mirror of
https://github.com/Evolution-X/hardware_interfaces
synced 2026-02-01 11:36:00 +00:00
Merge changes Iab38ef29,I85b66ab5 am: 5bb1721f6e
Change-Id: I76a4400b4bb378a1c3a37d6b028f43c2ce00c171
This commit is contained in:
@@ -584,11 +584,11 @@ cfa81f229b69f9011c58f48264fcb552447430fe68610eac514e811e65bc306a android.hardwar
|
||||
# ABI preserving changes to HALs during Android R
|
||||
b69a7615c508acf5c5201efd1bfa3262167874fc3594e2db5a3ff93addd8ac75 android.hardware.keymaster@4.0::IKeymasterDevice
|
||||
eb2fa0c883c2185d514be0b84c179b283753ef0c1b77b45b4f359bd23bba8b75 android.hardware.neuralnetworks@1.0::IPreparedModel
|
||||
8eac60e1f724d141c71c69f06d4544acb720a55dfbbcd97fa01bb3d25ee4e2f5 android.hardware.neuralnetworks@1.0::types
|
||||
92e101b30e47bdf526a01c52cecfbe730def5997b8260ab497eb949eb2a6dcdf android.hardware.neuralnetworks@1.0::types
|
||||
5f6d3097ba84cb63c430787123f4de1b31c11f90b531b98eae9a8623a5ae962a android.hardware.neuralnetworks@1.1::types
|
||||
fb382e986c10b8fbb797a8546e8f9ea6d1107bfe6f3fb7e57f6bbbf1f807a906 android.hardware.neuralnetworks@1.2::IDevice
|
||||
40e71cd693de5b832325c5d8f081f2ff20a7ba2b89d401cee5b4b3eb0e241681 android.hardware.neuralnetworks@1.2::IPreparedModel
|
||||
00649d29680f2c47edf60000c3ae7ae906ba638f0616947147e3676a83cf36fa android.hardware.neuralnetworks@1.2::types
|
||||
ee1a0dee5be00a6fe2d4d3270068c78016dcb194d768fe07ed894ea20904037f android.hardware.neuralnetworks@1.2::types
|
||||
a785a57447a81e9c130eef6904c3a5c256076c6a04588c40620ebd6fa2660d77 android.hardware.radio@1.2::types
|
||||
1a6e2bd289f22931c526b21916910f1d4c436b7acb9556e4243de4ce8e6cc2e4 android.hardware.soundtrigger@2.0::ISoundTriggerHwCallback
|
||||
fd65298e1e09e0e3c781ab18305920d757dbe55a3b459ce17814ec5cf6dfee99 android.hardware.wifi@1.0::IWifiP2pIface
|
||||
@@ -639,7 +639,7 @@ ddcf89cd8ee2df0d32aee55050826446fb64f7aafde0a7cd946c64f61b1a364c android.hardwar
|
||||
6e904be0ddca5ae1de8eba020e6c38ed935ea7d80cd08f47787f137a0ca58555 android.hardware.neuralnetworks@1.3::IFencedExecutionCallback
|
||||
2b0b10d2ea7a18a4048cd0eb83d35c19a817aeee95f65807fc31f4ef21381397 android.hardware.neuralnetworks@1.3::IPreparedModel
|
||||
eee3430cc86c97c7b407495863d8fb61da6f1a64b7721e77b9b4909b11b174e9 android.hardware.neuralnetworks@1.3::IPreparedModelCallback
|
||||
e442ab1b440327fe4e8a3b0b8ac6874e9bc6342e91fe976eb9fea77c63961ec8 android.hardware.neuralnetworks@1.3::types
|
||||
acf84925f8ee0a651f2ec547ac334034de266479b93af5434f6c1f25e66aba96 android.hardware.neuralnetworks@1.3::types
|
||||
3e01d4446cd69fd1c48f8572efd97487bc179564b32bd795800b97bbe10be37b android.hardware.wifi@1.4::IWifi
|
||||
a64467bae843569f0d465c5be7f0c7a5b987985b55a3ef4794dd5afc68538650 android.hardware.wifi.supplicant@1.3::ISupplicant
|
||||
44445b8a03d7b9e68b2fbd954672c18a8fce9e32851b0692f4f4ab3407f86ecb android.hardware.wifi.supplicant@1.3::ISupplicantStaIface
|
||||
|
||||
@@ -261,7 +261,7 @@ enum OperationType : int32_t {
|
||||
* filter.
|
||||
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
|
||||
* tensor of type {@link OperandType::TENSOR_FLOAT32}
|
||||
* the bias must be of the same type.
|
||||
* the bias must be of the same type.
|
||||
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
|
||||
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
|
||||
* of 0 and bias_scale == input_scale * filter_scale.
|
||||
@@ -289,7 +289,7 @@ enum OperationType : int32_t {
|
||||
* filter.
|
||||
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
|
||||
* tensor of type {@link OperandType::TENSOR_FLOAT32}
|
||||
* the bias must be of the same
|
||||
* the bias must be of the same
|
||||
* type.
|
||||
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
|
||||
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
|
||||
@@ -356,7 +356,7 @@ enum OperationType : int32_t {
|
||||
* specifying the filter.
|
||||
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
|
||||
* tensor of type {@link OperandType::TENSOR_FLOAT32}
|
||||
* the bias must be of the same type.
|
||||
* the bias must be of the same type.
|
||||
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
|
||||
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
|
||||
* of 0 and bias_scale == input_scale * filter_scale.
|
||||
@@ -385,7 +385,7 @@ enum OperationType : int32_t {
|
||||
* specifying the filter.
|
||||
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
|
||||
* tensor of type {@link OperandType::TENSOR_FLOAT32}
|
||||
* the bias must be of the same type.
|
||||
* the bias must be of the same type.
|
||||
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
|
||||
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
|
||||
* of 0 and bias_scale == input_scale * filter_scale.
|
||||
@@ -628,7 +628,7 @@ enum OperationType : int32_t {
|
||||
HASHTABLE_LOOKUP = 10,
|
||||
|
||||
/**
|
||||
* Applies L2 normalization along the depth dimension.
|
||||
* Applies L2 normalization along the axis dimension.
|
||||
*
|
||||
* The values in the output tensor are computed as:
|
||||
*
|
||||
|
||||
@@ -846,7 +846,7 @@ enum OperationType : int32_t {
|
||||
HASHTABLE_LOOKUP = @1.1::OperationType:HASHTABLE_LOOKUP,
|
||||
|
||||
/**
|
||||
* Applies L2 normalization along the depth dimension.
|
||||
* Applies L2 normalization along the axis dimension.
|
||||
*
|
||||
* The values in the output tensor are computed as:
|
||||
*
|
||||
@@ -854,8 +854,7 @@ enum OperationType : int32_t {
|
||||
* input[batch, row, col, channel] /
|
||||
* sqrt(sum_{c} pow(input[batch, row, col, c], 2))
|
||||
*
|
||||
* For input tensor with rank less than 4, independently normalizes each
|
||||
* 1-D slice along dimension dim.
|
||||
* By default the axis dimension is the last dimension of the input tensor.
|
||||
*
|
||||
* Supported tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
|
||||
@@ -3843,7 +3842,8 @@ enum OperationType : int32_t {
|
||||
* * 1: A scalar {@link OperandType::INT32}, specifying the number of
|
||||
* independent samples to draw for each row slice.
|
||||
* * 2: A 1-D {@link OperandType::TENSOR_INT32} tensor with shape [2],
|
||||
* specifying seeds used to initialize the random distribution.
|
||||
* specifying seeds used to initialize the random distribution. If both
|
||||
* provided seeds are 0, both will be randomly generated.
|
||||
* Outputs:
|
||||
* * 0: A 2-D {@link OperandType::TENSOR_INT32} tensor with shape
|
||||
* [batches, samples], containing the drawn samples.
|
||||
|
||||
@@ -833,7 +833,7 @@ enum OperationType : int32_t {
|
||||
HASHTABLE_LOOKUP = @1.2::OperationType:HASHTABLE_LOOKUP,
|
||||
|
||||
/**
|
||||
* Applies L2 normalization along the depth dimension.
|
||||
* Applies L2 normalization along the axis dimension.
|
||||
*
|
||||
* The values in the output tensor are computed as:
|
||||
*
|
||||
@@ -841,8 +841,7 @@ enum OperationType : int32_t {
|
||||
* input[batch, row, col, channel] /
|
||||
* sqrt(sum_{c} pow(input[batch, row, col, c], 2))
|
||||
*
|
||||
* For input tensor with rank less than 4, independently normalizes each
|
||||
* 1-D slice along dimension dim.
|
||||
* By default the axis dimension is the last dimension of the input tensor.
|
||||
*
|
||||
* Supported tensor {@link OperandType}:
|
||||
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
|
||||
@@ -867,6 +866,10 @@ enum OperationType : int32_t {
|
||||
* the scale must be 1.f / 128 and the zeroPoint must be 128.
|
||||
* For {@link OperandType::TENSOR_QUANT8_ASYMM_SIGNED},
|
||||
* the scale must be 1.f / 128 and the zeroPoint must be 0.
|
||||
*
|
||||
* NOTE: Before HAL version 1.3, if the elements along an axis are all zeros,
|
||||
* the result is undefined. Since HAL version 1.3, if the elements along an axis
|
||||
* are all zeros, the result is logical zero.
|
||||
*/
|
||||
L2_NORMALIZATION = @1.2::OperationType:L2_NORMALIZATION,
|
||||
|
||||
@@ -4063,7 +4066,8 @@ enum OperationType : int32_t {
|
||||
* * 1: A scalar {@link OperandType::INT32}, specifying the number of
|
||||
* independent samples to draw for each row slice.
|
||||
* * 2: A 1-D {@link OperandType::TENSOR_INT32} tensor with shape [2],
|
||||
* specifying seeds used to initialize the random distribution.
|
||||
* specifying seeds used to initialize the random distribution. If both
|
||||
* provided seeds are 0, both will be randomly generated.
|
||||
* Outputs:
|
||||
* * 0: A 2-D {@link OperandType::TENSOR_INT32} tensor with shape
|
||||
* [batches, samples], containing the drawn samples.
|
||||
|
||||
Reference in New Issue
Block a user