diff --git a/neuralnetworks/1.0/types.hal b/neuralnetworks/1.0/types.hal index 537331bb88..54ed4020ad 100644 --- a/neuralnetworks/1.0/types.hal +++ b/neuralnetworks/1.0/types.hal @@ -1002,21 +1002,6 @@ enum DeviceStatus : int32_t { UNKNOWN, }; -/** - * A typed operation. - */ -struct OperationTuple { - /** - * The type of operation. - */ - OperationType operationType; - - /** - * The input data type of operation. - */ - OperandType operandType; -}; - /** * Performance information for the reference workload. * @@ -1038,20 +1023,6 @@ struct PerformanceInfo { * The capabilities of a driver. */ struct Capabilities { - /** - * A collection of typed operations supported by the driver. - */ - vec supportedOperationTuples; - - /** - * Indicates whether a driver caches its prepared model for reuse the next - * time the application begins. This is useful because the model may have - * been prepared in a previous run. - * - * True if caching is supported, false otherwise. - */ - bool cachesCompilation; - /** * Driver performance when operating on float32 data. */ @@ -1144,9 +1115,9 @@ struct Operand { */ struct Operation { /** - * The tuple describing the operation type and input type. + * The operation type. */ - OperationTuple opTuple; + OperationType type; /** * Describes the table that contains the indexes of the inputs of the diff --git a/neuralnetworks/1.0/vts/functional/Models.cpp b/neuralnetworks/1.0/vts/functional/Models.cpp index 9802f62131..8ce4f25938 100644 --- a/neuralnetworks/1.0/vts/functional/Models.cpp +++ b/neuralnetworks/1.0/vts/functional/Models.cpp @@ -78,9 +78,7 @@ Model createValidTestModel() { }; const std::vector operations = {{ - .opTuple = {OperationType::ADD, OperandType::TENSOR_FLOAT32}, - .inputs = {operand1, operand2, operand3}, - .outputs = {operand4}, + .type = OperationType::ADD, .inputs = {operand1, operand2, operand3}, .outputs = {operand4}, }}; const std::vector inputIndexes = {operand1}; @@ -107,8 +105,7 @@ Model createValidTestModel() { // create first invalid model Model createInvalidTestModel1() { Model model = createValidTestModel(); - model.operations[0].opTuple = {static_cast(0xDEADBEEF) /* INVALID */, - OperandType::TENSOR_FLOAT32}; + model.operations[0].type = static_cast(0xDEADBEEF); /* INVALID */ return model; } diff --git a/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworksV1_0TargetTest.cpp b/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworksV1_0TargetTest.cpp index 59d66bab2b..0f354d1b73 100644 --- a/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworksV1_0TargetTest.cpp +++ b/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworksV1_0TargetTest.cpp @@ -107,9 +107,6 @@ TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) { Return ret = device->getCapabilities([](ErrorStatus status, const Capabilities& capabilities) { EXPECT_EQ(ErrorStatus::NONE, status); - EXPECT_NE(nullptr, capabilities.supportedOperationTuples.data()); - EXPECT_NE(0ull, capabilities.supportedOperationTuples.size()); - EXPECT_EQ(0u, static_cast(capabilities.cachesCompilation) & ~0x1); EXPECT_LT(0.0f, capabilities.float32Performance.execTime); EXPECT_LT(0.0f, capabilities.float32Performance.powerUsage); EXPECT_LT(0.0f, capabilities.quantized8Performance.execTime);