Files
hardware_interfaces/wifi/aidl/default/tests/wifi_chip_unit_tests.cpp
Gabriel Biren 989c78a51f Set the value of using_dynamic_iface_combination_
in the WifiChip constructor.

gTest suite currently cannot mock the legacy HAL
call for getSupportedIfaceConcurrencyMatrix.
If we set using_dynamic_iface_combination_ to true
in the unit tests, we can avoid making this call.

Bug: 271914366
Test: ./runtests.sh # gTest
Test: atest VtsHalWifiChipTargetTest # VTS
Change-Id: Ic43daab6ff5fdc5f78af614ad775f436fbbe8726
2023-06-14 22:45:29 +00:00

856 lines
33 KiB
C++

/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android-base/logging.h>
#include <android-base/macros.h>
#include <cutils/properties.h>
#include <gmock/gmock.h>
#include "wifi_chip.h"
#include "mock_interface_tool.h"
#include "mock_wifi_feature_flags.h"
#include "mock_wifi_iface_util.h"
#include "mock_wifi_legacy_hal.h"
#include "mock_wifi_mode_controller.h"
using testing::NiceMock;
using testing::Return;
using testing::Test;
namespace {
constexpr int kFakeChipId = 5;
} // namespace
namespace aidl {
namespace android {
namespace hardware {
namespace wifi {
class WifiChipTest : public Test {
protected:
void setupV1IfaceCombination() {
// clang-format off
// 1 STA + 1 P2P
const std::vector<IWifiChip::ChipConcurrencyCombination> combinationsSta =
{
{
{
{{IfaceConcurrencyType::STA}, 1},
{{IfaceConcurrencyType::P2P}, 1}
}
}
};
// 1 AP
const std::vector<IWifiChip::ChipConcurrencyCombination> combinationsAp =
{
{
{
{{IfaceConcurrencyType::AP}, 1}
}
}
};
const std::vector<IWifiChip::ChipMode> modes = {
{feature_flags::chip_mode_ids::kV1Sta, combinationsSta},
{feature_flags::chip_mode_ids::kV1Ap, combinationsAp}
};
// clang-format on
EXPECT_CALL(*feature_flags_, getChipModes(true)).WillRepeatedly(testing::Return(modes));
}
void setupV1_AwareIfaceCombination() {
// clang-format off
// 1 STA + 1 of (P2P or NAN)
const std::vector<IWifiChip::ChipConcurrencyCombination> combinationsSta =
{
{
{
{{IfaceConcurrencyType::STA}, 1},
{{IfaceConcurrencyType::P2P, IfaceConcurrencyType::NAN_IFACE}, 1}
}
}
};
// 1 AP
const std::vector<IWifiChip::ChipConcurrencyCombination> combinationsAp =
{
{
{
{{IfaceConcurrencyType::AP}, 1}
}
}
};
const std::vector<IWifiChip::ChipMode> modes = {
{feature_flags::chip_mode_ids::kV1Sta, combinationsSta},
{feature_flags::chip_mode_ids::kV1Ap, combinationsAp}
};
// clang-format on
EXPECT_CALL(*feature_flags_, getChipModes(true)).WillRepeatedly(testing::Return(modes));
}
void setupV1_AwareDisabledApIfaceCombination() {
// clang-format off
// 1 STA + 1 of (P2P or NAN)
const std::vector<IWifiChip::ChipConcurrencyCombination> combinationsSta =
{
{
{
{{IfaceConcurrencyType::STA}, 1},
{{IfaceConcurrencyType::P2P, IfaceConcurrencyType::NAN_IFACE}, 1}
}
}
};
const std::vector<IWifiChip::ChipMode> modes = {
{feature_flags::chip_mode_ids::kV1Sta, combinationsSta}
};
// clang-format on
EXPECT_CALL(*feature_flags_, getChipModes(true)).WillRepeatedly(testing::Return(modes));
}
void setupV2_AwareIfaceCombination() {
// clang-format off
// (1 STA + 1 AP) or (1 STA + 1 of (P2P or NAN))
const std::vector<IWifiChip::ChipConcurrencyCombination> combinations =
{
{
{
{{IfaceConcurrencyType::STA}, 1},
{{IfaceConcurrencyType::AP}, 1}
}
},
{
{
{{IfaceConcurrencyType::STA}, 1},
{{IfaceConcurrencyType::P2P, IfaceConcurrencyType::NAN_IFACE}, 1}
}
}
};
const std::vector<IWifiChip::ChipMode> modes = {
{feature_flags::chip_mode_ids::kV3, combinations}
};
// clang-format on
EXPECT_CALL(*feature_flags_, getChipModes(true)).WillRepeatedly(testing::Return(modes));
}
void setupV2_AwareDisabledApIfaceCombination() {
// clang-format off
// 1 STA + 1 of (P2P or NAN)
const std::vector<IWifiChip::ChipConcurrencyCombination> combinations =
{
{
{
{{IfaceConcurrencyType::STA}, 1},
{{IfaceConcurrencyType::P2P, IfaceConcurrencyType::NAN_IFACE}, 1}
}
}
};
const std::vector<IWifiChip::ChipMode> modes = {
{feature_flags::chip_mode_ids::kV3, combinations}
};
// clang-format on
EXPECT_CALL(*feature_flags_, getChipModes(true)).WillRepeatedly(testing::Return(modes));
}
void setup_MultiIfaceCombination() {
// clang-format off
// 3 STA + 1 AP
const std::vector<IWifiChip::ChipConcurrencyCombination> combinations =
{
{
{
{{IfaceConcurrencyType::STA}, 3},
{{IfaceConcurrencyType::AP}, 1}
}
}
};
const std::vector<IWifiChip::ChipMode> modes = {
{feature_flags::chip_mode_ids::kV3, combinations}
};
// clang-format on
EXPECT_CALL(*feature_flags_, getChipModes(true)).WillRepeatedly(testing::Return(modes));
}
void assertNumberOfModes(uint32_t num_modes) {
std::vector<IWifiChip::ChipMode> modes;
ASSERT_TRUE(chip_->getAvailableModes(&modes).isOk());
// V2_Aware has 1 mode of operation.
ASSERT_EQ(num_modes, modes.size());
}
void findModeAndConfigureForIfaceType(const IfaceConcurrencyType& type) {
// This should be aligned with kInvalidModeId in wifi_chip.cpp
int32_t mode_id = INT32_MAX;
std::vector<IWifiChip::ChipMode> modes;
ASSERT_TRUE(chip_->getAvailableModes(&modes).isOk());
for (const auto& mode : modes) {
for (const auto& combination : mode.availableCombinations) {
for (const auto& limit : combination.limits) {
if (limit.types.end() !=
std::find(limit.types.begin(), limit.types.end(), type)) {
mode_id = mode.id;
}
}
}
}
ASSERT_NE(INT32_MAX, mode_id);
ASSERT_TRUE(chip_->configureChip(mode_id).isOk());
}
// Returns an empty string on error.
std::string createIface(const IfaceType& type) {
std::string iface_name;
if (type == IfaceType::AP) {
std::shared_ptr<IWifiApIface> iface;
if (!chip_->createApIface(&iface).isOk()) {
return "";
}
EXPECT_NE(iface.get(), nullptr);
EXPECT_TRUE(iface->getName(&iface_name).isOk());
} else if (type == IfaceType::NAN_IFACE) {
std::shared_ptr<IWifiNanIface> iface;
if (!chip_->createNanIface(&iface).isOk()) {
return "";
}
EXPECT_NE(iface.get(), nullptr);
EXPECT_TRUE(iface->getName(&iface_name).isOk());
} else if (type == IfaceType::P2P) {
std::shared_ptr<IWifiP2pIface> iface;
if (!chip_->createP2pIface(&iface).isOk()) {
return "";
}
EXPECT_NE(iface.get(), nullptr);
EXPECT_TRUE(iface->getName(&iface_name).isOk());
} else if (type == IfaceType::STA) {
std::shared_ptr<IWifiStaIface> iface;
if (!chip_->createStaIface(&iface).isOk()) {
return "";
}
EXPECT_NE(iface.get(), nullptr);
EXPECT_TRUE(iface->getName(&iface_name).isOk());
}
return iface_name;
}
void removeIface(const IfaceType& type, const std::string& iface_name) {
if (type == IfaceType::AP) {
ASSERT_TRUE(chip_->removeApIface(iface_name).isOk());
} else if (type == IfaceType::NAN_IFACE) {
ASSERT_TRUE(chip_->removeNanIface(iface_name).isOk());
} else if (type == IfaceType::P2P) {
ASSERT_TRUE(chip_->removeP2pIface(iface_name).isOk());
} else if (type == IfaceType::STA) {
ASSERT_TRUE(chip_->removeStaIface(iface_name).isOk());
}
}
bool createRttController() {
std::shared_ptr<IWifiRttController> rtt_controller;
auto status = chip_->createRttController(nullptr, &rtt_controller);
return status.isOk();
}
static void subsystemRestartHandler(const std::string& /*error*/) {}
std::shared_ptr<WifiChip> chip_;
int chip_id_ = kFakeChipId;
legacy_hal::wifi_hal_fn fake_func_table_;
std::shared_ptr<NiceMock<::android::wifi_system::MockInterfaceTool>> iface_tool_{
new NiceMock<::android::wifi_system::MockInterfaceTool>};
std::shared_ptr<NiceMock<legacy_hal::MockWifiLegacyHal>> legacy_hal_{
new NiceMock<legacy_hal::MockWifiLegacyHal>(iface_tool_, fake_func_table_, true)};
std::shared_ptr<NiceMock<mode_controller::MockWifiModeController>> mode_controller_{
new NiceMock<mode_controller::MockWifiModeController>};
std::shared_ptr<NiceMock<iface_util::MockWifiIfaceUtil>> iface_util_{
new NiceMock<iface_util::MockWifiIfaceUtil>(iface_tool_, legacy_hal_)};
std::shared_ptr<NiceMock<feature_flags::MockWifiFeatureFlags>> feature_flags_{
new NiceMock<feature_flags::MockWifiFeatureFlags>};
public:
void SetUp() override {
chip_ = WifiChip::create(chip_id_, true, legacy_hal_, mode_controller_, iface_util_,
feature_flags_, subsystemRestartHandler, true);
EXPECT_CALL(*mode_controller_, changeFirmwareMode(testing::_))
.WillRepeatedly(testing::Return(true));
EXPECT_CALL(*legacy_hal_, start())
.WillRepeatedly(testing::Return(legacy_hal::WIFI_SUCCESS));
// Vendor HAL does not override the name by default.
EXPECT_CALL(*legacy_hal_, getSupportedIfaceName(testing::_, testing::_))
.WillRepeatedly(testing::Return(legacy_hal::WIFI_ERROR_UNKNOWN));
}
void TearDown() override {
// Restore default system iface names (This should ideally be using a
// mock).
property_set("wifi.interface", "wlan0");
property_set("wifi.concurrent.interface", "wlan1");
property_set("wifi.aware.interface", nullptr);
}
};
////////// V1 Iface Combinations ////////////
// Mode 1 - STA + P2P
// Mode 2 - AP
class WifiChipV1IfaceCombinationTest : public WifiChipTest {
public:
void SetUp() override {
setupV1IfaceCombination();
WifiChipTest::SetUp();
// V1 has 2 modes of operation.
assertNumberOfModes(2);
}
};
TEST_F(WifiChipV1IfaceCombinationTest, StaMode_CreateSta_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
}
TEST_F(WifiChipV1IfaceCombinationTest, StaMode_CreateP2p_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV1IfaceCombinationTest, StaMode_CreateNan_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_TRUE(createIface(IfaceType::NAN_IFACE).empty());
}
TEST_F(WifiChipV1IfaceCombinationTest, StaMode_CreateAp_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_TRUE(createIface(IfaceType::AP).empty());
}
TEST_F(WifiChipV1IfaceCombinationTest, StaMode_CreateStaP2p_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV1IfaceCombinationTest, ApMode_CreateAp_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::AP);
ASSERT_EQ(createIface(IfaceType::AP), "wlan0");
}
TEST_F(WifiChipV1IfaceCombinationTest, ApMode_CreateSta_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::AP);
ASSERT_TRUE(createIface(IfaceType::STA).empty());
}
TEST_F(WifiChipV1IfaceCombinationTest, ApMode_CreateP2p_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::AP);
ASSERT_TRUE(createIface(IfaceType::STA).empty());
}
TEST_F(WifiChipV1IfaceCombinationTest, ApMode_CreateNan_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::AP);
ASSERT_TRUE(createIface(IfaceType::NAN_IFACE).empty());
}
////////// V1 + Aware Iface Combinations ////////////
// Mode 1 - STA + P2P/NAN
// Mode 2 - AP
class WifiChipV1_AwareIfaceCombinationTest : public WifiChipTest {
public:
void SetUp() override {
setupV1_AwareIfaceCombination();
WifiChipTest::SetUp();
// V1_Aware has 2 modes of operation.
assertNumberOfModes(2u);
}
};
TEST_F(WifiChipV1_AwareIfaceCombinationTest, StaMode_CreateSta_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, StaMode_CreateP2p_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, StaMode_CreateNan_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::NAN_IFACE).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, StaMode_CreateAp_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_TRUE(createIface(IfaceType::AP).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, StaMode_CreateStaP2p_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, StaMode_CreateStaNan_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::NAN_IFACE).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, StaMode_CreateStaP2PNan_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
ASSERT_TRUE(createIface(IfaceType::NAN_IFACE).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, StaMode_CreateStaNan_AfterP2pRemove_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
std::string p2p_iface_name = createIface(IfaceType::P2P);
ASSERT_FALSE(p2p_iface_name.empty());
ASSERT_TRUE(createIface(IfaceType::NAN_IFACE).empty());
// After removing P2P iface, NAN iface creation should succeed.
removeIface(IfaceType::P2P, p2p_iface_name);
ASSERT_FALSE(createIface(IfaceType::NAN_IFACE).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, StaMode_CreateStaP2p_AfterNanRemove_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
std::string nan_iface_name = createIface(IfaceType::NAN_IFACE);
ASSERT_FALSE(nan_iface_name.empty());
ASSERT_TRUE(createIface(IfaceType::P2P).empty());
// After removing NAN iface, P2P iface creation should succeed.
removeIface(IfaceType::NAN_IFACE, nan_iface_name);
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, ApMode_CreateAp_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::AP);
ASSERT_EQ(createIface(IfaceType::AP), "wlan0");
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, ApMode_CreateSta_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::AP);
ASSERT_TRUE(createIface(IfaceType::STA).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, ApMode_CreateP2p_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::AP);
ASSERT_TRUE(createIface(IfaceType::STA).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, ApMode_CreateNan_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::AP);
ASSERT_TRUE(createIface(IfaceType::NAN_IFACE).empty());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, RttControllerFlowStaModeNoSta) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_TRUE(createRttController());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, RttControllerFlowStaModeWithSta) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_TRUE(createRttController());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, RttControllerFlowApToSta) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::AP);
std::string ap_iface_name = createIface(IfaceType::AP);
ASSERT_FALSE(ap_iface_name.empty());
ASSERT_FALSE(createRttController());
removeIface(IfaceType::AP, ap_iface_name);
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_TRUE(createRttController());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, SelectTxScenarioWithOnlySta) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
EXPECT_CALL(*legacy_hal_, selectTxPowerScenario("wlan0", testing::_))
.WillOnce(testing::Return(legacy_hal::WIFI_SUCCESS));
ASSERT_TRUE(chip_->selectTxPowerScenario(IWifiChip::TxPowerScenario::ON_HEAD_CELL_OFF).isOk());
}
TEST_F(WifiChipV1_AwareIfaceCombinationTest, SelectTxScenarioWithOnlyAp) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::AP);
ASSERT_EQ(createIface(IfaceType::AP), "wlan0");
EXPECT_CALL(*legacy_hal_, selectTxPowerScenario("wlan0", testing::_))
.WillOnce(testing::Return(legacy_hal::WIFI_SUCCESS));
ASSERT_TRUE(chip_->selectTxPowerScenario(IWifiChip::TxPowerScenario::ON_HEAD_CELL_OFF).isOk());
}
////////// V2 + Aware Iface Combinations ////////////
// Mode 1 - STA + STA/AP
// - STA + P2P/NAN
class WifiChipV2_AwareIfaceCombinationTest : public WifiChipTest {
public:
void SetUp() override {
setupV2_AwareIfaceCombination();
WifiChipTest::SetUp();
// V2_Aware has 1 mode of operation.
assertNumberOfModes(1u);
}
};
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateSta_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateP2p_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateNan_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::NAN_IFACE).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateAp_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_EQ(createIface(IfaceType::AP), "wlan1");
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateStaSta_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::AP);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
ASSERT_TRUE(createIface(IfaceType::STA).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateStaAp_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::AP);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
ASSERT_EQ(createIface(IfaceType::AP), "wlan1");
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateApSta_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::AP);
ASSERT_EQ(createIface(IfaceType::AP), "wlan1");
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateSta_AfterStaApRemove_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
std::string sta_iface_name = createIface(IfaceType::STA);
ASSERT_FALSE(sta_iface_name.empty());
std::string ap_iface_name = createIface(IfaceType::AP);
ASSERT_FALSE(ap_iface_name.empty());
ASSERT_TRUE(createIface(IfaceType::STA).empty());
// After removing AP & STA iface, STA iface creation should succeed.
removeIface(IfaceType::STA, sta_iface_name);
removeIface(IfaceType::AP, ap_iface_name);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateStaP2p_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateStaNan_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::NAN_IFACE).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateStaP2PNan_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
ASSERT_TRUE(createIface(IfaceType::NAN_IFACE).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateStaNan_AfterP2pRemove_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
std::string p2p_iface_name = createIface(IfaceType::P2P);
ASSERT_FALSE(p2p_iface_name.empty());
ASSERT_TRUE(createIface(IfaceType::NAN_IFACE).empty());
// After removing P2P iface, NAN iface creation should succeed.
removeIface(IfaceType::P2P, p2p_iface_name);
ASSERT_FALSE(createIface(IfaceType::NAN_IFACE).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateStaP2p_AfterNanRemove_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
std::string nan_iface_name = createIface(IfaceType::NAN_IFACE);
ASSERT_FALSE(nan_iface_name.empty());
ASSERT_TRUE(createIface(IfaceType::P2P).empty());
// After removing NAN iface, P2P iface creation should succeed.
removeIface(IfaceType::NAN_IFACE, nan_iface_name);
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateApNan_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::AP);
ASSERT_FALSE(createIface(IfaceType::AP).empty());
ASSERT_TRUE(createIface(IfaceType::NAN_IFACE).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateApP2p_ShouldFail) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::AP);
ASSERT_FALSE(createIface(IfaceType::AP).empty());
ASSERT_TRUE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, StaMode_CreateStaNan_AfterP2pRemove_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
std::string p2p_iface_name = createIface(IfaceType::P2P);
ASSERT_FALSE(p2p_iface_name.empty());
ASSERT_TRUE(createIface(IfaceType::NAN_IFACE).empty());
// After removing P2P iface, NAN iface creation should succeed.
removeIface(IfaceType::P2P, p2p_iface_name);
ASSERT_FALSE(createIface(IfaceType::NAN_IFACE).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, StaMode_CreateStaP2p_AfterNanRemove_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
std::string nan_iface_name = createIface(IfaceType::NAN_IFACE);
ASSERT_FALSE(nan_iface_name.empty());
ASSERT_TRUE(createIface(IfaceType::P2P).empty());
// After removing NAN iface, P2P iface creation should succeed.
removeIface(IfaceType::NAN_IFACE, nan_iface_name);
ASSERT_FALSE(createIface(IfaceType::P2P).empty());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateStaAp_EnsureDifferentIfaceNames) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::AP);
std::string sta_iface_name = createIface(IfaceType::STA);
std::string ap_iface_name = createIface(IfaceType::AP);
ASSERT_FALSE(sta_iface_name.empty());
ASSERT_FALSE(ap_iface_name.empty());
ASSERT_NE(sta_iface_name, ap_iface_name);
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, RttControllerFlowStaModeNoSta) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_TRUE(createRttController());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, RttControllerFlowStaModeWithSta) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_TRUE(createRttController());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, RttControllerFlow) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::AP).empty());
ASSERT_TRUE(createRttController());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, SelectTxScenarioWithOnlySta) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
EXPECT_CALL(*legacy_hal_, selectTxPowerScenario("wlan0", testing::_))
.WillOnce(testing::Return(legacy_hal::WIFI_SUCCESS));
ASSERT_TRUE(chip_->selectTxPowerScenario(IWifiChip::TxPowerScenario::ON_HEAD_CELL_OFF).isOk());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, SelectTxScenarioWithOnlyAp) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::AP);
ASSERT_EQ(createIface(IfaceType::AP), "wlan1");
EXPECT_CALL(*legacy_hal_, selectTxPowerScenario("wlan1", testing::_))
.WillOnce(testing::Return(legacy_hal::WIFI_SUCCESS));
ASSERT_TRUE(chip_->selectTxPowerScenario(IWifiChip::TxPowerScenario::ON_HEAD_CELL_OFF).isOk());
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, InvalidateAndRemoveNanOnStaRemove) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
// Create NAN iface
ASSERT_EQ(createIface(IfaceType::NAN_IFACE), "wlan0");
// We should have 1 nan iface.
std::vector<std::string> iface_names;
ASSERT_TRUE(chip_->getNanIfaceNames(&iface_names).isOk());
ASSERT_EQ(iface_names.size(), 1u);
ASSERT_EQ(iface_names[0], "wlan0");
// Retrieve the nan iface object.
std::shared_ptr<IWifiNanIface> nan_iface;
ASSERT_TRUE(chip_->getNanIface("wlan0", &nan_iface).isOk());
ASSERT_NE(nan_iface.get(), nullptr);
// Remove the STA iface. We should have 0 nan ifaces now.
removeIface(IfaceType::STA, "wlan0");
ASSERT_TRUE(chip_->getNanIfaceNames(&iface_names).isOk());
ASSERT_EQ(iface_names.size(), 0u);
// Any operation on the nan iface object should now return an error.
std::string name;
auto status = nan_iface->getName(&name);
ASSERT_EQ(status.getServiceSpecificError(),
static_cast<int32_t>(WifiStatusCode::ERROR_WIFI_IFACE_INVALID));
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, InvalidateAndRemoveRttControllerOnStaRemove) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
// Create RTT controller
std::shared_ptr<IWifiRttController> rtt_controller;
ASSERT_TRUE(chip_->createRttController(nullptr, &rtt_controller).isOk());
// Remove the STA iface.
removeIface(IfaceType::STA, "wlan0");
// Any operation on the rtt controller object should now return an error.
std::shared_ptr<IWifiStaIface> bound_iface;
auto status = rtt_controller->getBoundIface(&bound_iface);
ASSERT_EQ(status.getServiceSpecificError(),
static_cast<int32_t>(WifiStatusCode::ERROR_WIFI_RTT_CONTROLLER_INVALID));
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateNanWithSharedNanIface) {
property_set("wifi.aware.interface", nullptr);
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
ASSERT_EQ(createIface(IfaceType::NAN_IFACE), "wlan0");
removeIface(IfaceType::NAN_IFACE, "wlan0");
EXPECT_CALL(*iface_util_, setUpState(testing::_, testing::_)).Times(0);
}
TEST_F(WifiChipV2_AwareIfaceCombinationTest, CreateNanWithDedicatedNanIface) {
property_set("wifi.aware.interface", "aware0");
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
EXPECT_CALL(*iface_util_, ifNameToIndex("aware0")).WillOnce(testing::Return(4));
EXPECT_CALL(*iface_util_, setUpState("aware0", true)).WillOnce(testing::Return(true));
ASSERT_EQ(createIface(IfaceType::NAN_IFACE), "aware0");
EXPECT_CALL(*iface_util_, setUpState("aware0", false)).WillOnce(testing::Return(true));
removeIface(IfaceType::NAN_IFACE, "aware0");
}
////////// V1 Iface Combinations when AP creation is disabled //////////
class WifiChipV1_AwareDisabledApIfaceCombinationTest : public WifiChipTest {
public:
void SetUp() override {
setupV1_AwareDisabledApIfaceCombination();
WifiChipTest::SetUp();
}
};
TEST_F(WifiChipV1_AwareDisabledApIfaceCombinationTest, StaMode_CreateSta_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_TRUE(createIface(IfaceType::AP).empty());
}
////////// V2 Iface Combinations when AP creation is disabled //////////
class WifiChipV2_AwareDisabledApIfaceCombinationTest : public WifiChipTest {
public:
void SetUp() override {
setupV2_AwareDisabledApIfaceCombination();
WifiChipTest::SetUp();
}
};
TEST_F(WifiChipV2_AwareDisabledApIfaceCombinationTest, CreateSta_ShouldSucceed) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_TRUE(createIface(IfaceType::AP).empty());
}
////////// Hypothetical Iface Combination with multiple ifaces //////////
class WifiChip_MultiIfaceTest : public WifiChipTest {
public:
void SetUp() override {
setup_MultiIfaceCombination();
WifiChipTest::SetUp();
}
};
TEST_F(WifiChip_MultiIfaceTest, Create3Sta) {
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_FALSE(createIface(IfaceType::STA).empty());
ASSERT_TRUE(createIface(IfaceType::STA).empty());
}
TEST_F(WifiChip_MultiIfaceTest, CreateStaWithDefaultNames) {
property_set("wifi.interface.0", "");
property_set("wifi.interface.1", "");
property_set("wifi.interface.2", "");
property_set("wifi.interface", "");
property_set("wifi.concurrent.interface", "");
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
ASSERT_EQ(createIface(IfaceType::STA), "wlan1");
ASSERT_EQ(createIface(IfaceType::STA), "wlan2");
}
TEST_F(WifiChip_MultiIfaceTest, CreateStaWithCustomNames) {
property_set("wifi.interface.0", "test0");
property_set("wifi.interface.1", "test1");
property_set("wifi.interface.2", "test2");
property_set("wifi.interface", "bad0");
property_set("wifi.concurrent.interface", "bad1");
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "bad0");
ASSERT_EQ(createIface(IfaceType::STA), "bad1");
ASSERT_EQ(createIface(IfaceType::STA), "test2");
}
TEST_F(WifiChip_MultiIfaceTest, CreateStaWithCustomAltNames) {
property_set("wifi.interface.0", "");
property_set("wifi.interface.1", "");
property_set("wifi.interface.2", "");
property_set("wifi.interface", "testA0");
property_set("wifi.concurrent.interface", "testA1");
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
ASSERT_EQ(createIface(IfaceType::STA), "testA0");
ASSERT_EQ(createIface(IfaceType::STA), "testA1");
ASSERT_EQ(createIface(IfaceType::STA), "wlan2");
}
TEST_F(WifiChip_MultiIfaceTest, CreateApStartsWithIdx1) {
// WifiChip_MultiIfaceTest iface combo: STAx3 + APx1
// When the HAL support dual STAs, AP should start with idx 2.
findModeAndConfigureForIfaceType(IfaceConcurrencyType::STA);
// First AP will be slotted to wlan1.
ASSERT_EQ(createIface(IfaceType::AP), "wlan2");
// First STA will be slotted to wlan0.
ASSERT_EQ(createIface(IfaceType::STA), "wlan0");
// All further STA will be slotted to the remaining free indices.
ASSERT_EQ(createIface(IfaceType::STA), "wlan1");
ASSERT_EQ(createIface(IfaceType::STA), "wlan3");
}
} // namespace wifi
} // namespace hardware
} // namespace android
} // namespace aidl