Merge changes from topic "libneuralnetworks_common-cleanup"

* changes:
  Move Aidl utility code to aidl/utils -- hal 2/2
  Move Aidl utility code to aidl/utils -- hal 1/2
This commit is contained in:
Michael Butler
2021-11-03 18:14:06 +00:00
committed by Gerrit Code Review
20 changed files with 803 additions and 10 deletions

View File

@@ -55,7 +55,7 @@ cc_test {
static_libs: [
"android.hardware.neuralnetworks@1.0",
"libgmock",
"libneuralnetworks_common_hidl",
"libneuralnetworks_common",
"neuralnetworks_types",
"neuralnetworks_utils_hal_common",
"neuralnetworks_utils_hal_1_0",

View File

@@ -50,7 +50,7 @@ cc_library_static {
"libgmock",
"libhidlmemory",
"libneuralnetworks_generated_test_harness",
"libneuralnetworks_common_hidl",
"libneuralnetworks_common",
],
header_libs: [
"libneuralnetworks_headers",
@@ -81,7 +81,7 @@ cc_test {
"libgmock",
"libhidlmemory",
"libneuralnetworks_generated_test_harness",
"libneuralnetworks_common_hidl",
"libneuralnetworks_common",
],
whole_static_libs: [
"neuralnetworks_generated_V1_0_example",

View File

@@ -52,7 +52,7 @@ cc_test {
"android.hardware.neuralnetworks@1.0",
"android.hardware.neuralnetworks@1.1",
"libgmock",
"libneuralnetworks_common_hidl",
"libneuralnetworks_common",
"neuralnetworks_types",
"neuralnetworks_utils_hal_common",
"neuralnetworks_utils_hal_1_0",

View File

@@ -48,7 +48,7 @@ cc_test {
"libgmock",
"libhidlmemory",
"libneuralnetworks_generated_test_harness",
"libneuralnetworks_common_hidl",
"libneuralnetworks_common",
],
whole_static_libs: [
"neuralnetworks_generated_V1_0_example",

View File

@@ -71,7 +71,7 @@ cc_test {
"android.hardware.neuralnetworks@1.1",
"android.hardware.neuralnetworks@1.2",
"libgmock",
"libneuralnetworks_common_hidl",
"libneuralnetworks_common",
"neuralnetworks_types",
"neuralnetworks_utils_hal_common",
"neuralnetworks_utils_hal_1_0",

View File

@@ -71,7 +71,7 @@ cc_test {
"libgmock",
"libhidlmemory",
"libneuralnetworks_generated_test_harness",
"libneuralnetworks_common_hidl",
"libneuralnetworks_common",
],
whole_static_libs: [
"neuralnetworks_generated_V1_0_example",

View File

@@ -69,7 +69,7 @@ cc_test {
"android.hardware.neuralnetworks@1.2",
"android.hardware.neuralnetworks@1.3",
"libgmock",
"libneuralnetworks_common_hidl",
"libneuralnetworks_common",
"neuralnetworks_types",
"neuralnetworks_utils_hal_common",
"neuralnetworks_utils_hal_1_0",

View File

@@ -75,7 +75,7 @@ cc_test {
"libgmock",
"libhidlmemory",
"libneuralnetworks_generated_test_harness",
"libneuralnetworks_common_hidl",
"libneuralnetworks_common",
"libsync",
],
whole_static_libs: [

View File

@@ -0,0 +1,17 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nnapi/hal/aidl/BufferTracker.h"

View File

@@ -0,0 +1,17 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nnapi/hal/aidl/HalInterfaces.h"

View File

@@ -0,0 +1,17 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nnapi/hal/aidl/HalUtils.h"

View File

@@ -0,0 +1,17 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nnapi/hal/aidl/ValidateHal.h"

View File

@@ -0,0 +1,119 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_BUFFER_TRACKER_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_BUFFER_TRACKER_H
#include <android-base/macros.h>
#include <android-base/thread_annotations.h>
#include <map>
#include <memory>
#include <mutex>
#include <set>
#include <stack>
#include <utility>
#include <vector>
#include "nnapi/hal/aidl/HalInterfaces.h"
#include "nnapi/hal/aidl/ValidateHal.h"
namespace android::nn {
// This class manages a CPU buffer allocated on heap and provides validation methods.
class AidlManagedBuffer {
public:
static std::shared_ptr<AidlManagedBuffer> create(uint32_t size,
std::set<AidlHalPreparedModelRole> roles,
const Operand& operand);
// Prefer AidlManagedBuffer::create.
AidlManagedBuffer(std::unique_ptr<uint8_t[]> buffer, uint32_t size,
std::set<AidlHalPreparedModelRole> roles, const Operand& operand);
uint8_t* getPointer() const { return kBuffer.get(); }
uint32_t getSize() const { return kSize; }
// "poolIndex" is the index of this buffer in the request.pools.
ErrorStatus validateRequest(uint32_t poolIndex, const Request& request,
const aidl_hal::IPreparedModel* preparedModel) const;
// "size" is the byte size of the Memory provided to the copyFrom or copyTo method.
ErrorStatus validateCopyFrom(const std::vector<uint32_t>& dimensions, uint32_t size) const;
ErrorStatus validateCopyTo(uint32_t size) const;
bool updateDimensions(const std::vector<uint32_t>& dimensions);
void setInitialized(bool initialized);
private:
mutable std::mutex mMutex;
const std::unique_ptr<uint8_t[]> kBuffer;
const uint32_t kSize;
const std::set<AidlHalPreparedModelRole> kRoles;
const OperandType kOperandType;
const std::vector<uint32_t> kInitialDimensions;
std::vector<uint32_t> mUpdatedDimensions GUARDED_BY(mMutex);
bool mInitialized GUARDED_BY(mMutex) = false;
};
// Keep track of all AidlManagedBuffers and assign each with a unique token.
class AidlBufferTracker : public std::enable_shared_from_this<AidlBufferTracker> {
DISALLOW_COPY_AND_ASSIGN(AidlBufferTracker);
public:
// A RAII class to help manage the lifetime of the token.
// It is only supposed to be constructed in AidlBufferTracker::add.
class Token {
DISALLOW_COPY_AND_ASSIGN(Token);
public:
Token(uint32_t token, std::shared_ptr<AidlBufferTracker> tracker)
: kToken(token), kBufferTracker(std::move(tracker)) {}
~Token() { kBufferTracker->free(kToken); }
uint32_t get() const { return kToken; }
private:
const uint32_t kToken;
const std::shared_ptr<AidlBufferTracker> kBufferTracker;
};
// The factory of AidlBufferTracker. This ensures that the AidlBufferTracker is always managed
// by a shared_ptr.
static std::shared_ptr<AidlBufferTracker> create() {
return std::make_shared<AidlBufferTracker>();
}
// Prefer AidlBufferTracker::create.
AidlBufferTracker() : mTokenToBuffers(1) {}
std::unique_ptr<Token> add(std::shared_ptr<AidlManagedBuffer> buffer);
std::shared_ptr<AidlManagedBuffer> get(uint32_t token) const;
private:
void free(uint32_t token);
mutable std::mutex mMutex;
std::stack<uint32_t, std::vector<uint32_t>> mFreeTokens GUARDED_BY(mMutex);
// Since the tokens are allocated in a non-sparse way, we use a vector to represent the mapping.
// The index of the vector is the token. When the token gets freed, the corresponding entry is
// set to nullptr. mTokenToBuffers[0] is always set to nullptr because 0 is an invalid token.
std::vector<std::shared_ptr<AidlManagedBuffer>> mTokenToBuffers GUARDED_BY(mMutex);
};
} // namespace android::nn
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_BUFFER_TRACKER_H

View File

@@ -0,0 +1,72 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_HAL_INTERFACES_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_HAL_INTERFACES_H
#include <aidl/android/hardware/neuralnetworks/BnBuffer.h>
#include <aidl/android/hardware/neuralnetworks/BnBurst.h>
#include <aidl/android/hardware/neuralnetworks/BnDevice.h>
#include <aidl/android/hardware/neuralnetworks/BnFencedExecutionCallback.h>
#include <aidl/android/hardware/neuralnetworks/BnPreparedModel.h>
#include <aidl/android/hardware/neuralnetworks/BnPreparedModelCallback.h>
#include <aidl/android/hardware/neuralnetworks/BufferDesc.h>
#include <aidl/android/hardware/neuralnetworks/BufferRole.h>
#include <aidl/android/hardware/neuralnetworks/Capabilities.h>
#include <aidl/android/hardware/neuralnetworks/DataLocation.h>
#include <aidl/android/hardware/neuralnetworks/DeviceBuffer.h>
#include <aidl/android/hardware/neuralnetworks/DeviceType.h>
#include <aidl/android/hardware/neuralnetworks/ErrorStatus.h>
#include <aidl/android/hardware/neuralnetworks/ExecutionPreference.h>
#include <aidl/android/hardware/neuralnetworks/Extension.h>
#include <aidl/android/hardware/neuralnetworks/ExtensionNameAndPrefix.h>
#include <aidl/android/hardware/neuralnetworks/ExtensionOperandTypeInformation.h>
#include <aidl/android/hardware/neuralnetworks/FusedActivationFunc.h>
#include <aidl/android/hardware/neuralnetworks/IBuffer.h>
#include <aidl/android/hardware/neuralnetworks/IDevice.h>
#include <aidl/android/hardware/neuralnetworks/IFencedExecutionCallback.h>
#include <aidl/android/hardware/neuralnetworks/IPreparedModel.h>
#include <aidl/android/hardware/neuralnetworks/IPreparedModelCallback.h>
#include <aidl/android/hardware/neuralnetworks/IPreparedModelParcel.h>
#include <aidl/android/hardware/neuralnetworks/Memory.h>
#include <aidl/android/hardware/neuralnetworks/Model.h>
#include <aidl/android/hardware/neuralnetworks/NumberOfCacheFiles.h>
#include <aidl/android/hardware/neuralnetworks/Operand.h>
#include <aidl/android/hardware/neuralnetworks/OperandExtraParams.h>
#include <aidl/android/hardware/neuralnetworks/OperandLifeTime.h>
#include <aidl/android/hardware/neuralnetworks/OperandPerformance.h>
#include <aidl/android/hardware/neuralnetworks/OperandType.h>
#include <aidl/android/hardware/neuralnetworks/Operation.h>
#include <aidl/android/hardware/neuralnetworks/OperationType.h>
#include <aidl/android/hardware/neuralnetworks/OutputShape.h>
#include <aidl/android/hardware/neuralnetworks/PerformanceInfo.h>
#include <aidl/android/hardware/neuralnetworks/Priority.h>
#include <aidl/android/hardware/neuralnetworks/Request.h>
#include <aidl/android/hardware/neuralnetworks/RequestArgument.h>
#include <aidl/android/hardware/neuralnetworks/RequestMemoryPool.h>
#include <aidl/android/hardware/neuralnetworks/Subgraph.h>
#include <aidl/android/hardware/neuralnetworks/SymmPerChannelQuantParams.h>
#include <aidl/android/hardware/neuralnetworks/Timing.h>
namespace android::nn {
namespace aidl_hal = ::aidl::android::hardware::neuralnetworks;
inline constexpr aidl_hal::Priority kDefaultPriorityAidl = aidl_hal::Priority::MEDIUM;
} // namespace android::nn
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_HAL_INTERFACES_H

View File

@@ -0,0 +1,52 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_HAL_UTILS_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_HAL_UTILS_H
#include <vector>
#include "nnapi/hal/aidl/HalInterfaces.h"
namespace android {
namespace nn {
// Return a vector with one entry for each non-extension OperandType except
// SUBGRAPH, set to the specified PerformanceInfo value. The vector will be
// sorted by OperandType.
//
// Control flow (OperandType::SUBGRAPH) operation performance is specified
// separately using Capabilities::ifPerformance and
// Capabilities::whilePerformance.
std::vector<aidl_hal::OperandPerformance> nonExtensionOperandPerformance(
aidl_hal::PerformanceInfo perf);
// Update the vector entry corresponding to the specified OperandType with the
// specified PerformanceInfo value. The vector must already have an entry for
// that OperandType, and must be sorted by OperandType.
void update(std::vector<aidl_hal::OperandPerformance>* operandPerformance,
aidl_hal::OperandType type, aidl_hal::PerformanceInfo perf);
// Returns true if an operand type is an extension type.
bool isExtensionOperandType(aidl_hal::OperandType type);
// Returns true if an operand type is a scalar type.
bool isNonExtensionScalar(aidl_hal::OperandType type);
} // namespace nn
} // namespace android
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_HAL_UTILS_H

View File

@@ -0,0 +1,47 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_VALIDATE_HAL_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_VALIDATE_HAL_H
#include "nnapi/hal/aidl/HalInterfaces.h"
#include <memory>
#include <set>
#include <tuple>
#include <vector>
#include <nnapi/TypeUtils.h>
#include <nnapi/Validation.h>
namespace android {
namespace nn {
using AidlHalPreparedModelRole = std::tuple<const aidl_hal::IPreparedModel*, IOType, uint32_t>;
bool validateMemoryDesc(
const aidl_hal::BufferDesc& desc,
const std::vector<std::shared_ptr<aidl_hal::IPreparedModel>>& preparedModels,
const std::vector<aidl_hal::BufferRole>& inputRoles,
const std::vector<aidl_hal::BufferRole>& outputRoles,
std::function<const aidl_hal::Model*(const std::shared_ptr<aidl_hal::IPreparedModel>&)>
getModel,
std::set<AidlHalPreparedModelRole>* preparedModelRoles, aidl_hal::Operand* combinedOperand);
} // namespace nn
} // namespace android
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_VALIDATE_HAL_H

View File

@@ -0,0 +1,227 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "AidlBufferTracker.h"
#include <android-base/macros.h>
#include <memory>
#include <mutex>
#include <set>
#include <stack>
#include <utility>
#include <vector>
#include "AidlHalInterfaces.h"
#include "nnapi/TypeUtils.h"
namespace android::nn {
std::shared_ptr<AidlManagedBuffer> AidlManagedBuffer::create(
uint32_t size, std::set<AidlHalPreparedModelRole> roles, const Operand& operand) {
std::unique_ptr<uint8_t[]> buffer(new (std::nothrow) uint8_t[size]);
if (buffer == nullptr) {
return nullptr;
}
if (isExtension(operand.type)) {
LOG(ERROR) << "AidlManagedBuffer cannot handle extension operands.";
return nullptr;
}
return std::make_shared<AidlManagedBuffer>(std::move(buffer), size, std::move(roles), operand);
}
AidlManagedBuffer::AidlManagedBuffer(std::unique_ptr<uint8_t[]> buffer, uint32_t size,
std::set<AidlHalPreparedModelRole> roles,
const Operand& operand)
: kBuffer(std::move(buffer)),
kSize(size),
kRoles(std::move(roles)),
kOperandType(operand.type),
kInitialDimensions(operand.dimensions),
mUpdatedDimensions(operand.dimensions) {
CHECK(!isExtension(kOperandType));
}
ErrorStatus AidlManagedBuffer::validateRequest(
uint32_t poolIndex, const Request& request,
const aidl_hal::IPreparedModel* preparedModel) const {
CHECK_LT(poolIndex, request.pools.size());
CHECK(std::holds_alternative<Request::MemoryDomainToken>(request.pools[poolIndex]));
std::lock_guard<std::mutex> guard(mMutex);
bool usedAsInput = false, usedAsOutput = false;
for (uint32_t i = 0; i < request.inputs.size(); i++) {
if (request.inputs[i].lifetime != Request::Argument::LifeTime::POOL) continue;
if (request.inputs[i].location.poolIndex != poolIndex) continue;
// Validate if the input role is specified during allocation.
if (kRoles.count({preparedModel, IOType::INPUT, i}) == 0) {
LOG(ERROR) << "AidlManagedBuffer::validateRequest -- invalid buffer role.";
return ErrorStatus::INVALID_ARGUMENT;
}
if (!mInitialized) {
LOG(ERROR)
<< "AidlManagedBuffer::validateRequest -- using uninitialized buffer as input "
"request.";
return ErrorStatus::GENERAL_FAILURE;
}
auto combined = combineDimensions(mUpdatedDimensions, request.inputs[i].dimensions);
if (!combined.has_value()) {
LOG(ERROR) << "AidlManagedBuffer::validateRequest -- incompatible dimensions ("
<< toString(mUpdatedDimensions) << " vs "
<< toString(request.inputs[i].dimensions) << ")";
return ErrorStatus::INVALID_ARGUMENT;
}
usedAsInput = true;
}
for (uint32_t i = 0; i < request.outputs.size(); i++) {
if (request.outputs[i].lifetime != Request::Argument::LifeTime::POOL) continue;
if (request.outputs[i].location.poolIndex != poolIndex) continue;
if (usedAsInput || usedAsOutput) {
LOG(ERROR) << "AidlManagedBuffer::validateRequest -- using the same device memory for "
"input/output or multiple outputs";
return ErrorStatus::INVALID_ARGUMENT;
}
// Validate if the output role is specified during allocation.
if (kRoles.count({preparedModel, IOType::OUTPUT, i}) == 0) {
LOG(ERROR) << "AidlManagedBuffer::validateRequest -- invalid buffer role.";
return ErrorStatus::INVALID_ARGUMENT;
}
auto combined = combineDimensions(kInitialDimensions, request.outputs[i].dimensions);
if (!combined.has_value()) {
LOG(ERROR) << "AidlManagedBuffer::validateRequest -- incompatible dimensions ("
<< toString(kInitialDimensions) << " vs "
<< toString(request.outputs[i].dimensions) << ")";
return ErrorStatus::INVALID_ARGUMENT;
}
usedAsOutput = true;
}
return ErrorStatus::NONE;
}
ErrorStatus AidlManagedBuffer::validateCopyFrom(const std::vector<uint32_t>& dimensions,
uint32_t size) const {
if (size != kSize) {
LOG(ERROR) << "AidlManagedBuffer::validateCopyFrom -- invalid memory size: " << kSize
<< " vs " << size;
return ErrorStatus::INVALID_ARGUMENT;
}
if (isNonExtensionScalar(kOperandType)) {
if (!dimensions.empty()) {
LOG(ERROR) << "AidlManagedBuffer::validateCopyFrom -- invalid dimensions for scalar "
"operand: "
<< toString(dimensions);
return ErrorStatus::INVALID_ARGUMENT;
}
return ErrorStatus::NONE;
}
if (dimensions.empty()) {
if (tensorHasUnspecifiedDimensions(kOperandType, kInitialDimensions)) {
LOG(ERROR) << "AidlManagedBuffer::validateCopyFrom -- the initial dimensions are not "
"fully "
"specified and no dimension update is provided: "
<< toString(kInitialDimensions);
return ErrorStatus::INVALID_ARGUMENT;
}
} else {
if (tensorHasUnspecifiedDimensions(kOperandType, dimensions)) {
LOG(ERROR) << "AidlManagedBuffer::validateCopyFrom -- the updated dimensions are not "
"fully "
"specified: "
<< toString(dimensions);
return ErrorStatus::INVALID_ARGUMENT;
}
}
const auto combined = combineDimensions(kInitialDimensions, dimensions);
if (!combined.has_value()) {
LOG(ERROR) << "AidlManagedBuffer::validateCopyFrom -- incompatible dimensions ("
<< toString(kInitialDimensions) << " vs " << toString(dimensions) << ")";
return ErrorStatus::INVALID_ARGUMENT;
}
return ErrorStatus::NONE;
}
ErrorStatus AidlManagedBuffer::validateCopyTo(uint32_t size) const {
if (size != kSize) {
LOG(ERROR) << "AidlManagedBuffer::validateCopyTo -- invalid memory size: " << kSize
<< " vs " << size;
return ErrorStatus::INVALID_ARGUMENT;
}
std::lock_guard<std::mutex> guard(mMutex);
if (!mInitialized) {
LOG(ERROR) << "AidlManagedBuffer::validateCopyTo -- using uninitialized buffer as source.";
return ErrorStatus::GENERAL_FAILURE;
}
return ErrorStatus::NONE;
}
bool AidlManagedBuffer::updateDimensions(const std::vector<uint32_t>& dimensions) {
auto combined = combineDimensions(kInitialDimensions, dimensions);
if (!combined.has_value()) {
LOG(ERROR) << "AidlManagedBuffer::updateDimensions -- incompatible dimensions ("
<< toString(kInitialDimensions) << " vs " << toString(dimensions) << ")";
return false;
}
std::lock_guard<std::mutex> guard(mMutex);
mUpdatedDimensions = std::move(combined).value();
return true;
}
void AidlManagedBuffer::setInitialized(bool initialized) {
std::lock_guard<std::mutex> guard(mMutex);
mInitialized = initialized;
}
std::unique_ptr<AidlBufferTracker::Token> AidlBufferTracker::add(
std::shared_ptr<AidlManagedBuffer> buffer) {
if (buffer == nullptr) {
return nullptr;
}
std::lock_guard<std::mutex> guard(mMutex);
uint32_t token = 0;
if (mFreeTokens.empty()) {
token = mTokenToBuffers.size();
mTokenToBuffers.push_back(std::move(buffer));
} else {
token = mFreeTokens.top();
mFreeTokens.pop();
mTokenToBuffers[token] = std::move(buffer);
}
VLOG(MEMORY) << "AidlBufferTracker::add -- new token = " << token;
return std::make_unique<Token>(token, shared_from_this());
}
std::shared_ptr<AidlManagedBuffer> AidlBufferTracker::get(uint32_t token) const {
std::lock_guard<std::mutex> guard(mMutex);
if (mTokenToBuffers.size() <= token || mTokenToBuffers[token] == nullptr) {
LOG(ERROR) << "AidlBufferTracker::get -- unknown token " << token;
return nullptr;
}
return mTokenToBuffers[token];
}
void AidlBufferTracker::free(uint32_t token) {
std::lock_guard<std::mutex> guard(mMutex);
CHECK_LT(token, mTokenToBuffers.size());
CHECK(mTokenToBuffers[token] != nullptr);
VLOG(MEMORY) << "AidlBufferTracker::free -- release token = " << token;
mTokenToBuffers[token] = nullptr;
mFreeTokens.push(token);
}
} // namespace android::nn

View File

@@ -0,0 +1,72 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This file contains pre-canonical-types utility code and includes HAL
// utilities. LegacyUtils.h is the subset of these utilities that do not touch
// HAL.
#include "AidlHalUtils.h"
#include <android-base/logging.h>
#include <nnapi/hal/aidl/Conversions.h>
#include <algorithm>
#include <iterator>
#include <type_traits>
#include <vector>
#include "AidlHalInterfaces.h"
#include "nnapi/TypeUtils.h"
namespace android::nn {
std::vector<aidl_hal::OperandPerformance> nonExtensionOperandPerformance(
aidl_hal::PerformanceInfo perf) {
static constexpr ndk::enum_range<aidl_hal::OperandType> kOperandTypeRange;
std::vector<aidl_hal::OperandPerformance> ret;
ret.reserve(std::distance(kOperandTypeRange.begin(), kOperandTypeRange.end()));
for (aidl_hal::OperandType type : kOperandTypeRange) {
if (type != aidl_hal::OperandType::SUBGRAPH) {
ret.push_back(aidl_hal::OperandPerformance{type, perf});
}
}
std::sort(ret.begin(), ret.end(),
[](const aidl_hal::OperandPerformance& a, const aidl_hal::OperandPerformance& b) {
return a.type < b.type;
});
return ret;
}
void update(std::vector<aidl_hal::OperandPerformance>* operandPerformance,
aidl_hal::OperandType type, aidl_hal::PerformanceInfo perf) {
CHECK(operandPerformance != nullptr);
const auto it = std::lower_bound(operandPerformance->begin(), operandPerformance->end(), type,
[](const aidl_hal::OperandPerformance& perf,
aidl_hal::OperandType type) { return perf.type < type; });
CHECK(it != operandPerformance->end())
<< toString(type) << " not in operand performance vector";
it->info = perf;
}
bool isExtensionOperandType(aidl_hal::OperandType type) {
return isExtension(convert(type).value());
}
bool isNonExtensionScalar(aidl_hal::OperandType type) {
return isNonExtensionScalar(convert(type).value());
}
} // namespace android::nn

View File

@@ -0,0 +1,136 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ValidateHal"
#include "AidlValidateHal.h"
#include <android-base/logging.h>
#include <nnapi/hal/aidl/Conversions.h>
#include <algorithm>
#include <memory>
#include <set>
#include <utility>
#include <vector>
#include "AidlHalUtils.h"
#include "nnapi/TypeUtils.h"
namespace android {
namespace nn {
bool validateMemoryDesc(
const aidl_hal::BufferDesc& desc,
const std::vector<std::shared_ptr<aidl_hal::IPreparedModel>>& preparedModels,
const std::vector<aidl_hal::BufferRole>& inputRoles,
const std::vector<aidl_hal::BufferRole>& outputRoles,
std::function<const aidl_hal::Model*(const std::shared_ptr<aidl_hal::IPreparedModel>&)>
getModel,
std::set<AidlHalPreparedModelRole>* preparedModelRoles,
aidl_hal::Operand* combinedOperand) {
NN_RET_CHECK(!preparedModels.empty());
NN_RET_CHECK(!inputRoles.empty() || !outputRoles.empty());
std::set<AidlHalPreparedModelRole> roles;
std::vector<aidl_hal::Operand> operands;
operands.reserve(inputRoles.size() + outputRoles.size());
for (const auto& role : inputRoles) {
NN_RET_CHECK_GE(role.modelIndex, 0);
NN_RET_CHECK_LT(static_cast<size_t>(role.modelIndex), preparedModels.size());
const auto& preparedModel = preparedModels[role.modelIndex];
NN_RET_CHECK(preparedModel != nullptr);
const auto* model = getModel(preparedModel);
NN_RET_CHECK(model != nullptr);
const auto& inputIndexes = model->main.inputIndexes;
NN_RET_CHECK_GE(role.ioIndex, 0);
NN_RET_CHECK_LT(static_cast<size_t>(role.ioIndex), inputIndexes.size());
NN_RET_CHECK_GT(role.probability, 0.0f);
NN_RET_CHECK_LE(role.probability, 1.0f);
const auto [it, success] = roles.emplace(preparedModel.get(), IOType::INPUT, role.ioIndex);
NN_RET_CHECK(success);
operands.push_back(model->main.operands[inputIndexes[role.ioIndex]]);
}
for (const auto& role : outputRoles) {
NN_RET_CHECK_GE(role.modelIndex, 0);
NN_RET_CHECK_LT(static_cast<size_t>(role.modelIndex), preparedModels.size());
const auto& preparedModel = preparedModels[role.modelIndex];
NN_RET_CHECK(preparedModel != nullptr);
const auto* model = getModel(preparedModel);
NN_RET_CHECK(model != nullptr);
const auto& outputIndexes = model->main.outputIndexes;
NN_RET_CHECK_GE(role.ioIndex, 0);
NN_RET_CHECK_LT(static_cast<size_t>(role.ioIndex), outputIndexes.size());
NN_RET_CHECK_GT(role.probability, 0.0f);
NN_RET_CHECK_LE(role.probability, 1.0f);
const auto [it, success] = roles.emplace(preparedModel.get(), IOType::OUTPUT, role.ioIndex);
NN_RET_CHECK(success);
operands.push_back(model->main.operands[outputIndexes[role.ioIndex]]);
}
CHECK(!operands.empty());
const auto opType = operands[0].type;
const auto canonicalOperandType = convert(opType);
NN_RET_CHECK(canonicalOperandType.has_value()) << canonicalOperandType.error().message;
const bool isExtensionOperand = isExtension(canonicalOperandType.value());
auto maybeDimensions = toUnsigned(desc.dimensions);
NN_RET_CHECK(maybeDimensions.has_value()) << maybeDimensions.error().message;
std::vector<uint32_t> dimensions = std::move(maybeDimensions).value();
for (const auto& operand : operands) {
NN_RET_CHECK(operand.type == operands[0].type)
<< toString(operand.type) << " vs " << toString(operands[0].type);
NN_RET_CHECK_EQ(operand.scale, operands[0].scale);
NN_RET_CHECK_EQ(operand.zeroPoint, operands[0].zeroPoint);
// NOTE: validateMemoryDesc cannot validate extra parameters for extension operand type.
if (!isExtensionOperand) {
const auto& lhsExtraParams = operand.extraParams;
const auto& rhsExtraParams = operands[0].extraParams;
NN_RET_CHECK(lhsExtraParams == rhsExtraParams)
<< (lhsExtraParams.has_value() ? lhsExtraParams.value().toString()
: "std::nullopt")
<< " vs "
<< (rhsExtraParams.has_value() ? rhsExtraParams.value().toString()
: "std::nullopt");
}
const auto maybeRhsDimensions = toUnsigned(operand.dimensions);
NN_RET_CHECK(maybeRhsDimensions.has_value()) << maybeRhsDimensions.error().message;
const auto combined = combineDimensions(dimensions, maybeRhsDimensions.value());
NN_RET_CHECK(combined.has_value());
dimensions = combined.value();
}
// NOTE: validateMemoryDesc cannot validate scalar dimensions with extension operand type.
if (!isExtensionOperand) {
NN_RET_CHECK(!isNonExtensionScalar(opType) || dimensions.empty())
<< "invalid dimensions with scalar operand type.";
}
if (preparedModelRoles != nullptr) {
*preparedModelRoles = std::move(roles);
}
if (combinedOperand != nullptr) {
*combinedOperand = operands[0];
// No need to check that values fit int32_t here, since the original values are obtained
// from int32_t.
combinedOperand->dimensions = aidl_hal::utils::toSigned(dimensions).value();
}
return true;
}
} // namespace nn
} // namespace android

View File

@@ -39,7 +39,7 @@ cc_test {
srcs: ["test/*.cpp"],
static_libs: [
"libgmock",
"libneuralnetworks_common_hidl",
"libneuralnetworks_common",
"neuralnetworks_types",
"neuralnetworks_utils_hal_common",
],