audio: Add StreamWorker to aidl/common

This utility class has been copied from HIDL VTS.
It will be used both for the default implementation
and AIDL VTS, and might need modifications.

Bug: 205884982
Test: atest libaudioaidlcommon_test
Change-Id: I43b35b0c23ae45305dca66e15b60820cad19635e
This commit is contained in:
Mikhail Naganov
2022-06-30 21:05:11 +00:00
parent e38aadbba0
commit c17f0484bc
4 changed files with 434 additions and 0 deletions

View File

@@ -0,0 +1,61 @@
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package {
// See: http://go/android-license-faq
// A large-scale-change added 'default_applicable_licenses' to import
// all of the 'license_kinds' from "hardware_interfaces_license"
// to get the below license kinds:
// SPDX-license-identifier-Apache-2.0
default_applicable_licenses: ["hardware_interfaces_license"],
}
cc_library_headers {
name: "libaudioaidlcommon",
host_supported: true,
vendor_available: true,
export_include_dirs: ["include"],
header_libs: [
"libbase_headers",
],
export_header_lib_headers: [
"libbase_headers",
],
}
cc_test {
name: "libaudioaidlcommon_test",
host_supported: true,
vendor_available: true,
header_libs: [
"libaudioaidlcommon",
],
shared_libs: [
"liblog",
],
cflags: [
"-Wall",
"-Wextra",
"-Werror",
"-Wthread-safety",
],
srcs: [
"tests/streamworker_tests.cpp",
],
test_suites: [
"general-tests",
],
}

View File

@@ -0,0 +1,7 @@
{
"presubmit": [
{
"name": "libaudioaidlcommon_test"
}
]
}

View File

@@ -0,0 +1,156 @@
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <sched.h>
#include <condition_variable>
#include <mutex>
#include <thread>
#include <android-base/thread_annotations.h>
template <typename Impl>
class StreamWorker {
enum class WorkerState { STOPPED, RUNNING, PAUSE_REQUESTED, PAUSED, RESUME_REQUESTED, ERROR };
public:
StreamWorker() = default;
~StreamWorker() { stop(); }
bool start() {
mWorker = std::thread(&StreamWorker::workerThread, this);
std::unique_lock<std::mutex> lock(mWorkerLock);
android::base::ScopedLockAssertion lock_assertion(mWorkerLock);
mWorkerCv.wait(lock, [&]() {
android::base::ScopedLockAssertion lock_assertion(mWorkerLock);
return mWorkerState != WorkerState::STOPPED;
});
return mWorkerState == WorkerState::RUNNING;
}
void pause() { switchWorkerStateSync(WorkerState::RUNNING, WorkerState::PAUSE_REQUESTED); }
void resume() { switchWorkerStateSync(WorkerState::PAUSED, WorkerState::RESUME_REQUESTED); }
bool hasError() {
std::lock_guard<std::mutex> lock(mWorkerLock);
return mWorkerState == WorkerState::ERROR;
}
void stop() {
{
std::lock_guard<std::mutex> lock(mWorkerLock);
if (mWorkerState == WorkerState::STOPPED) return;
mWorkerState = WorkerState::STOPPED;
}
if (mWorker.joinable()) {
mWorker.join();
}
}
bool waitForAtLeastOneCycle() {
WorkerState newState;
switchWorkerStateSync(WorkerState::RUNNING, WorkerState::PAUSE_REQUESTED, &newState);
if (newState != WorkerState::PAUSED) return false;
switchWorkerStateSync(newState, WorkerState::RESUME_REQUESTED, &newState);
return newState == WorkerState::RUNNING;
}
// Methods that need to be provided by subclasses:
//
// Called once at the beginning of the thread loop. Must return
// 'true' to enter the thread loop, otherwise the thread loop
// exits and the worker switches into the 'error' state.
// bool workerInit();
//
// Called for each thread loop unless the thread is in 'paused' state.
// Must return 'true' to continue running, otherwise the thread loop
// exits and the worker switches into the 'error' state.
// bool workerCycle();
private:
void switchWorkerStateSync(WorkerState oldState, WorkerState newState,
WorkerState* finalState = nullptr) {
std::unique_lock<std::mutex> lock(mWorkerLock);
android::base::ScopedLockAssertion lock_assertion(mWorkerLock);
if (mWorkerState != oldState) {
if (finalState) *finalState = mWorkerState;
return;
}
mWorkerState = newState;
mWorkerCv.wait(lock, [&]() {
android::base::ScopedLockAssertion lock_assertion(mWorkerLock);
return mWorkerState != newState;
});
if (finalState) *finalState = mWorkerState;
}
void workerThread() {
bool success = static_cast<Impl*>(this)->workerInit();
{
std::lock_guard<std::mutex> lock(mWorkerLock);
mWorkerState = success ? WorkerState::RUNNING : WorkerState::ERROR;
}
mWorkerCv.notify_one();
if (!success) return;
for (WorkerState state = WorkerState::RUNNING; state != WorkerState::STOPPED;) {
bool needToNotify = false;
if (state != WorkerState::PAUSED ? static_cast<Impl*>(this)->workerCycle()
: (sched_yield(), true)) {
//
// Pause and resume are synchronous. One worker cycle must complete
// before the worker indicates a state change. This is how 'mWorkerState' and
// 'state' interact:
//
// mWorkerState == RUNNING
// client sets mWorkerState := PAUSE_REQUESTED
// last workerCycle gets executed, state := mWorkerState := PAUSED by us
// (or the workers enters the 'error' state if workerCycle fails)
// client gets notified about state change in any case
// thread is doing a busy wait while 'state == PAUSED'
// client sets mWorkerState := RESUME_REQUESTED
// state := mWorkerState (RESUME_REQUESTED)
// mWorkerState := RUNNING, but we don't notify the client yet
// first workerCycle gets executed, the code below triggers a client notification
// (or if workerCycle fails, worker enters 'error' state and also notifies)
// state := mWorkerState (RUNNING)
if (state == WorkerState::RESUME_REQUESTED) {
needToNotify = true;
}
std::lock_guard<std::mutex> lock(mWorkerLock);
state = mWorkerState;
if (mWorkerState == WorkerState::PAUSE_REQUESTED) {
state = mWorkerState = WorkerState::PAUSED;
needToNotify = true;
} else if (mWorkerState == WorkerState::RESUME_REQUESTED) {
mWorkerState = WorkerState::RUNNING;
}
} else {
std::lock_guard<std::mutex> lock(mWorkerLock);
if (state == WorkerState::RESUME_REQUESTED ||
mWorkerState == WorkerState::PAUSE_REQUESTED) {
needToNotify = true;
}
mWorkerState = WorkerState::ERROR;
state = WorkerState::STOPPED;
}
if (needToNotify) {
mWorkerCv.notify_one();
}
}
}
std::thread mWorker;
std::mutex mWorkerLock;
std::condition_variable mWorkerCv;
WorkerState mWorkerState GUARDED_BY(mWorkerLock) = WorkerState::STOPPED;
};

View File

@@ -0,0 +1,210 @@
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sched.h>
#include <unistd.h>
#include <atomic>
#include <StreamWorker.h>
#include <gtest/gtest.h>
#define LOG_TAG "StreamWorker_Test"
#include <log/log.h>
struct TestStream {
std::atomic<bool> error = false;
};
class TestWorker : public StreamWorker<TestWorker> {
public:
// Use nullptr to test error reporting from the worker thread.
explicit TestWorker(TestStream* stream) : mStream(stream) {}
size_t getWorkerCycles() const { return mWorkerCycles; }
bool hasWorkerCycleCalled() const { return mWorkerCycles != 0; }
bool hasNoWorkerCycleCalled(useconds_t usec) {
const size_t cyclesBefore = mWorkerCycles;
usleep(usec);
return mWorkerCycles == cyclesBefore;
}
bool workerInit() { return mStream; }
bool workerCycle() {
do {
mWorkerCycles++;
} while (mWorkerCycles == 0);
return !mStream->error;
}
private:
TestStream* const mStream;
std::atomic<size_t> mWorkerCycles = 0;
};
// The parameter specifies whether an extra call to 'stop' is made at the end.
class StreamWorkerInvalidTest : public testing::TestWithParam<bool> {
public:
StreamWorkerInvalidTest() : StreamWorkerInvalidTest(nullptr) {}
void TearDown() override {
if (GetParam()) {
worker.stop();
}
}
protected:
StreamWorkerInvalidTest(TestStream* stream) : testing::TestWithParam<bool>(), worker(stream) {}
TestWorker worker;
};
TEST_P(StreamWorkerInvalidTest, Uninitialized) {
EXPECT_FALSE(worker.hasWorkerCycleCalled());
EXPECT_FALSE(worker.hasError());
}
TEST_P(StreamWorkerInvalidTest, UninitializedPauseIgnored) {
EXPECT_FALSE(worker.hasError());
worker.pause();
EXPECT_FALSE(worker.hasError());
}
TEST_P(StreamWorkerInvalidTest, UninitializedResumeIgnored) {
EXPECT_FALSE(worker.hasError());
worker.resume();
EXPECT_FALSE(worker.hasError());
}
TEST_P(StreamWorkerInvalidTest, Start) {
EXPECT_FALSE(worker.start());
EXPECT_FALSE(worker.hasWorkerCycleCalled());
EXPECT_TRUE(worker.hasError());
}
TEST_P(StreamWorkerInvalidTest, PauseIgnored) {
EXPECT_FALSE(worker.start());
EXPECT_TRUE(worker.hasError());
worker.pause();
EXPECT_TRUE(worker.hasError());
}
TEST_P(StreamWorkerInvalidTest, ResumeIgnored) {
EXPECT_FALSE(worker.start());
EXPECT_TRUE(worker.hasError());
worker.resume();
EXPECT_TRUE(worker.hasError());
}
INSTANTIATE_TEST_SUITE_P(StreamWorkerInvalid, StreamWorkerInvalidTest, testing::Bool());
class StreamWorkerTest : public StreamWorkerInvalidTest {
public:
StreamWorkerTest() : StreamWorkerInvalidTest(&stream) {}
protected:
TestStream stream;
};
static constexpr unsigned kWorkerIdleCheckTime = 50 * 1000;
TEST_P(StreamWorkerTest, Uninitialized) {
EXPECT_FALSE(worker.hasWorkerCycleCalled());
EXPECT_FALSE(worker.hasError());
}
TEST_P(StreamWorkerTest, Start) {
ASSERT_TRUE(worker.start());
worker.waitForAtLeastOneCycle();
EXPECT_FALSE(worker.hasError());
}
TEST_P(StreamWorkerTest, WorkerError) {
ASSERT_TRUE(worker.start());
stream.error = true;
worker.waitForAtLeastOneCycle();
EXPECT_TRUE(worker.hasError());
EXPECT_TRUE(worker.hasNoWorkerCycleCalled(kWorkerIdleCheckTime));
}
TEST_P(StreamWorkerTest, PauseResume) {
ASSERT_TRUE(worker.start());
worker.waitForAtLeastOneCycle();
EXPECT_FALSE(worker.hasError());
worker.pause();
EXPECT_TRUE(worker.hasNoWorkerCycleCalled(kWorkerIdleCheckTime));
EXPECT_FALSE(worker.hasError());
const size_t workerCyclesBefore = worker.getWorkerCycles();
worker.resume();
// 'resume' is synchronous and returns after the worker has looped at least once.
EXPECT_GT(worker.getWorkerCycles(), workerCyclesBefore);
EXPECT_FALSE(worker.hasError());
}
TEST_P(StreamWorkerTest, StopPaused) {
ASSERT_TRUE(worker.start());
worker.waitForAtLeastOneCycle();
EXPECT_FALSE(worker.hasError());
worker.pause();
worker.stop();
EXPECT_FALSE(worker.hasError());
}
TEST_P(StreamWorkerTest, PauseAfterErrorIgnored) {
ASSERT_TRUE(worker.start());
stream.error = true;
worker.waitForAtLeastOneCycle();
EXPECT_TRUE(worker.hasError());
worker.pause();
EXPECT_TRUE(worker.hasNoWorkerCycleCalled(kWorkerIdleCheckTime));
EXPECT_TRUE(worker.hasError());
}
TEST_P(StreamWorkerTest, ResumeAfterErrorIgnored) {
ASSERT_TRUE(worker.start());
stream.error = true;
worker.waitForAtLeastOneCycle();
EXPECT_TRUE(worker.hasError());
worker.resume();
EXPECT_TRUE(worker.hasNoWorkerCycleCalled(kWorkerIdleCheckTime));
EXPECT_TRUE(worker.hasError());
}
TEST_P(StreamWorkerTest, WorkerErrorOnResume) {
ASSERT_TRUE(worker.start());
worker.waitForAtLeastOneCycle();
EXPECT_FALSE(worker.hasError());
worker.pause();
EXPECT_FALSE(worker.hasError());
stream.error = true;
EXPECT_FALSE(worker.hasError());
worker.resume();
worker.waitForAtLeastOneCycle();
EXPECT_TRUE(worker.hasError());
EXPECT_TRUE(worker.hasNoWorkerCycleCalled(kWorkerIdleCheckTime));
}
TEST_P(StreamWorkerTest, WaitForAtLeastOneCycle) {
ASSERT_TRUE(worker.start());
const size_t workerCyclesBefore = worker.getWorkerCycles();
EXPECT_TRUE(worker.waitForAtLeastOneCycle());
EXPECT_GT(worker.getWorkerCycles(), workerCyclesBefore);
}
TEST_P(StreamWorkerTest, WaitForAtLeastOneCycleError) {
ASSERT_TRUE(worker.start());
stream.error = true;
EXPECT_FALSE(worker.waitForAtLeastOneCycle());
}
INSTANTIATE_TEST_SUITE_P(StreamWorker, StreamWorkerTest, testing::Bool());