Files
hardware_interfaces/identity/aidl/vts/VtsHalIdentityEndToEndTest.cpp
David Zeuthen 2e4533e5c1 Identity: Update for changes to ISO 18013-5.
Key derivation for session encryption and MACing now involves mixing
in SessionTranscriptBytes. Update docs, default implementation, and
VTS tests to reflect this.

Also, the standard changed such that instead of DeviceAuthentication
being MACed or signed, it's instead DeviceAuthenticationBytes which is
defined as #6.24(bstr .cbor DeviceAuthentication). The same also for
ReaderAuthentication, now ReaderAuthenticationBytes is the CBOR which
is signed by the reader.

Also update the URL for CDDL since it's now a published RFC.

Bug: 159482543
Test: atest VtsHalIdentityTargetTest
Test: atest android.security.identity.cts
Change-Id: I73fc7eb48ffb71e00a8b54849266ed814295fa39
2020-06-24 09:27:02 -04:00

489 lines
22 KiB
C++

/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "VtsHalIdentityEndToEndTest"
#include <aidl/Gtest.h>
#include <aidl/Vintf.h>
#include <android-base/logging.h>
#include <android/hardware/identity/IIdentityCredentialStore.h>
#include <android/hardware/identity/support/IdentityCredentialSupport.h>
#include <binder/IServiceManager.h>
#include <binder/ProcessState.h>
#include <cppbor.h>
#include <cppbor_parse.h>
#include <gtest/gtest.h>
#include <future>
#include <map>
#include <tuple>
#include "VtsIdentityTestUtils.h"
namespace android::hardware::identity {
using std::endl;
using std::make_tuple;
using std::map;
using std::optional;
using std::string;
using std::tuple;
using std::vector;
using ::android::sp;
using ::android::String16;
using ::android::binder::Status;
using ::android::hardware::keymaster::HardwareAuthToken;
using ::android::hardware::keymaster::VerificationToken;
using test_utils::validateAttestationCertificate;
class IdentityAidl : public testing::TestWithParam<std::string> {
public:
virtual void SetUp() override {
credentialStore_ = android::waitForDeclaredService<IIdentityCredentialStore>(
String16(GetParam().c_str()));
ASSERT_NE(credentialStore_, nullptr);
}
sp<IIdentityCredentialStore> credentialStore_;
};
TEST_P(IdentityAidl, hardwareInformation) {
HardwareInformation info;
ASSERT_TRUE(credentialStore_->getHardwareInformation(&info).isOk());
ASSERT_GT(info.credentialStoreName.size(), 0);
ASSERT_GT(info.credentialStoreAuthorName.size(), 0);
ASSERT_GE(info.dataChunkSize, 256);
}
tuple<bool, string, vector<uint8_t>, vector<uint8_t>> extractFromTestCredentialData(
const vector<uint8_t>& credentialData) {
string docType;
vector<uint8_t> storageKey;
vector<uint8_t> credentialPrivKey;
auto [item, _, message] = cppbor::parse(credentialData);
if (item == nullptr) {
return make_tuple(false, docType, storageKey, credentialPrivKey);
}
const cppbor::Array* arrayItem = item->asArray();
if (arrayItem == nullptr || arrayItem->size() != 3) {
return make_tuple(false, docType, storageKey, credentialPrivKey);
}
const cppbor::Tstr* docTypeItem = (*arrayItem)[0]->asTstr();
const cppbor::Bool* testCredentialItem =
((*arrayItem)[1]->asSimple() != nullptr ? ((*arrayItem)[1]->asSimple()->asBool())
: nullptr);
const cppbor::Bstr* encryptedCredentialKeysItem = (*arrayItem)[2]->asBstr();
if (docTypeItem == nullptr || testCredentialItem == nullptr ||
encryptedCredentialKeysItem == nullptr) {
return make_tuple(false, docType, storageKey, credentialPrivKey);
}
docType = docTypeItem->value();
vector<uint8_t> hardwareBoundKey = support::getTestHardwareBoundKey();
const vector<uint8_t>& encryptedCredentialKeys = encryptedCredentialKeysItem->value();
const vector<uint8_t> docTypeVec(docType.begin(), docType.end());
optional<vector<uint8_t>> decryptedCredentialKeys =
support::decryptAes128Gcm(hardwareBoundKey, encryptedCredentialKeys, docTypeVec);
if (!decryptedCredentialKeys) {
return make_tuple(false, docType, storageKey, credentialPrivKey);
}
auto [dckItem, dckPos, dckMessage] = cppbor::parse(decryptedCredentialKeys.value());
if (dckItem == nullptr) {
return make_tuple(false, docType, storageKey, credentialPrivKey);
}
const cppbor::Array* dckArrayItem = dckItem->asArray();
if (dckArrayItem == nullptr || dckArrayItem->size() != 2) {
return make_tuple(false, docType, storageKey, credentialPrivKey);
}
const cppbor::Bstr* storageKeyItem = (*dckArrayItem)[0]->asBstr();
const cppbor::Bstr* credentialPrivKeyItem = (*dckArrayItem)[1]->asBstr();
if (storageKeyItem == nullptr || credentialPrivKeyItem == nullptr) {
return make_tuple(false, docType, storageKey, credentialPrivKey);
}
storageKey = storageKeyItem->value();
credentialPrivKey = credentialPrivKeyItem->value();
return make_tuple(true, docType, storageKey, credentialPrivKey);
}
TEST_P(IdentityAidl, createAndRetrieveCredential) {
// First, generate a key-pair for the reader since its public key will be
// part of the request data.
vector<uint8_t> readerKey;
optional<vector<uint8_t>> readerCertificate =
test_utils::generateReaderCertificate("1234", &readerKey);
ASSERT_TRUE(readerCertificate);
// Make the portrait image really big (just shy of 256 KiB) to ensure that
// the chunking code gets exercised.
vector<uint8_t> portraitImage;
test_utils::setImageData(portraitImage);
// Access control profiles:
const vector<test_utils::TestProfile> testProfiles = {// Profile 0 (reader authentication)
{0, readerCertificate.value(), false, 0},
// Profile 1 (no authentication)
{1, {}, false, 0}};
// It doesn't matter since no user auth is needed in this particular test,
// but for good measure, clear out the tokens we pass to the HAL.
HardwareAuthToken authToken;
VerificationToken verificationToken;
authToken.challenge = 0;
authToken.userId = 0;
authToken.authenticatorId = 0;
authToken.authenticatorType = ::android::hardware::keymaster::HardwareAuthenticatorType::NONE;
authToken.timestamp.milliSeconds = 0;
authToken.mac.clear();
verificationToken.challenge = 0;
verificationToken.timestamp.milliSeconds = 0;
verificationToken.securityLevel = ::android::hardware::keymaster::SecurityLevel::SOFTWARE;
verificationToken.mac.clear();
// Here's the actual test data:
const vector<test_utils::TestEntryData> testEntries = {
{"PersonalData", "Last name", string("Turing"), vector<int32_t>{0, 1}},
{"PersonalData", "Birth date", string("19120623"), vector<int32_t>{0, 1}},
{"PersonalData", "First name", string("Alan"), vector<int32_t>{0, 1}},
{"PersonalData", "Home address", string("Maida Vale, London, England"),
vector<int32_t>{0}},
{"Image", "Portrait image", portraitImage, vector<int32_t>{0, 1}},
};
const vector<int32_t> testEntriesEntryCounts = {static_cast<int32_t>(testEntries.size() - 1),
1u};
HardwareInformation hwInfo;
ASSERT_TRUE(credentialStore_->getHardwareInformation(&hwInfo).isOk());
string cborPretty;
sp<IWritableIdentityCredential> writableCredential;
ASSERT_TRUE(test_utils::setupWritableCredential(writableCredential, credentialStore_));
string challenge = "attestationChallenge";
test_utils::AttestationData attData(writableCredential, challenge, {});
ASSERT_TRUE(attData.result.isOk())
<< attData.result.exceptionCode() << "; " << attData.result.exceptionMessage() << endl;
EXPECT_TRUE(validateAttestationCertificate(attData.attestationCertificate,
attData.attestationChallenge,
attData.attestationApplicationId, hwInfo));
// This is kinda of a hack but we need to give the size of
// ProofOfProvisioning that we'll expect to receive.
const int32_t expectedProofOfProvisioningSize = 262861 - 326 + readerCertificate.value().size();
// OK to fail, not available in v1 HAL
writableCredential->setExpectedProofOfProvisioningSize(expectedProofOfProvisioningSize);
ASSERT_TRUE(
writableCredential->startPersonalization(testProfiles.size(), testEntriesEntryCounts)
.isOk());
optional<vector<SecureAccessControlProfile>> secureProfiles =
test_utils::addAccessControlProfiles(writableCredential, testProfiles);
ASSERT_TRUE(secureProfiles);
// Uses TestEntryData* pointer as key and values are the encrypted blobs. This
// is a little hacky but it works well enough.
map<const test_utils::TestEntryData*, vector<vector<uint8_t>>> encryptedBlobs;
for (const auto& entry : testEntries) {
ASSERT_TRUE(test_utils::addEntry(writableCredential, entry, hwInfo.dataChunkSize,
encryptedBlobs, true));
}
vector<uint8_t> credentialData;
vector<uint8_t> proofOfProvisioningSignature;
ASSERT_TRUE(
writableCredential->finishAddingEntries(&credentialData, &proofOfProvisioningSignature)
.isOk());
// Validate the proofOfProvisioning which was returned
optional<vector<uint8_t>> proofOfProvisioning =
support::coseSignGetPayload(proofOfProvisioningSignature);
ASSERT_TRUE(proofOfProvisioning);
cborPretty = support::cborPrettyPrint(proofOfProvisioning.value(), 32, {"readerCertificate"});
EXPECT_EQ(
"[\n"
" 'ProofOfProvisioning',\n"
" 'org.iso.18013-5.2019.mdl',\n"
" [\n"
" {\n"
" 'id' : 0,\n"
" 'readerCertificate' : <not printed>,\n"
" },\n"
" {\n"
" 'id' : 1,\n"
" },\n"
" ],\n"
" {\n"
" 'PersonalData' : [\n"
" {\n"
" 'name' : 'Last name',\n"
" 'value' : 'Turing',\n"
" 'accessControlProfiles' : [0, 1, ],\n"
" },\n"
" {\n"
" 'name' : 'Birth date',\n"
" 'value' : '19120623',\n"
" 'accessControlProfiles' : [0, 1, ],\n"
" },\n"
" {\n"
" 'name' : 'First name',\n"
" 'value' : 'Alan',\n"
" 'accessControlProfiles' : [0, 1, ],\n"
" },\n"
" {\n"
" 'name' : 'Home address',\n"
" 'value' : 'Maida Vale, London, England',\n"
" 'accessControlProfiles' : [0, ],\n"
" },\n"
" ],\n"
" 'Image' : [\n"
" {\n"
" 'name' : 'Portrait image',\n"
" 'value' : <bstr size=262134 sha1=941e372f654d86c32d88fae9e41b706afbfd02bb>,\n"
" 'accessControlProfiles' : [0, 1, ],\n"
" },\n"
" ],\n"
" },\n"
" true,\n"
"]",
cborPretty);
optional<vector<uint8_t>> credentialPubKey = support::certificateChainGetTopMostKey(
attData.attestationCertificate[0].encodedCertificate);
ASSERT_TRUE(credentialPubKey);
EXPECT_TRUE(support::coseCheckEcDsaSignature(proofOfProvisioningSignature,
{}, // Additional data
credentialPubKey.value()));
writableCredential = nullptr;
// Extract doctype, storage key, and credentialPrivKey from credentialData... this works
// only because we asked for a test-credential meaning that the HBK is all zeroes.
auto [exSuccess, exDocType, exStorageKey, exCredentialPrivKey] =
extractFromTestCredentialData(credentialData);
ASSERT_TRUE(exSuccess);
ASSERT_EQ(exDocType, "org.iso.18013-5.2019.mdl");
// ... check that the public key derived from the private key matches what was
// in the certificate.
optional<vector<uint8_t>> exCredentialKeyPair =
support::ecPrivateKeyToKeyPair(exCredentialPrivKey);
ASSERT_TRUE(exCredentialKeyPair);
optional<vector<uint8_t>> exCredentialPubKey =
support::ecKeyPairGetPublicKey(exCredentialKeyPair.value());
ASSERT_TRUE(exCredentialPubKey);
ASSERT_EQ(exCredentialPubKey.value(), credentialPubKey.value());
// Now that the credential has been provisioned, read it back and check the
// correct data is returned.
sp<IIdentityCredential> credential;
ASSERT_TRUE(credentialStore_
->getCredential(
CipherSuite::CIPHERSUITE_ECDHE_HKDF_ECDSA_WITH_AES_256_GCM_SHA256,
credentialData, &credential)
.isOk());
ASSERT_NE(credential, nullptr);
optional<vector<uint8_t>> readerEphemeralKeyPair = support::createEcKeyPair();
ASSERT_TRUE(readerEphemeralKeyPair);
optional<vector<uint8_t>> readerEphemeralPublicKey =
support::ecKeyPairGetPublicKey(readerEphemeralKeyPair.value());
ASSERT_TRUE(credential->setReaderEphemeralPublicKey(readerEphemeralPublicKey.value()).isOk());
vector<uint8_t> ephemeralKeyPair;
ASSERT_TRUE(credential->createEphemeralKeyPair(&ephemeralKeyPair).isOk());
optional<vector<uint8_t>> ephemeralPublicKey = support::ecKeyPairGetPublicKey(ephemeralKeyPair);
// Calculate requestData field and sign it with the reader key.
auto [getXYSuccess, ephX, ephY] = support::ecPublicKeyGetXandY(ephemeralPublicKey.value());
ASSERT_TRUE(getXYSuccess);
cppbor::Map deviceEngagement = cppbor::Map().add("ephX", ephX).add("ephY", ephY);
vector<uint8_t> deviceEngagementBytes = deviceEngagement.encode();
vector<uint8_t> eReaderPubBytes = cppbor::Tstr("ignored").encode();
cppbor::Array sessionTranscript = cppbor::Array()
.add(cppbor::Semantic(24, deviceEngagementBytes))
.add(cppbor::Semantic(24, eReaderPubBytes));
vector<uint8_t> sessionTranscriptEncoded = sessionTranscript.encode();
vector<uint8_t> itemsRequestBytes =
cppbor::Map("nameSpaces",
cppbor::Map()
.add("PersonalData", cppbor::Map()
.add("Last name", false)
.add("Birth date", false)
.add("First name", false)
.add("Home address", true))
.add("Image", cppbor::Map().add("Portrait image", false)))
.encode();
cborPretty = support::cborPrettyPrint(itemsRequestBytes, 32, {"EphemeralPublicKey"});
EXPECT_EQ(
"{\n"
" 'nameSpaces' : {\n"
" 'PersonalData' : {\n"
" 'Last name' : false,\n"
" 'Birth date' : false,\n"
" 'First name' : false,\n"
" 'Home address' : true,\n"
" },\n"
" 'Image' : {\n"
" 'Portrait image' : false,\n"
" },\n"
" },\n"
"}",
cborPretty);
vector<uint8_t> encodedReaderAuthentication =
cppbor::Array()
.add("ReaderAuthentication")
.add(sessionTranscript.clone())
.add(cppbor::Semantic(24, itemsRequestBytes))
.encode();
vector<uint8_t> encodedReaderAuthenticationBytes =
cppbor::Semantic(24, encodedReaderAuthentication).encode();
optional<vector<uint8_t>> readerSignature =
support::coseSignEcDsa(readerKey, {}, // content
encodedReaderAuthenticationBytes, // detached content
readerCertificate.value());
ASSERT_TRUE(readerSignature);
// Generate the key that will be used to sign AuthenticatedData.
vector<uint8_t> signingKeyBlob;
Certificate signingKeyCertificate;
ASSERT_TRUE(credential->generateSigningKeyPair(&signingKeyBlob, &signingKeyCertificate).isOk());
optional<vector<uint8_t>> signingPubKey =
support::certificateChainGetTopMostKey(signingKeyCertificate.encodedCertificate);
EXPECT_TRUE(signingPubKey);
// Since we're using a test-credential we know storageKey meaning we can get the
// private key. Do this, derive the public key from it, and check this matches what
// is in the certificate...
const vector<uint8_t> exDocTypeVec(exDocType.begin(), exDocType.end());
optional<vector<uint8_t>> exSigningPrivKey =
support::decryptAes128Gcm(exStorageKey, signingKeyBlob, exDocTypeVec);
ASSERT_TRUE(exSigningPrivKey);
optional<vector<uint8_t>> exSigningKeyPair =
support::ecPrivateKeyToKeyPair(exSigningPrivKey.value());
ASSERT_TRUE(exSigningKeyPair);
optional<vector<uint8_t>> exSigningPubKey =
support::ecKeyPairGetPublicKey(exSigningKeyPair.value());
ASSERT_TRUE(exSigningPubKey);
ASSERT_EQ(exSigningPubKey.value(), signingPubKey.value());
vector<RequestNamespace> requestedNamespaces = test_utils::buildRequestNamespaces(testEntries);
// OK to fail, not available in v1 HAL
credential->setRequestedNamespaces(requestedNamespaces).isOk();
// OK to fail, not available in v1 HAL
credential->setVerificationToken(verificationToken);
ASSERT_TRUE(credential
->startRetrieval(secureProfiles.value(), authToken, itemsRequestBytes,
signingKeyBlob, sessionTranscriptEncoded,
readerSignature.value(), testEntriesEntryCounts)
.isOk());
for (const auto& entry : testEntries) {
ASSERT_TRUE(credential
->startRetrieveEntryValue(entry.nameSpace, entry.name,
entry.valueCbor.size(), entry.profileIds)
.isOk());
auto it = encryptedBlobs.find(&entry);
ASSERT_NE(it, encryptedBlobs.end());
const vector<vector<uint8_t>>& encryptedChunks = it->second;
vector<uint8_t> content;
for (const auto& encryptedChunk : encryptedChunks) {
vector<uint8_t> chunk;
ASSERT_TRUE(credential->retrieveEntryValue(encryptedChunk, &chunk).isOk());
content.insert(content.end(), chunk.begin(), chunk.end());
}
EXPECT_EQ(content, entry.valueCbor);
// TODO: also use |exStorageKey| to decrypt data and check it's the same as whatt
// the HAL returns...
}
vector<uint8_t> mac;
vector<uint8_t> deviceNameSpacesBytes;
ASSERT_TRUE(credential->finishRetrieval(&mac, &deviceNameSpacesBytes).isOk());
cborPretty = support::cborPrettyPrint(deviceNameSpacesBytes, 32, {});
ASSERT_EQ(
"{\n"
" 'PersonalData' : {\n"
" 'Last name' : 'Turing',\n"
" 'Birth date' : '19120623',\n"
" 'First name' : 'Alan',\n"
" 'Home address' : 'Maida Vale, London, England',\n"
" },\n"
" 'Image' : {\n"
" 'Portrait image' : <bstr size=262134 "
"sha1=941e372f654d86c32d88fae9e41b706afbfd02bb>,\n"
" },\n"
"}",
cborPretty);
// The data that is MACed is ["DeviceAuthentication", sessionTranscript, docType,
// deviceNameSpacesBytes] so build up that structure
cppbor::Array deviceAuthentication;
deviceAuthentication.add("DeviceAuthentication");
deviceAuthentication.add(sessionTranscript.clone());
string docType = "org.iso.18013-5.2019.mdl";
deviceAuthentication.add(docType);
deviceAuthentication.add(cppbor::Semantic(24, deviceNameSpacesBytes));
vector<uint8_t> deviceAuthenticationBytes =
cppbor::Semantic(24, deviceAuthentication.encode()).encode();
// Derive the key used for MACing.
optional<vector<uint8_t>> readerEphemeralPrivateKey =
support::ecKeyPairGetPrivateKey(readerEphemeralKeyPair.value());
optional<vector<uint8_t>> sharedSecret =
support::ecdh(signingPubKey.value(), readerEphemeralPrivateKey.value());
ASSERT_TRUE(sharedSecret);
// Mix-in SessionTranscriptBytes
vector<uint8_t> sessionTranscriptBytes =
cppbor::Semantic(24, sessionTranscript.encode()).encode();
vector<uint8_t> sharedSecretWithSessionTranscriptBytes = sharedSecret.value();
std::copy(sessionTranscriptBytes.begin(), sessionTranscriptBytes.end(),
std::back_inserter(sharedSecretWithSessionTranscriptBytes));
vector<uint8_t> salt = {0x00};
vector<uint8_t> info = {};
optional<vector<uint8_t>> derivedKey =
support::hkdf(sharedSecretWithSessionTranscriptBytes, salt, info, 32);
ASSERT_TRUE(derivedKey);
optional<vector<uint8_t>> calculatedMac =
support::coseMac0(derivedKey.value(), {}, // payload
deviceAuthenticationBytes); // detached content
ASSERT_TRUE(calculatedMac);
EXPECT_EQ(mac, calculatedMac);
}
INSTANTIATE_TEST_SUITE_P(
Identity, IdentityAidl,
testing::ValuesIn(android::getAidlHalInstanceNames(IIdentityCredentialStore::descriptor)),
android::PrintInstanceNameToString);
// INSTANTIATE_TEST_SUITE_P(Identity, IdentityAidl,
// testing::Values("android.hardware.identity.IIdentityCredentialStore/default"));
} // namespace android::hardware::identity
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
::android::ProcessState::self()->setThreadPoolMaxThreadCount(1);
::android::ProcessState::self()->startThreadPool();
return RUN_ALL_TESTS();
}