Files
hardware_interfaces/camera/device/3.4/default/CameraDeviceSession.cpp
Shuzhen Wang 22f6dcec7e Camera: Use original dataspace/format for 3.5 device
Starting from CameraDeviceSession 3.5, for IMPLEMENTATION_DEFINED pixel
format, configureStreams call uses original format and dataspace instead
of the overridden value.

This makes sure the HAL interface behavior is consistent between first
and subsequent processCaptureRequest() calls.

Test: Camera CTS and partner testing
Bug: 131864007
Change-Id: Id701141d2c11089ef063fd3f32444212855f84ab
2019-06-06 07:50:50 -07:00

773 lines
30 KiB
C++

/*
* Copyright (C) 2017-2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "CamDevSession@3.4-impl"
#include <android/log.h>
#include <set>
#include <utils/Trace.h>
#include <hardware/gralloc.h>
#include <hardware/gralloc1.h>
#include "CameraDeviceSession.h"
#include "CameraModule.h"
namespace android {
namespace hardware {
namespace camera {
namespace device {
namespace V3_4 {
namespace implementation {
using ::android::hardware::camera::common::V1_0::helper::CameraModule;
CameraDeviceSession::CameraDeviceSession(
camera3_device_t* device,
const camera_metadata_t* deviceInfo,
const sp<V3_2::ICameraDeviceCallback>& callback) :
V3_3::implementation::CameraDeviceSession(device, deviceInfo, callback),
mResultBatcher_3_4(callback) {
mHasCallback_3_4 = false;
auto castResult = ICameraDeviceCallback::castFrom(callback);
if (castResult.isOk()) {
sp<ICameraDeviceCallback> callback3_4 = castResult;
if (callback3_4 != nullptr) {
process_capture_result = sProcessCaptureResult_3_4;
notify = sNotify_3_4;
mHasCallback_3_4 = true;
if (!mInitFail) {
mResultBatcher_3_4.setResultMetadataQueue(mResultMetadataQueue);
}
}
}
mResultBatcher_3_4.setNumPartialResults(mNumPartialResults);
// Parse and store current logical camera's physical ids.
(void)CameraModule::isLogicalMultiCamera(mDeviceInfo, &mPhysicalCameraIds);
}
CameraDeviceSession::~CameraDeviceSession() {
}
Return<void> CameraDeviceSession::configureStreams_3_4(
const StreamConfiguration& requestedConfiguration,
ICameraDeviceSession::configureStreams_3_4_cb _hidl_cb) {
configureStreams_3_4_Impl(requestedConfiguration, _hidl_cb);
return Void();
}
void CameraDeviceSession::configureStreams_3_4_Impl(
const StreamConfiguration& requestedConfiguration,
ICameraDeviceSession::configureStreams_3_4_cb _hidl_cb,
uint32_t streamConfigCounter, bool useOverriddenFields) {
Status status = initStatus();
HalStreamConfiguration outStreams;
// If callback is 3.2, make sure no physical stream is configured
if (!mHasCallback_3_4) {
for (size_t i = 0; i < requestedConfiguration.streams.size(); i++) {
if (requestedConfiguration.streams[i].physicalCameraId.size() > 0) {
ALOGE("%s: trying to configureStreams with physical camera id with V3.2 callback",
__FUNCTION__);
_hidl_cb(Status::INTERNAL_ERROR, outStreams);
return;
}
}
}
// hold the inflight lock for entire configureStreams scope since there must not be any
// inflight request/results during stream configuration.
Mutex::Autolock _l(mInflightLock);
if (!mInflightBuffers.empty()) {
ALOGE("%s: trying to configureStreams while there are still %zu inflight buffers!",
__FUNCTION__, mInflightBuffers.size());
_hidl_cb(Status::INTERNAL_ERROR, outStreams);
return;
}
if (!mInflightAETriggerOverrides.empty()) {
ALOGE("%s: trying to configureStreams while there are still %zu inflight"
" trigger overrides!", __FUNCTION__,
mInflightAETriggerOverrides.size());
_hidl_cb(Status::INTERNAL_ERROR, outStreams);
return;
}
if (!mInflightRawBoostPresent.empty()) {
ALOGE("%s: trying to configureStreams while there are still %zu inflight"
" boost overrides!", __FUNCTION__,
mInflightRawBoostPresent.size());
_hidl_cb(Status::INTERNAL_ERROR, outStreams);
return;
}
if (status != Status::OK) {
_hidl_cb(status, outStreams);
return;
}
const camera_metadata_t *paramBuffer = nullptr;
if (0 < requestedConfiguration.sessionParams.size()) {
V3_2::implementation::convertFromHidl(requestedConfiguration.sessionParams, &paramBuffer);
}
camera3_stream_configuration_t stream_list{};
// Block reading mStreamConfigCounter until configureStream returns
Mutex::Autolock _sccl(mStreamConfigCounterLock);
mStreamConfigCounter = streamConfigCounter;
hidl_vec<camera3_stream_t*> streams;
stream_list.session_parameters = paramBuffer;
if (!preProcessConfigurationLocked_3_4(requestedConfiguration,
useOverriddenFields, &stream_list, &streams)) {
_hidl_cb(Status::INTERNAL_ERROR, outStreams);
return;
}
ATRACE_BEGIN("camera3->configure_streams");
status_t ret = mDevice->ops->configure_streams(mDevice, &stream_list);
ATRACE_END();
// In case Hal returns error most likely it was not able to release
// the corresponding resources of the deleted streams.
if (ret == OK) {
postProcessConfigurationLocked_3_4(requestedConfiguration);
} else {
postProcessConfigurationFailureLocked_3_4(requestedConfiguration);
}
if (ret == -EINVAL) {
status = Status::ILLEGAL_ARGUMENT;
} else if (ret != OK) {
status = Status::INTERNAL_ERROR;
} else {
V3_4::implementation::convertToHidl(stream_list, &outStreams);
mFirstRequest = true;
}
_hidl_cb(status, outStreams);
return;
}
bool CameraDeviceSession::preProcessConfigurationLocked_3_4(
const StreamConfiguration& requestedConfiguration, bool useOverriddenFields,
camera3_stream_configuration_t *stream_list /*out*/,
hidl_vec<camera3_stream_t*> *streams /*out*/) {
if ((stream_list == nullptr) || (streams == nullptr)) {
return false;
}
stream_list->operation_mode = (uint32_t) requestedConfiguration.operationMode;
stream_list->num_streams = requestedConfiguration.streams.size();
streams->resize(stream_list->num_streams);
stream_list->streams = streams->data();
for (uint32_t i = 0; i < stream_list->num_streams; i++) {
int id = requestedConfiguration.streams[i].v3_2.id;
if (mStreamMap.count(id) == 0) {
Camera3Stream stream;
convertFromHidl(requestedConfiguration.streams[i], &stream);
mStreamMap[id] = stream;
mPhysicalCameraIdMap[id] = requestedConfiguration.streams[i].physicalCameraId;
mStreamMap[id].data_space = mapToLegacyDataspace(
mStreamMap[id].data_space);
mCirculatingBuffers.emplace(stream.mId, CirculatingBuffers{});
} else {
// width/height/format must not change, but usage/rotation might need to change.
// format and data_space may change.
if (mStreamMap[id].stream_type !=
(int) requestedConfiguration.streams[i].v3_2.streamType ||
mStreamMap[id].width != requestedConfiguration.streams[i].v3_2.width ||
mStreamMap[id].height != requestedConfiguration.streams[i].v3_2.height ||
mPhysicalCameraIdMap[id] != requestedConfiguration.streams[i].physicalCameraId) {
ALOGE("%s: stream %d configuration changed!", __FUNCTION__, id);
return false;
}
if (useOverriddenFields) {
android_dataspace_t requestedDataSpace =
mapToLegacyDataspace(static_cast<android_dataspace_t>(
requestedConfiguration.streams[i].v3_2.dataSpace));
if (mStreamMap[id].format != (int) requestedConfiguration.streams[i].v3_2.format ||
mStreamMap[id].data_space != requestedDataSpace) {
ALOGE("%s: stream %d configuration changed!", __FUNCTION__, id);
return false;
}
} else {
mStreamMap[id].format =
(int) requestedConfiguration.streams[i].v3_2.format;
mStreamMap[id].data_space = (android_dataspace_t)
requestedConfiguration.streams[i].v3_2.dataSpace;
}
mStreamMap[id].rotation = (int) requestedConfiguration.streams[i].v3_2.rotation;
mStreamMap[id].usage = (uint32_t) requestedConfiguration.streams[i].v3_2.usage;
}
// It is possible for the entry in 'mStreamMap' to get initialized by an older
// HIDL API. Make sure that the physical id is always initialized when using
// a more recent API call.
mStreamMap[id].physical_camera_id = mPhysicalCameraIdMap[id].c_str();
(*streams)[i] = &mStreamMap[id];
}
if (mFreeBufEarly) {
// Remove buffers of deleted streams
for(auto it = mStreamMap.begin(); it != mStreamMap.end(); it++) {
int id = it->first;
bool found = false;
for (const auto& stream : requestedConfiguration.streams) {
if (id == stream.v3_2.id) {
found = true;
break;
}
}
if (!found) {
// Unmap all buffers of deleted stream
cleanupBuffersLocked(id);
}
}
}
return true;
}
void CameraDeviceSession::postProcessConfigurationLocked_3_4(
const StreamConfiguration& requestedConfiguration) {
// delete unused streams, note we do this after adding new streams to ensure new stream
// will not have the same address as deleted stream, and HAL has a chance to reference
// the to be deleted stream in configure_streams call
for(auto it = mStreamMap.begin(); it != mStreamMap.end();) {
int id = it->first;
bool found = false;
for (const auto& stream : requestedConfiguration.streams) {
if (id == stream.v3_2.id) {
found = true;
break;
}
}
if (!found) {
// Unmap all buffers of deleted stream
// in case the configuration call succeeds and HAL
// is able to release the corresponding resources too.
if (!mFreeBufEarly) {
cleanupBuffersLocked(id);
}
it = mStreamMap.erase(it);
} else {
++it;
}
}
// Track video streams
mVideoStreamIds.clear();
for (const auto& stream : requestedConfiguration.streams) {
if (stream.v3_2.streamType == StreamType::OUTPUT &&
stream.v3_2.usage &
graphics::common::V1_0::BufferUsage::VIDEO_ENCODER) {
mVideoStreamIds.push_back(stream.v3_2.id);
}
}
mResultBatcher_3_4.setBatchedStreams(mVideoStreamIds);
}
void CameraDeviceSession::postProcessConfigurationFailureLocked_3_4(
const StreamConfiguration& requestedConfiguration) {
if (mFreeBufEarly) {
// Re-build the buf cache entry for deleted streams
for(auto it = mStreamMap.begin(); it != mStreamMap.end(); it++) {
int id = it->first;
bool found = false;
for (const auto& stream : requestedConfiguration.streams) {
if (id == stream.v3_2.id) {
found = true;
break;
}
}
if (!found) {
mCirculatingBuffers.emplace(id, CirculatingBuffers{});
}
}
}
}
Return<void> CameraDeviceSession::processCaptureRequest_3_4(
const hidl_vec<V3_4::CaptureRequest>& requests,
const hidl_vec<V3_2::BufferCache>& cachesToRemove,
ICameraDeviceSession::processCaptureRequest_3_4_cb _hidl_cb) {
updateBufferCaches(cachesToRemove);
uint32_t numRequestProcessed = 0;
Status s = Status::OK;
for (size_t i = 0; i < requests.size(); i++, numRequestProcessed++) {
s = processOneCaptureRequest_3_4(requests[i]);
if (s != Status::OK) {
break;
}
}
if (s == Status::OK && requests.size() > 1) {
mResultBatcher_3_4.registerBatch(requests[0].v3_2.frameNumber, requests.size());
}
_hidl_cb(s, numRequestProcessed);
return Void();
}
Status CameraDeviceSession::processOneCaptureRequest_3_4(const V3_4::CaptureRequest& request) {
Status status = initStatus();
if (status != Status::OK) {
ALOGE("%s: camera init failed or disconnected", __FUNCTION__);
return status;
}
// If callback is 3.2, make sure there are no physical settings.
if (!mHasCallback_3_4) {
if (request.physicalCameraSettings.size() > 0) {
ALOGE("%s: trying to call processCaptureRequest_3_4 with physical camera id "
"and V3.2 callback", __FUNCTION__);
return Status::INTERNAL_ERROR;
}
}
camera3_capture_request_t halRequest;
halRequest.frame_number = request.v3_2.frameNumber;
bool converted = true;
V3_2::CameraMetadata settingsFmq; // settings from FMQ
if (request.v3_2.fmqSettingsSize > 0) {
// non-blocking read; client must write metadata before calling
// processOneCaptureRequest
settingsFmq.resize(request.v3_2.fmqSettingsSize);
bool read = mRequestMetadataQueue->read(settingsFmq.data(), request.v3_2.fmqSettingsSize);
if (read) {
converted = V3_2::implementation::convertFromHidl(settingsFmq, &halRequest.settings);
} else {
ALOGE("%s: capture request settings metadata couldn't be read from fmq!", __FUNCTION__);
converted = false;
}
} else {
converted = V3_2::implementation::convertFromHidl(request.v3_2.settings,
&halRequest.settings);
}
if (!converted) {
ALOGE("%s: capture request settings metadata is corrupt!", __FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
if (mFirstRequest && halRequest.settings == nullptr) {
ALOGE("%s: capture request settings must not be null for first request!",
__FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
hidl_vec<buffer_handle_t*> allBufPtrs;
hidl_vec<int> allFences;
bool hasInputBuf = (request.v3_2.inputBuffer.streamId != -1 &&
request.v3_2.inputBuffer.bufferId != 0);
size_t numOutputBufs = request.v3_2.outputBuffers.size();
size_t numBufs = numOutputBufs + (hasInputBuf ? 1 : 0);
if (numOutputBufs == 0) {
ALOGE("%s: capture request must have at least one output buffer!", __FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
status = importRequest(request.v3_2, allBufPtrs, allFences);
if (status != Status::OK) {
return status;
}
hidl_vec<camera3_stream_buffer_t> outHalBufs;
outHalBufs.resize(numOutputBufs);
bool aeCancelTriggerNeeded = false;
::android::hardware::camera::common::V1_0::helper::CameraMetadata settingsOverride;
{
Mutex::Autolock _l(mInflightLock);
if (hasInputBuf) {
auto streamId = request.v3_2.inputBuffer.streamId;
auto key = std::make_pair(request.v3_2.inputBuffer.streamId, request.v3_2.frameNumber);
auto& bufCache = mInflightBuffers[key] = camera3_stream_buffer_t{};
convertFromHidl(
allBufPtrs[numOutputBufs], request.v3_2.inputBuffer.status,
&mStreamMap[request.v3_2.inputBuffer.streamId], allFences[numOutputBufs],
&bufCache);
bufCache.stream->physical_camera_id = mPhysicalCameraIdMap[streamId].c_str();
halRequest.input_buffer = &bufCache;
} else {
halRequest.input_buffer = nullptr;
}
halRequest.num_output_buffers = numOutputBufs;
for (size_t i = 0; i < numOutputBufs; i++) {
auto streamId = request.v3_2.outputBuffers[i].streamId;
auto key = std::make_pair(streamId, request.v3_2.frameNumber);
auto& bufCache = mInflightBuffers[key] = camera3_stream_buffer_t{};
convertFromHidl(
allBufPtrs[i], request.v3_2.outputBuffers[i].status,
&mStreamMap[streamId], allFences[i],
&bufCache);
bufCache.stream->physical_camera_id = mPhysicalCameraIdMap[streamId].c_str();
outHalBufs[i] = bufCache;
}
halRequest.output_buffers = outHalBufs.data();
AETriggerCancelOverride triggerOverride;
aeCancelTriggerNeeded = handleAePrecaptureCancelRequestLocked(
halRequest, &settingsOverride /*out*/, &triggerOverride/*out*/);
if (aeCancelTriggerNeeded) {
mInflightAETriggerOverrides[halRequest.frame_number] =
triggerOverride;
halRequest.settings = settingsOverride.getAndLock();
}
}
std::vector<const char *> physicalCameraIds;
std::vector<const camera_metadata_t *> physicalCameraSettings;
std::vector<V3_2::CameraMetadata> physicalFmq;
size_t settingsCount = request.physicalCameraSettings.size();
if (settingsCount > 0) {
physicalCameraIds.reserve(settingsCount);
physicalCameraSettings.reserve(settingsCount);
physicalFmq.reserve(settingsCount);
for (size_t i = 0; i < settingsCount; i++) {
uint64_t settingsSize = request.physicalCameraSettings[i].fmqSettingsSize;
const camera_metadata_t *settings = nullptr;
if (settingsSize > 0) {
physicalFmq.push_back(V3_2::CameraMetadata(settingsSize));
bool read = mRequestMetadataQueue->read(physicalFmq[i].data(), settingsSize);
if (read) {
converted = V3_2::implementation::convertFromHidl(physicalFmq[i], &settings);
physicalCameraSettings.push_back(settings);
} else {
ALOGE("%s: physical camera settings metadata couldn't be read from fmq!",
__FUNCTION__);
converted = false;
}
} else {
converted = V3_2::implementation::convertFromHidl(
request.physicalCameraSettings[i].settings, &settings);
physicalCameraSettings.push_back(settings);
}
if (!converted) {
ALOGE("%s: physical camera settings metadata is corrupt!", __FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
if (mFirstRequest && settings == nullptr) {
ALOGE("%s: Individual request settings must not be null for first request!",
__FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
physicalCameraIds.push_back(request.physicalCameraSettings[i].physicalCameraId.c_str());
}
}
halRequest.num_physcam_settings = settingsCount;
halRequest.physcam_id = physicalCameraIds.data();
halRequest.physcam_settings = physicalCameraSettings.data();
ATRACE_ASYNC_BEGIN("frame capture", request.v3_2.frameNumber);
ATRACE_BEGIN("camera3->process_capture_request");
status_t ret = mDevice->ops->process_capture_request(mDevice, &halRequest);
ATRACE_END();
if (aeCancelTriggerNeeded) {
settingsOverride.unlock(halRequest.settings);
}
if (ret != OK) {
Mutex::Autolock _l(mInflightLock);
ALOGE("%s: HAL process_capture_request call failed!", __FUNCTION__);
cleanupInflightFences(allFences, numBufs);
if (hasInputBuf) {
auto key = std::make_pair(request.v3_2.inputBuffer.streamId, request.v3_2.frameNumber);
mInflightBuffers.erase(key);
}
for (size_t i = 0; i < numOutputBufs; i++) {
auto key = std::make_pair(request.v3_2.outputBuffers[i].streamId,
request.v3_2.frameNumber);
mInflightBuffers.erase(key);
}
if (aeCancelTriggerNeeded) {
mInflightAETriggerOverrides.erase(request.v3_2.frameNumber);
}
if (ret == BAD_VALUE) {
return Status::ILLEGAL_ARGUMENT;
} else {
return Status::INTERNAL_ERROR;
}
}
mFirstRequest = false;
return Status::OK;
}
/**
* Static callback forwarding methods from HAL to instance
*/
void CameraDeviceSession::sProcessCaptureResult_3_4(
const camera3_callback_ops *cb,
const camera3_capture_result *hal_result) {
CameraDeviceSession *d =
const_cast<CameraDeviceSession*>(static_cast<const CameraDeviceSession*>(cb));
CaptureResult result = {};
camera3_capture_result shadowResult;
bool handlePhysCam = (d->mDeviceVersion >= CAMERA_DEVICE_API_VERSION_3_5);
std::vector<::android::hardware::camera::common::V1_0::helper::CameraMetadata> compactMds;
std::vector<const camera_metadata_t*> physCamMdArray;
sShrinkCaptureResult(&shadowResult, hal_result, &compactMds, &physCamMdArray, handlePhysCam);
status_t ret = d->constructCaptureResult(result.v3_2, &shadowResult);
if (ret != OK) {
return;
}
if (handlePhysCam) {
if (shadowResult.num_physcam_metadata > d->mPhysicalCameraIds.size()) {
ALOGE("%s: Fatal: Invalid num_physcam_metadata %u", __FUNCTION__,
shadowResult.num_physcam_metadata);
return;
}
result.physicalCameraMetadata.resize(shadowResult.num_physcam_metadata);
for (uint32_t i = 0; i < shadowResult.num_physcam_metadata; i++) {
std::string physicalId = shadowResult.physcam_ids[i];
if (d->mPhysicalCameraIds.find(physicalId) == d->mPhysicalCameraIds.end()) {
ALOGE("%s: Fatal: Invalid physcam_ids[%u]: %s", __FUNCTION__,
i, shadowResult.physcam_ids[i]);
return;
}
V3_2::CameraMetadata physicalMetadata;
V3_2::implementation::convertToHidl(
shadowResult.physcam_metadata[i], &physicalMetadata);
PhysicalCameraMetadata physicalCameraMetadata = {
.fmqMetadataSize = 0,
.physicalCameraId = physicalId,
.metadata = physicalMetadata };
result.physicalCameraMetadata[i] = physicalCameraMetadata;
}
}
d->mResultBatcher_3_4.processCaptureResult_3_4(result);
}
void CameraDeviceSession::sNotify_3_4(
const camera3_callback_ops *cb,
const camera3_notify_msg *msg) {
CameraDeviceSession *d =
const_cast<CameraDeviceSession*>(static_cast<const CameraDeviceSession*>(cb));
V3_2::NotifyMsg hidlMsg;
V3_2::implementation::convertToHidl(msg, &hidlMsg);
if (hidlMsg.type == (V3_2::MsgType) CAMERA3_MSG_ERROR &&
hidlMsg.msg.error.errorStreamId != -1) {
if (d->mStreamMap.count(hidlMsg.msg.error.errorStreamId) != 1) {
ALOGE("%s: unknown stream ID %d reports an error!",
__FUNCTION__, hidlMsg.msg.error.errorStreamId);
return;
}
}
if (static_cast<camera3_msg_type_t>(hidlMsg.type) == CAMERA3_MSG_ERROR) {
switch (hidlMsg.msg.error.errorCode) {
case V3_2::ErrorCode::ERROR_DEVICE:
case V3_2::ErrorCode::ERROR_REQUEST:
case V3_2::ErrorCode::ERROR_RESULT: {
Mutex::Autolock _l(d->mInflightLock);
auto entry = d->mInflightAETriggerOverrides.find(
hidlMsg.msg.error.frameNumber);
if (d->mInflightAETriggerOverrides.end() != entry) {
d->mInflightAETriggerOverrides.erase(
hidlMsg.msg.error.frameNumber);
}
auto boostEntry = d->mInflightRawBoostPresent.find(
hidlMsg.msg.error.frameNumber);
if (d->mInflightRawBoostPresent.end() != boostEntry) {
d->mInflightRawBoostPresent.erase(
hidlMsg.msg.error.frameNumber);
}
}
break;
case V3_2::ErrorCode::ERROR_BUFFER:
default:
break;
}
}
d->mResultBatcher_3_4.notify(hidlMsg);
}
CameraDeviceSession::ResultBatcher_3_4::ResultBatcher_3_4(
const sp<V3_2::ICameraDeviceCallback>& callback) :
V3_3::implementation::CameraDeviceSession::ResultBatcher(callback) {
auto castResult = ICameraDeviceCallback::castFrom(callback);
if (castResult.isOk()) {
mCallback_3_4 = castResult;
}
}
void CameraDeviceSession::ResultBatcher_3_4::processCaptureResult_3_4(CaptureResult& result) {
auto pair = getBatch(result.v3_2.frameNumber);
int batchIdx = pair.first;
if (batchIdx == NOT_BATCHED) {
processOneCaptureResult_3_4(result);
return;
}
std::shared_ptr<InflightBatch> batch = pair.second;
{
Mutex::Autolock _l(batch->mLock);
// Check if the batch is removed (mostly by notify error) before lock was acquired
if (batch->mRemoved) {
// Fall back to non-batch path
processOneCaptureResult_3_4(result);
return;
}
// queue metadata
if (result.v3_2.result.size() != 0) {
// Save a copy of metadata
batch->mResultMds[result.v3_2.partialResult].mMds.push_back(
std::make_pair(result.v3_2.frameNumber, result.v3_2.result));
}
// queue buffer
std::vector<int> filledStreams;
std::vector<V3_2::StreamBuffer> nonBatchedBuffers;
for (auto& buffer : result.v3_2.outputBuffers) {
auto it = batch->mBatchBufs.find(buffer.streamId);
if (it != batch->mBatchBufs.end()) {
InflightBatch::BufferBatch& bb = it->second;
pushStreamBuffer(std::move(buffer), bb.mBuffers);
filledStreams.push_back(buffer.streamId);
} else {
pushStreamBuffer(std::move(buffer), nonBatchedBuffers);
}
}
// send non-batched buffers up
if (nonBatchedBuffers.size() > 0 || result.v3_2.inputBuffer.streamId != -1) {
CaptureResult nonBatchedResult;
nonBatchedResult.v3_2.frameNumber = result.v3_2.frameNumber;
nonBatchedResult.v3_2.fmqResultSize = 0;
nonBatchedResult.v3_2.outputBuffers.resize(nonBatchedBuffers.size());
for (size_t i = 0; i < nonBatchedBuffers.size(); i++) {
moveStreamBuffer(
std::move(nonBatchedBuffers[i]), nonBatchedResult.v3_2.outputBuffers[i]);
}
moveStreamBuffer(std::move(result.v3_2.inputBuffer), nonBatchedResult.v3_2.inputBuffer);
nonBatchedResult.v3_2.partialResult = 0; // 0 for buffer only results
processOneCaptureResult_3_4(nonBatchedResult);
}
if (result.v3_2.frameNumber == batch->mLastFrame) {
// Send data up
if (result.v3_2.partialResult > 0) {
sendBatchMetadataLocked(batch, result.v3_2.partialResult);
}
// send buffer up
if (filledStreams.size() > 0) {
sendBatchBuffersLocked(batch, filledStreams);
}
}
} // end of batch lock scope
// see if the batch is complete
if (result.v3_2.frameNumber == batch->mLastFrame) {
checkAndRemoveFirstBatch();
}
}
void CameraDeviceSession::ResultBatcher_3_4::processOneCaptureResult_3_4(CaptureResult& result) {
hidl_vec<CaptureResult> results;
results.resize(1);
results[0] = std::move(result);
invokeProcessCaptureResultCallback_3_4(results, /* tryWriteFmq */true);
freeReleaseFences_3_4(results);
return;
}
void CameraDeviceSession::ResultBatcher_3_4::invokeProcessCaptureResultCallback_3_4(
hidl_vec<CaptureResult> &results, bool tryWriteFmq) {
if (mProcessCaptureResultLock.tryLock() != OK) {
ALOGV("%s: previous call is not finished! waiting 1s...", __FUNCTION__);
if (mProcessCaptureResultLock.timedLock(1000000000 /* 1s */) != OK) {
ALOGE("%s: cannot acquire lock in 1s, cannot proceed",
__FUNCTION__);
return;
}
}
if (tryWriteFmq && mResultMetadataQueue->availableToWrite() > 0) {
for (CaptureResult &result : results) {
if (result.v3_2.result.size() > 0) {
if (mResultMetadataQueue->write(result.v3_2.result.data(),
result.v3_2.result.size())) {
result.v3_2.fmqResultSize = result.v3_2.result.size();
result.v3_2.result.resize(0);
} else {
ALOGW("%s: couldn't utilize fmq, fall back to hwbinder", __FUNCTION__);
result.v3_2.fmqResultSize = 0;
}
}
for (auto& onePhysMetadata : result.physicalCameraMetadata) {
if (mResultMetadataQueue->write(onePhysMetadata.metadata.data(),
onePhysMetadata.metadata.size())) {
onePhysMetadata.fmqMetadataSize = onePhysMetadata.metadata.size();
onePhysMetadata.metadata.resize(0);
} else {
ALOGW("%s: couldn't utilize fmq, fall back to hwbinder", __FUNCTION__);
onePhysMetadata.fmqMetadataSize = 0;
}
}
}
}
mCallback_3_4->processCaptureResult_3_4(results);
mProcessCaptureResultLock.unlock();
}
void CameraDeviceSession::ResultBatcher_3_4::freeReleaseFences_3_4(hidl_vec<CaptureResult>& results) {
for (auto& result : results) {
if (result.v3_2.inputBuffer.releaseFence.getNativeHandle() != nullptr) {
native_handle_t* handle = const_cast<native_handle_t*>(
result.v3_2.inputBuffer.releaseFence.getNativeHandle());
native_handle_close(handle);
native_handle_delete(handle);
}
for (auto& buf : result.v3_2.outputBuffers) {
if (buf.releaseFence.getNativeHandle() != nullptr) {
native_handle_t* handle = const_cast<native_handle_t*>(
buf.releaseFence.getNativeHandle());
native_handle_close(handle);
native_handle_delete(handle);
}
}
}
return;
}
} // namespace implementation
} // namespace V3_4
} // namespace device
} // namespace camera
} // namespace hardware
} // namespace android