., whenever the
|
||||
* dimensions are known at model construction time), a tensor
|
||||
* operand should have (but is not required to have) fully
|
||||
* specified dimensions, in order to enable the best possible
|
||||
* performance.
|
||||
*
|
||||
* If a tensor operand's dimensions are not fully specified, the
|
||||
* dimensions of the operand are deduced from the operand
|
||||
* dimensions and values of the operation for which that operand
|
||||
* is an output.
|
||||
*
|
||||
* In the following situations, a tensor operand's dimensions must
|
||||
* be fully specified:
|
||||
*
|
||||
* . The operand has lifetime CONSTANT_COPY or
|
||||
* CONSTANT_REFERENCE.
|
||||
*
|
||||
* . The operand has lifetime MODEL_INPUT. Fully
|
||||
* specified dimensions must either be present in the
|
||||
* Operand or they must be provided in the corresponding
|
||||
* RequestArgument.
|
||||
* EXCEPTION: If the input is optional and omitted
|
||||
* (by setting the hasNoValue field of the corresponding
|
||||
* RequestArgument to true) then it need not have fully
|
||||
* specified dimensions.
|
||||
*
|
||||
* A tensor operand with some number of unspecified dimensions is
|
||||
* represented by setting each unspecified dimension to 0.
|
||||
*
|
||||
* A tensor operand with unspecified rank is represented by providing
|
||||
* an empty dimensions vector.
|
||||
*/
|
||||
vec<uint32_t> dimensions;
|
||||
|
||||
/**
|
||||
* The number of times this operand appears as an operation input.
|
||||
*
|
||||
* (For example, if this operand appears once in one operation's
|
||||
* input list, and three times in another operation's input list,
|
||||
* then numberOfConsumers = 4.)
|
||||
*/
|
||||
uint32_t numberOfConsumers;
|
||||
|
||||
/**
|
||||
* Quantized scale of the operand.
|
||||
*
|
||||
* Only applicable if the operand is of type TENSOR_QUANT8_ASYMM or
|
||||
* TENSOR_INT32.
|
||||
*/
|
||||
float scale;
|
||||
|
||||
/**
|
||||
* Quantized zero-point offset of the operand.
|
||||
*
|
||||
* Only applicable if the operand is of type TENSOR_QUANT8_ASYMM.
|
||||
*/
|
||||
int32_t zeroPoint;
|
||||
|
||||
/**
|
||||
* How the operand is used.
|
||||
*/
|
||||
OperandLifeTime lifetime;
|
||||
|
||||
/**
|
||||
* Where to find the data for this operand.
|
||||
* If the lifetime is TEMPORARY_VARIABLE, MODEL_INPUT, MODEL_OUTPUT, or
|
||||
* NO_VALUE:
|
||||
* - All the fields must be 0.
|
||||
* If the lifetime is CONSTANT_COPY:
|
||||
* - location.poolIndex is 0.
|
||||
* - location.offset is the offset in bytes into Model.operandValues.
|
||||
* - location.length is set.
|
||||
* If the lifetime is CONSTANT_REFERENCE:
|
||||
* - location.poolIndex is set.
|
||||
* - location.offset is the offset in bytes into the specified pool.
|
||||
* - location.length is set.
|
||||
*/
|
||||
DataLocation location;
|
||||
|
||||
/**
|
||||
* Additional parameters specific to a particular operand type.
|
||||
*/
|
||||
safe_union ExtraParams {
|
||||
/**
|
||||
* No additional parameters.
|
||||
*/
|
||||
Monostate none;
|
||||
|
||||
/**
|
||||
* Symmetric per-channel quantization parameters.
|
||||
*
|
||||
* Only applicable to operands of type TENSOR_QUANT8_SYMM_PER_CHANNEL.
|
||||
*/
|
||||
SymmPerChannelQuantParams channelQuant;
|
||||
|
||||
/**
|
||||
* Extension operand parameters.
|
||||
*
|
||||
* The framework treats this as an opaque data blob.
|
||||
* The format is up to individual extensions.
|
||||
*/
|
||||
vec<uint8_t> extension;
|
||||
} extraParams;
|
||||
};
|
||||
|
||||
/**
|
||||
* A Neural Network Model.
|
||||
*
|
||||
* This includes not only the execution graph, but also constant data such as
|
||||
* weights or scalars added at construction time. The only information that
|
||||
* may not be known is the shape of the input tensors.
|
||||
*/
|
||||
struct Model {
|
||||
/**
|
||||
* All operands included in the model.
|
||||
*/
|
||||
vec<Operand> operands;
|
||||
|
||||
/**
|
||||
* All operations included in the model.
|
||||
*
|
||||
* The operations are sorted into execution order. Every operand
|
||||
* with lifetime MODEL_OUTPUT or TEMPORARY_VARIABLE must be
|
||||
* written before it is read.
|
||||
*/
|
||||
vec<Operation> operations;
|
||||
|
||||
/**
|
||||
* Input indexes of the model. There must be at least one.
|
||||
*
|
||||
* Each value corresponds to the index of the operand in "operands".
|
||||
*/
|
||||
vec<uint32_t> inputIndexes;
|
||||
|
||||
/**
|
||||
* Output indexes of the model. There must be at least one.
|
||||
*
|
||||
* Each value corresponds to the index of the operand in "operands".
|
||||
*/
|
||||
vec<uint32_t> outputIndexes;
|
||||
|
||||
/**
|
||||
* A byte buffer containing operand data that were copied into the model.
|
||||
*
|
||||
* An operand's value must be located here if and only if Operand::lifetime
|
||||
* equals OperandLifeTime::CONSTANT_COPY.
|
||||
*/
|
||||
vec<uint8_t> operandValues;
|
||||
|
||||
/**
|
||||
* A collection of shared memory pools containing operand values.
|
||||
*
|
||||
* An operand's value must be located here if and only if Operand::lifetime
|
||||
* equals OperandLifeTime::CONSTANT_REFERENCE.
|
||||
*/
|
||||
vec<memory> pools;
|
||||
|
||||
/**
|
||||
* 'true' indicates TENSOR_FLOAT32 may be calculated with range and/or
|
||||
* precision as low as that of the IEEE 754 16-bit floating-point format.
|
||||
* 'false' indicates TENSOR_FLOAT32 must be calculated using at least the
|
||||
* range and precision of the IEEE 754 32-bit floating-point format.
|
||||
*/
|
||||
bool relaxComputationFloat32toFloat16;
|
||||
|
||||
/**
|
||||
* The mapping between extension names and prefixes of operand and
|
||||
* operation type values.
|
||||
*
|
||||
* An operand or operation whose numeric type value is above
|
||||
* {@link OperandTypeRange::BASE_MAX} or
|
||||
* {@link OperationTypeRange::BASE_MAX} respectively should be interpreted
|
||||
* as an extension operand. The low
|
||||
* {@link Model::ExtensionTypeEncoding::LOW_BITS_TYPE} bits of the value
|
||||
* correspond to the type ID within the extension and the high
|
||||
* {@link Model::ExtensionTypeEncoding::HIGH_BITS_PREFIX} bits encode
|
||||
* the "prefix", which maps uniquely to the extension name.
|
||||
*
|
||||
* For example, if a model contains an operation whose value is
|
||||
* 0xAAAABBBB and extensionNameToPrefix contains an entry with
|
||||
* prefix=0xAAAA and name="vendor.test.test_extension", then
|
||||
* the operation should be interpreted as the operation 0xBBBB
|
||||
* of the extension named vendor.test.test_extension.
|
||||
*
|
||||
* This is a one-to-one correspondence. That is, there must be at most one
|
||||
* prefix corresponding to each extension name and at most one extension
|
||||
* name corresponding to each prefix.
|
||||
*/
|
||||
vec<ExtensionNameAndPrefix> extensionNameToPrefix;
|
||||
|
||||
/**
|
||||
* A correspondence between an extension name and a prefix of operand and
|
||||
* operation type values.
|
||||
*/
|
||||
struct ExtensionNameAndPrefix {
|
||||
/**
|
||||
* The extension name.
|
||||
*
|
||||
* See {@link Extension::name} for the format specification.
|
||||
*/
|
||||
string name;
|
||||
|
||||
/**
|
||||
* The unique extension identifier within the model.
|
||||
*
|
||||
* See {@link Model::extensionNameToPrefix}.
|
||||
*/
|
||||
uint16_t prefix;
|
||||
};
|
||||
|
||||
/**
|
||||
* Numeric values of extension operand and operation types have the
|
||||
* following structure:
|
||||
* - 16 high bits represent the "prefix", which corresponds uniquely to the
|
||||
* extension name.
|
||||
* - 16 low bits represent the type ID within the extension.
|
||||
*/
|
||||
enum ExtensionTypeEncoding : uint8_t {
|
||||
HIGH_BITS_PREFIX = 16,
|
||||
LOW_BITS_TYPE = 16,
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* Describes the shape information of an output operand after execution.
|
||||
*/
|
||||
struct OutputShape {
|
||||
/**
|
||||
* Dimensions of the operand.
|
||||
*/
|
||||
vec<uint32_t> dimensions;
|
||||
|
||||
/**
|
||||
* Whether the provided buffer size is sufficient for the output.
|
||||
*/
|
||||
bool isSufficient;
|
||||
};
|
||||
|
||||
/**
|
||||
* Specifies whether or not to measure timing information during execution.
|
||||
*/
|
||||
enum MeasureTiming : int32_t {
|
||||
NO = 0,
|
||||
YES = 1,
|
||||
};
|
||||
|
||||
/**
|
||||
|
||||
* Timing information measured during execution. Each time is a duration from
|
||||
* the beginning of some task to the end of that task, including time when that
|
||||
* task is not active (for example, preempted by some other task, or
|
||||
* waiting for some resource to become available).
|
||||
*
|
||||
* Times are measured in microseconds.
|
||||
* When a time is not available, it must be reported as UINT64_MAX.
|
||||
*/
|
||||
struct Timing {
|
||||
/** Execution time on device (not driver, which runs on host processor). */
|
||||
uint64_t timeOnDevice;
|
||||
/** Execution time in driver (including time on device). */
|
||||
uint64_t timeInDriver;
|
||||
};
|
||||
|
||||
/**
|
||||
* FmqRequestDatum is a single element of a serialized representation of an
|
||||
* execution request (a {@link @1.0::Request} object and a {@link MeasureTiming}
|
||||
* value) which is sent across FastMessageQueue.
|
||||
*
|
||||
* The serialized representation for a particular execution is referred to later
|
||||
* in these descriptions as a 'packet'.
|
||||
*
|
||||
* FastMessageQueue can only pass HIDL-defined types that do not involve nested
|
||||
* buffers, handles, or interfaces.
|
||||
*
|
||||
* The request is serialized as follows:
|
||||
* 1) 'packetInformation'
|
||||
* 2) For each input operand:
|
||||
* 2.1) 'inputOperandInformation'
|
||||
* 2.2) For each dimension element of the operand:
|
||||
* 2.2.1) 'inputOperandDimensionValue'
|
||||
* 3) For each output operand:
|
||||
* 3.1) 'outputOperandInformation'
|
||||
* 3.2) For each dimension element of the operand:
|
||||
* 3.2.1) 'outputOperandDimensionValue'
|
||||
* 4) For each pool:
|
||||
* 4.1) 'poolIdentifier'
|
||||
* 5) 'measureTiming'
|
||||
*/
|
||||
safe_union FmqRequestDatum {
|
||||
/**
|
||||
* Type to describe the high-level layout of the packet.
|
||||
*/
|
||||
struct PacketInformation {
|
||||
/**
|
||||
* How many elements the packet contains, including the
|
||||
* "packetInformation" datum.
|
||||
*/
|
||||
uint32_t packetSize;
|
||||
|
||||
/**
|
||||
* Number of input operands.
|
||||
*/
|
||||
uint32_t numberOfInputOperands;
|
||||
|
||||
/**
|
||||
* Number of output operands.
|
||||
*/
|
||||
uint32_t numberOfOutputOperands;
|
||||
|
||||
/**
|
||||
* Number of pool identifiers.
|
||||
*/
|
||||
uint32_t numberOfPools;
|
||||
};
|
||||
|
||||
/**
|
||||
* Type representing the information for each operand.
|
||||
*/
|
||||
struct OperandInformation {
|
||||
/**
|
||||
* If true, the argument does not have a value. This can be used for
|
||||
* operations that take optional arguments. If true, the fields of
|
||||
* 'location' are set to 0, 'numberOfDimensions' is set to 0, and the
|
||||
* dimensions information is omitted from the serialization.
|
||||
*/
|
||||
bool hasNoValue;
|
||||
|
||||
/**
|
||||
* The location within one of the memory pools passed in the Request.
|
||||
*/
|
||||
DataLocation location;
|
||||
|
||||
/**
|
||||
* Number of subsequent elements that belong to the dimensions vector.
|
||||
*/
|
||||
uint32_t numberOfDimensions;
|
||||
};
|
||||
|
||||
/**
|
||||
* packetInformation is the first element of the packet and describes the
|
||||
* remainder of the packet.
|
||||
*/
|
||||
PacketInformation packetInformation;
|
||||
|
||||
/**
|
||||
* Information for each input operand.
|
||||
*/
|
||||
OperandInformation inputOperandInformation;
|
||||
|
||||
/**
|
||||
* Element of the dimensions vector.
|
||||
*/
|
||||
uint32_t inputOperandDimensionValue;
|
||||
|
||||
/**
|
||||
* Information for each output operand.
|
||||
*/
|
||||
OperandInformation outputOperandInformation;
|
||||
|
||||
/**
|
||||
* Element of the dimensions vector.
|
||||
*/
|
||||
uint32_t outputOperandDimensionValue;
|
||||
|
||||
/**
|
||||
* Unique identifier for a pool.
|
||||
*
|
||||
* A {@link @1.0::Request} passes across one or more pools of shared memory
|
||||
* for the inputs and outputs of an execution. However, these memory pools
|
||||
* are not able to be sent across FastMessageQueue directly. Instead, the
|
||||
* producing side of the FMQ represents each different pool with a unique
|
||||
* identifier, and sends this identifier across the FMQ. Whenever the
|
||||
* consuming side of the FMQ needs the memory corresponding to this unique
|
||||
* identifier, it can pass the identifier to
|
||||
* {@link IBurstCallback::getMemories} to retreive the memory. Although this
|
||||
* HIDL Binder call is expensive compared to communication across FMQ, it is
|
||||
* only needed in the cases when the consumer does not recognize the unique
|
||||
* identifier.
|
||||
*/
|
||||
int32_t poolIdentifier;
|
||||
|
||||
/**
|
||||
* Specifies whether or not to measure duration of the execution. The
|
||||
* duration runs from the time the driver dequeues the request from a
|
||||
* FastMessageQueue to the time the driver enqueues results to a
|
||||
* FastMessageQueue.
|
||||
*/
|
||||
MeasureTiming measureTiming;
|
||||
};
|
||||
|
||||
/**
|
||||
* FmqResultDatum is a single element of a serialized representation of the
|
||||
* values returned from an execution ({@link @1.0::ErrorStatus},
|
||||
* vec<{@link OutputShape}>, and {@link Timing}) which is returned via
|
||||
* FastMessageQueue.
|
||||
*
|
||||
* The serialized representation for a particular execution is referred to later
|
||||
* in these descriptions as a 'packet'.
|
||||
*
|
||||
* FastMessageQueue can only pass HIDL-defined types that do not involve nested
|
||||
* buffers, handles, or interfaces.
|
||||
*
|
||||
* The execution return values ({@link @1.0::ErrorStatus} and
|
||||
* vec<{@link OutputShape}>) are serialized as follows:
|
||||
* 1) 'packetInformation'
|
||||
* 2) For each returned operand:
|
||||
* 2.1) 'operandInformation'
|
||||
* 2.2) For each dimension element of the operand:
|
||||
* 2.2.1) 'operandDimensionValue'
|
||||
* 3) 'executionTiming'
|
||||
*/
|
||||
safe_union FmqResultDatum {
|
||||
/**
|
||||
* Type to describe the high-level layout of the packet.
|
||||
*/
|
||||
struct PacketInformation {
|
||||
/**
|
||||
* How many elements the packet contains, including the
|
||||
* "packetInformation" datum.
|
||||
*/
|
||||
uint32_t packetSize;
|
||||
|
||||
/**
|
||||
* Status of the execution.
|
||||
*/
|
||||
ErrorStatus errorStatus;
|
||||
|
||||
/**
|
||||
* Number of returned operands.
|
||||
*/
|
||||
uint32_t numberOfOperands;
|
||||
};
|
||||
|
||||
/**
|
||||
* Type representing the information for each operand.
|
||||
*/
|
||||
struct OperandInformation {
|
||||
/**
|
||||
* Indicates whether the operand's output buffer is large enough to
|
||||
* store the operand's result data.
|
||||
*/
|
||||
bool isSufficient;
|
||||
|
||||
/**
|
||||
* Number of subsequent elements that belong to the dimensions vector.
|
||||
*/
|
||||
uint32_t numberOfDimensions;
|
||||
};
|
||||
|
||||
/**
|
||||
* packetInformation is the first element of the packet and describes the
|
||||
* remainder of the packet. It additionally includes the status of the
|
||||
* execution.
|
||||
*/
|
||||
PacketInformation packetInformation;
|
||||
|
||||
/**
|
||||
* Information for each returned operand.
|
||||
*/
|
||||
OperandInformation operandInformation;
|
||||
|
||||
/**
|
||||
* Element of the dimensions vector.
|
||||
*/
|
||||
uint32_t operandDimensionValue;
|
||||
|
||||
/**
|
||||
* Duration of execution. Unless measurement was requested and execution
|
||||
* succeeds, all times must be reported as UINT64_MAX. A driver may choose
|
||||
* to report any time as UINT64_MAX, indicating that measurement is not
|
||||
* available.
|
||||
*/
|
||||
Timing executionTiming;
|
||||
};
|
||||
|
||||
/**
|
||||
* Information about an extension.
|
||||
*/
|
||||
struct Extension {
|
||||
/**
|
||||
* The extension name.
|
||||
*
|
||||
* The name must consist of lowercase latin letters, numbers, periods, and
|
||||
* underscore signs. The name must contain at least one period.
|
||||
*
|
||||
* The name must start with the reverse domain name of the vendor.
|
||||
*
|
||||
* Example: com.google.test_extension
|
||||
*/
|
||||
string name;
|
||||
|
||||
/**
|
||||
* Information about an extension operand type.
|
||||
*/
|
||||
struct OperandTypeInformation {
|
||||
/**
|
||||
* The extension operand type.
|
||||
*/
|
||||
uint16_t type;
|
||||
|
||||
/**
|
||||
* Indicates whether the extension operand type represents a tensor or
|
||||
* a scalar.
|
||||
*/
|
||||
bool isTensor;
|
||||
|
||||
/**
|
||||
* The byte size of the operand (if scalar) or of a single element (if
|
||||
* tensor).
|
||||
*/
|
||||
uint32_t byteSize;
|
||||
};
|
||||
|
||||
/**
|
||||
* Information about operand types defined by the extension.
|
||||
*/
|
||||
vec<OperandTypeInformation> operandTypes;
|
||||
};
|
||||
Reference in New Issue
Block a user