mirror of
https://github.com/Evolution-X/hardware_interfaces
synced 2026-02-01 16:50:18 +00:00
Fix VTS tests. am: dce38f1364
am: af809a4a12
Change-Id: I602b4e4352551d967ae52661a9c9cb53c5e506a7
This commit is contained in:
@@ -157,6 +157,7 @@ static uint32_t getInvalidRank(OperandType type) {
|
||||
case OperandType::UINT32:
|
||||
case OperandType::BOOL:
|
||||
return 1;
|
||||
case OperandType::TENSOR_BOOL8:
|
||||
case OperandType::TENSOR_FLOAT16:
|
||||
case OperandType::TENSOR_FLOAT32:
|
||||
case OperandType::TENSOR_INT32:
|
||||
@@ -194,6 +195,7 @@ static float getInvalidScale(OperandType type) {
|
||||
case OperandType::INT32:
|
||||
case OperandType::UINT32:
|
||||
case OperandType::BOOL:
|
||||
case OperandType::TENSOR_BOOL8:
|
||||
case OperandType::TENSOR_FLOAT16:
|
||||
case OperandType::TENSOR_FLOAT32:
|
||||
case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
|
||||
@@ -230,6 +232,7 @@ static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
|
||||
case OperandType::INT32:
|
||||
case OperandType::UINT32:
|
||||
case OperandType::BOOL:
|
||||
case OperandType::TENSOR_BOOL8:
|
||||
case OperandType::TENSOR_FLOAT16:
|
||||
case OperandType::TENSOR_FLOAT32:
|
||||
case OperandType::TENSOR_INT32:
|
||||
@@ -283,6 +286,7 @@ static void mutateOperand(Operand* operand, OperandType type) {
|
||||
newOperand.scale = 0.0f;
|
||||
newOperand.zeroPoint = 0;
|
||||
break;
|
||||
case OperandType::TENSOR_BOOL8:
|
||||
case OperandType::TENSOR_FLOAT16:
|
||||
case OperandType::TENSOR_FLOAT32:
|
||||
newOperand.dimensions =
|
||||
@@ -339,6 +343,10 @@ static bool mutateOperationOperandTypeSkip(size_t operand, OperandType type, con
|
||||
// TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
|
||||
// - CAST's argument can be any of TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
|
||||
// - RANDOM_MULTINOMIAL's argument can be either TENSOR_FLOAT16 or TENSOR_FLOAT32.
|
||||
// - DEQUANTIZE input can be any of
|
||||
// TENSOR_(QUANT8_ASYMM|QUANT8_SYMM|QUANT8_SYMM_PER_CHANNEL), output can
|
||||
// be of either TENSOR_FLOAT16 or TENSOR_FLOAT32.
|
||||
// - QUANTIZE input can be either TENSOR_FLOAT16 or TENSOR_FLOAT32
|
||||
// - CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
|
||||
// - DEPTHWISE_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
|
||||
// - GROUPED_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
|
||||
@@ -357,8 +365,22 @@ static bool mutateOperationOperandTypeSkip(size_t operand, OperandType type, con
|
||||
return true;
|
||||
}
|
||||
} break;
|
||||
case OperationType::QUANTIZE:
|
||||
case OperationType::RANDOM_MULTINOMIAL: {
|
||||
if (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32) {
|
||||
if (operand == operation.inputs[0] &&
|
||||
(type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32)) {
|
||||
return true;
|
||||
}
|
||||
} break;
|
||||
case OperationType::DEQUANTIZE: {
|
||||
if (operand == operation.inputs[0] &&
|
||||
(type == OperandType::TENSOR_QUANT8_ASYMM ||
|
||||
type == OperandType::TENSOR_QUANT8_SYMM ||
|
||||
type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)) {
|
||||
return true;
|
||||
}
|
||||
if (operand == operation.outputs[0] &&
|
||||
(type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32)) {
|
||||
return true;
|
||||
}
|
||||
} break;
|
||||
@@ -397,7 +419,6 @@ static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const Mode
|
||||
///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
|
||||
|
||||
static const uint32_t invalidOperationTypes[] = {
|
||||
static_cast<uint32_t>(OperationTypeRange::FUNDAMENTAL_MIN) - 1,
|
||||
static_cast<uint32_t>(OperationTypeRange::FUNDAMENTAL_MAX) + 1,
|
||||
static_cast<uint32_t>(OperationTypeRange::OEM_MIN) - 1,
|
||||
static_cast<uint32_t>(OperationTypeRange::OEM_MAX) + 1,
|
||||
@@ -484,6 +505,15 @@ static bool removeOperandSkip(size_t operand, const Model& model) {
|
||||
}
|
||||
}
|
||||
}
|
||||
// BIDIRECTIONAL_SEQUENCE_RNN can have either on or two outputs
|
||||
// depending on a mergeOutputs parameter
|
||||
if (operation.type == OperationType::BIDIRECTIONAL_SEQUENCE_RNN) {
|
||||
for (const size_t outOprand : operation.outputs) {
|
||||
if (operand == outOprand) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user