mirror of
https://github.com/Evolution-X/hardware_interfaces
synced 2026-02-01 15:58:43 +00:00
This CL does additional NNAPI VTS test cleanup, including consolidating
duplicate functionality. Specifically, this CL:
* consolidates the createPreparedModel function, removing the duplicate
* consolidates the std::out ErrorStatus and DeviceStatus code into Utils
* changes non-null constant pointers to constant references
* removes redudant leading namespace specifiers (V1_0::, ::testing, etc.)
* makes the Valdiation tests free functions
* renames device to kDevice and mTestModel to kTestModel
Bug: N/A
Test: mma
Test: VtsHalNeuralnetworksV1_*TargetTest (with sample-all)
Change-Id: Ic401bb1f1760cc10384ac0d30c0c93409b63a9c7
Merged-In: Ic401bb1f1760cc10384ac0d30c0c93409b63a9c7
(cherry picked from commit e16af0a44b)
714 lines
30 KiB
C++
714 lines
30 KiB
C++
/*
|
|
* Copyright (C) 2018 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
|
|
|
#include "1.0/Utils.h"
|
|
#include "1.2/Callbacks.h"
|
|
#include "GeneratedTestHarness.h"
|
|
#include "VtsHalNeuralnetworks.h"
|
|
|
|
namespace android::hardware::neuralnetworks::V1_2::vts::functional {
|
|
|
|
using implementation::PreparedModelCallback;
|
|
using V1_0::ErrorStatus;
|
|
using V1_0::OperandLifeTime;
|
|
using V1_1::ExecutionPreference;
|
|
using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
|
|
|
|
///////////////////////// UTILITY FUNCTIONS /////////////////////////
|
|
|
|
static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
|
|
const Model& model) {
|
|
SCOPED_TRACE(message + " [getSupportedOperations_1_2]");
|
|
|
|
Return<void> ret = device->getSupportedOperations_1_2(
|
|
model, [&](ErrorStatus status, const hidl_vec<bool>&) {
|
|
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
|
|
});
|
|
EXPECT_TRUE(ret.isOk());
|
|
}
|
|
|
|
static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
|
|
const Model& model, ExecutionPreference preference) {
|
|
SCOPED_TRACE(message + " [prepareModel_1_2]");
|
|
|
|
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
|
|
Return<ErrorStatus> prepareLaunchStatus =
|
|
device->prepareModel_1_2(model, preference, hidl_vec<hidl_handle>(),
|
|
hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback);
|
|
ASSERT_TRUE(prepareLaunchStatus.isOk());
|
|
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
|
|
|
|
preparedModelCallback->wait();
|
|
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
|
|
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
|
|
sp<IPreparedModel> preparedModel = getPreparedModel_1_2(preparedModelCallback);
|
|
ASSERT_EQ(nullptr, preparedModel.get());
|
|
}
|
|
|
|
static bool validExecutionPreference(ExecutionPreference preference) {
|
|
return preference == ExecutionPreference::LOW_POWER ||
|
|
preference == ExecutionPreference::FAST_SINGLE_ANSWER ||
|
|
preference == ExecutionPreference::SUSTAINED_SPEED;
|
|
}
|
|
|
|
// Primary validation function. This function will take a valid model, apply a
|
|
// mutation to it to invalidate the model, then pass it to interface calls that
|
|
// use the model. Note that the model here is passed by value, and any mutation
|
|
// to the model does not leave this function.
|
|
static void validate(const sp<IDevice>& device, const std::string& message, Model model,
|
|
const std::function<void(Model*)>& mutation,
|
|
ExecutionPreference preference = ExecutionPreference::FAST_SINGLE_ANSWER) {
|
|
mutation(&model);
|
|
if (validExecutionPreference(preference)) {
|
|
validateGetSupportedOperations(device, message, model);
|
|
}
|
|
validatePrepareModel(device, message, model, preference);
|
|
}
|
|
|
|
static uint32_t addOperand(Model* model) {
|
|
return hidl_vec_push_back(&model->operands,
|
|
{
|
|
.type = OperandType::INT32,
|
|
.dimensions = {},
|
|
.numberOfConsumers = 0,
|
|
.scale = 0.0f,
|
|
.zeroPoint = 0,
|
|
.lifetime = OperandLifeTime::MODEL_INPUT,
|
|
.location = {.poolIndex = 0, .offset = 0, .length = 0},
|
|
});
|
|
}
|
|
|
|
static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
|
|
uint32_t index = addOperand(model);
|
|
model->operands[index].numberOfConsumers = 1;
|
|
model->operands[index].lifetime = lifetime;
|
|
return index;
|
|
}
|
|
|
|
///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
|
|
|
|
static const uint32_t invalidOperandTypes[] = {
|
|
static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MIN) - 1,
|
|
static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MAX) + 1,
|
|
static_cast<uint32_t>(OperandTypeRange::OEM_MIN) - 1,
|
|
static_cast<uint32_t>(OperandTypeRange::OEM_MAX) + 1,
|
|
};
|
|
|
|
static void mutateOperandTypeTest(const sp<IDevice>& device, const Model& model) {
|
|
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
|
for (uint32_t invalidOperandType : invalidOperandTypes) {
|
|
const std::string message = "mutateOperandTypeTest: operand " +
|
|
std::to_string(operand) + " set to value " +
|
|
std::to_string(invalidOperandType);
|
|
validate(device, message, model, [operand, invalidOperandType](Model* model) {
|
|
model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////// VALIDATE OPERAND RANK /////////////////////////
|
|
|
|
static uint32_t getInvalidRank(OperandType type) {
|
|
switch (type) {
|
|
case OperandType::FLOAT16:
|
|
case OperandType::FLOAT32:
|
|
case OperandType::INT32:
|
|
case OperandType::UINT32:
|
|
case OperandType::BOOL:
|
|
return 1;
|
|
case OperandType::TENSOR_BOOL8:
|
|
case OperandType::TENSOR_FLOAT16:
|
|
case OperandType::TENSOR_FLOAT32:
|
|
case OperandType::TENSOR_INT32:
|
|
case OperandType::TENSOR_QUANT8_ASYMM:
|
|
case OperandType::TENSOR_QUANT8_SYMM:
|
|
case OperandType::TENSOR_QUANT16_ASYMM:
|
|
case OperandType::TENSOR_QUANT16_SYMM:
|
|
case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
|
|
return 0;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void mutateOperandRankTest(const sp<IDevice>& device, const Model& model) {
|
|
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
|
const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
|
|
if (invalidRank == 0) {
|
|
continue;
|
|
}
|
|
const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
|
|
" has rank of " + std::to_string(invalidRank);
|
|
validate(device, message, model, [operand, invalidRank](Model* model) {
|
|
model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
|
|
});
|
|
}
|
|
}
|
|
|
|
///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
|
|
|
|
static float getInvalidScale(OperandType type) {
|
|
switch (type) {
|
|
case OperandType::FLOAT16:
|
|
case OperandType::FLOAT32:
|
|
case OperandType::INT32:
|
|
case OperandType::UINT32:
|
|
case OperandType::BOOL:
|
|
case OperandType::TENSOR_BOOL8:
|
|
case OperandType::TENSOR_FLOAT16:
|
|
case OperandType::TENSOR_FLOAT32:
|
|
case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
|
|
return 1.0f;
|
|
case OperandType::TENSOR_INT32:
|
|
return -1.0f;
|
|
case OperandType::TENSOR_QUANT8_SYMM:
|
|
case OperandType::TENSOR_QUANT8_ASYMM:
|
|
case OperandType::TENSOR_QUANT16_ASYMM:
|
|
case OperandType::TENSOR_QUANT16_SYMM:
|
|
return 0.0f;
|
|
default:
|
|
return 0.0f;
|
|
}
|
|
}
|
|
|
|
static void mutateOperandScaleTest(const sp<IDevice>& device, const Model& model) {
|
|
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
|
const float invalidScale = getInvalidScale(model.operands[operand].type);
|
|
const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
|
|
" has scale of " + std::to_string(invalidScale);
|
|
validate(device, message, model, [operand, invalidScale](Model* model) {
|
|
model->operands[operand].scale = invalidScale;
|
|
});
|
|
}
|
|
}
|
|
|
|
///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
|
|
|
|
static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
|
|
switch (type) {
|
|
case OperandType::FLOAT16:
|
|
case OperandType::FLOAT32:
|
|
case OperandType::INT32:
|
|
case OperandType::UINT32:
|
|
case OperandType::BOOL:
|
|
case OperandType::TENSOR_BOOL8:
|
|
case OperandType::TENSOR_FLOAT16:
|
|
case OperandType::TENSOR_FLOAT32:
|
|
case OperandType::TENSOR_INT32:
|
|
case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
|
|
return {1};
|
|
case OperandType::TENSOR_QUANT8_ASYMM:
|
|
return {-1, 256};
|
|
case OperandType::TENSOR_QUANT8_SYMM:
|
|
return {-129, -1, 1, 128};
|
|
case OperandType::TENSOR_QUANT16_ASYMM:
|
|
return {-1, 65536};
|
|
case OperandType::TENSOR_QUANT16_SYMM:
|
|
return {-32769, -1, 1, 32768};
|
|
default:
|
|
return {};
|
|
}
|
|
}
|
|
|
|
static void mutateOperandZeroPointTest(const sp<IDevice>& device, const Model& model) {
|
|
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
|
const std::vector<int32_t> invalidZeroPoints =
|
|
getInvalidZeroPoints(model.operands[operand].type);
|
|
for (int32_t invalidZeroPoint : invalidZeroPoints) {
|
|
const std::string message = "mutateOperandZeroPointTest: operand " +
|
|
std::to_string(operand) + " has zero point of " +
|
|
std::to_string(invalidZeroPoint);
|
|
validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
|
|
model->operands[operand].zeroPoint = invalidZeroPoint;
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////// VALIDATE EXTRA ??? /////////////////////////
|
|
|
|
// TODO: Operand::lifetime
|
|
// TODO: Operand::location
|
|
|
|
///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
|
|
|
|
static void mutateOperand(Operand* operand, OperandType type) {
|
|
Operand newOperand = *operand;
|
|
newOperand.type = type;
|
|
switch (type) {
|
|
case OperandType::FLOAT16:
|
|
case OperandType::FLOAT32:
|
|
case OperandType::INT32:
|
|
case OperandType::UINT32:
|
|
case OperandType::BOOL:
|
|
newOperand.dimensions = hidl_vec<uint32_t>();
|
|
newOperand.scale = 0.0f;
|
|
newOperand.zeroPoint = 0;
|
|
break;
|
|
case OperandType::TENSOR_BOOL8:
|
|
case OperandType::TENSOR_FLOAT16:
|
|
case OperandType::TENSOR_FLOAT32:
|
|
newOperand.dimensions =
|
|
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
|
|
newOperand.scale = 0.0f;
|
|
newOperand.zeroPoint = 0;
|
|
break;
|
|
case OperandType::TENSOR_INT32:
|
|
newOperand.dimensions =
|
|
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
|
|
newOperand.zeroPoint = 0;
|
|
break;
|
|
case OperandType::TENSOR_QUANT8_ASYMM:
|
|
case OperandType::TENSOR_QUANT8_SYMM:
|
|
case OperandType::TENSOR_QUANT16_ASYMM:
|
|
case OperandType::TENSOR_QUANT16_SYMM:
|
|
newOperand.dimensions =
|
|
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
|
|
newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
|
|
break;
|
|
case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: {
|
|
newOperand.dimensions =
|
|
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
|
|
newOperand.scale = 0.0f;
|
|
newOperand.zeroPoint = 0;
|
|
|
|
SymmPerChannelQuantParams channelQuant;
|
|
channelQuant.channelDim = 0;
|
|
channelQuant.scales = hidl_vec<float>(
|
|
operand->dimensions.size() > 0 ? static_cast<size_t>(operand->dimensions[0])
|
|
: 0);
|
|
for (size_t i = 0; i < channelQuant.scales.size(); ++i) {
|
|
channelQuant.scales[i] = 1.0f;
|
|
}
|
|
newOperand.extraParams.channelQuant(std::move(channelQuant));
|
|
} break;
|
|
case OperandType::OEM:
|
|
case OperandType::TENSOR_OEM_BYTE:
|
|
default:
|
|
break;
|
|
}
|
|
*operand = newOperand;
|
|
}
|
|
|
|
static bool mutateOperationOperandTypeSkip(size_t operand, OperandType type, const Model& model) {
|
|
// Do not test OEM types
|
|
if (type == model.operands[operand].type || type == OperandType::OEM ||
|
|
type == OperandType::TENSOR_OEM_BYTE) {
|
|
return true;
|
|
}
|
|
for (const Operation& operation : model.operations) {
|
|
// Skip mutateOperationOperandTypeTest for the following operations.
|
|
// - LSH_PROJECTION's second argument is allowed to have any type.
|
|
// - ARGMIN and ARGMAX's first argument can be any of
|
|
// TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
|
|
// - CAST's argument can be any of TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
|
|
// - RANDOM_MULTINOMIAL's argument can be either TENSOR_FLOAT16 or TENSOR_FLOAT32.
|
|
// - DEQUANTIZE input can be any of
|
|
// TENSOR_(QUANT8_ASYMM|QUANT8_SYMM|QUANT8_SYMM_PER_CHANNEL), output can
|
|
// be of either TENSOR_FLOAT16 or TENSOR_FLOAT32.
|
|
// - QUANTIZE input can be either TENSOR_FLOAT16 or TENSOR_FLOAT32
|
|
// - CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
|
|
// - DEPTHWISE_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
|
|
// - GROUPED_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
|
|
// - TRANSPOSE_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
|
|
switch (operation.type) {
|
|
case OperationType::LSH_PROJECTION: {
|
|
if (operand == operation.inputs[1]) {
|
|
return true;
|
|
}
|
|
} break;
|
|
case OperationType::CAST:
|
|
case OperationType::ARGMAX:
|
|
case OperationType::ARGMIN: {
|
|
if (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32 ||
|
|
type == OperandType::TENSOR_INT32 || type == OperandType::TENSOR_QUANT8_ASYMM) {
|
|
return true;
|
|
}
|
|
} break;
|
|
case OperationType::QUANTIZE:
|
|
case OperationType::RANDOM_MULTINOMIAL: {
|
|
if (operand == operation.inputs[0] &&
|
|
(type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32)) {
|
|
return true;
|
|
}
|
|
} break;
|
|
case OperationType::DEQUANTIZE: {
|
|
if (operand == operation.inputs[0] &&
|
|
(type == OperandType::TENSOR_QUANT8_ASYMM ||
|
|
type == OperandType::TENSOR_QUANT8_SYMM ||
|
|
type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)) {
|
|
return true;
|
|
}
|
|
if (operand == operation.outputs[0] &&
|
|
(type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32)) {
|
|
return true;
|
|
}
|
|
} break;
|
|
case OperationType::TRANSPOSE_CONV_2D:
|
|
case OperationType::GROUPED_CONV_2D:
|
|
case OperationType::DEPTHWISE_CONV_2D:
|
|
case OperationType::CONV_2D: {
|
|
if (operand == operation.inputs[1] &&
|
|
(type == OperandType::TENSOR_QUANT8_ASYMM ||
|
|
type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)) {
|
|
return true;
|
|
}
|
|
} break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const Model& model) {
|
|
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
|
for (OperandType invalidOperandType : hidl_enum_range<OperandType>{}) {
|
|
if (mutateOperationOperandTypeSkip(operand, invalidOperandType, model)) {
|
|
continue;
|
|
}
|
|
const std::string message = "mutateOperationOperandTypeTest: operand " +
|
|
std::to_string(operand) + " set to type " +
|
|
toString(invalidOperandType);
|
|
validate(device, message, model, [operand, invalidOperandType](Model* model) {
|
|
mutateOperand(&model->operands[operand], invalidOperandType);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
|
|
|
|
static const uint32_t invalidOperationTypes[] = {
|
|
static_cast<uint32_t>(OperationTypeRange::FUNDAMENTAL_MAX) + 1,
|
|
static_cast<uint32_t>(OperationTypeRange::OEM_MIN) - 1,
|
|
static_cast<uint32_t>(OperationTypeRange::OEM_MAX) + 1,
|
|
};
|
|
|
|
static void mutateOperationTypeTest(const sp<IDevice>& device, const Model& model) {
|
|
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
|
for (uint32_t invalidOperationType : invalidOperationTypes) {
|
|
const std::string message = "mutateOperationTypeTest: operation " +
|
|
std::to_string(operation) + " set to value " +
|
|
std::to_string(invalidOperationType);
|
|
validate(device, message, model, [operation, invalidOperationType](Model* model) {
|
|
model->operations[operation].type =
|
|
static_cast<OperationType>(invalidOperationType);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
|
|
|
|
static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
|
|
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
|
const uint32_t invalidOperand = model.operands.size();
|
|
for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
|
|
const std::string message = "mutateOperationInputOperandIndexTest: operation " +
|
|
std::to_string(operation) + " input " +
|
|
std::to_string(input);
|
|
validate(device, message, model, [operation, input, invalidOperand](Model* model) {
|
|
model->operations[operation].inputs[input] = invalidOperand;
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
|
|
|
|
static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
|
|
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
|
const uint32_t invalidOperand = model.operands.size();
|
|
for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
|
|
const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
|
|
std::to_string(operation) + " output " +
|
|
std::to_string(output);
|
|
validate(device, message, model, [operation, output, invalidOperand](Model* model) {
|
|
model->operations[operation].outputs[output] = invalidOperand;
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
|
|
|
|
static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
|
|
if (vec) {
|
|
// remove elements matching "value"
|
|
auto last = std::remove(vec->begin(), vec->end(), value);
|
|
vec->resize(std::distance(vec->begin(), last));
|
|
|
|
// decrement elements exceeding "value"
|
|
std::transform(vec->begin(), vec->end(), vec->begin(),
|
|
[value](uint32_t v) { return v > value ? v-- : v; });
|
|
}
|
|
}
|
|
|
|
static void removeOperand(Model* model, uint32_t index) {
|
|
hidl_vec_removeAt(&model->operands, index);
|
|
for (Operation& operation : model->operations) {
|
|
removeValueAndDecrementGreaterValues(&operation.inputs, index);
|
|
removeValueAndDecrementGreaterValues(&operation.outputs, index);
|
|
}
|
|
removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
|
|
removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
|
|
}
|
|
|
|
static bool removeOperandSkip(size_t operand, const Model& model) {
|
|
for (const Operation& operation : model.operations) {
|
|
// Skip removeOperandTest for the following operations.
|
|
// - SPLIT's outputs are not checked during prepareModel.
|
|
if (operation.type == OperationType::SPLIT) {
|
|
for (const size_t outOprand : operation.outputs) {
|
|
if (operand == outOprand) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
// BIDIRECTIONAL_SEQUENCE_LSTM and BIDIRECTIONAL_SEQUENCE_RNN can have
|
|
// either one or two outputs depending on their mergeOutputs parameter.
|
|
if (operation.type == OperationType::BIDIRECTIONAL_SEQUENCE_LSTM ||
|
|
operation.type == OperationType::BIDIRECTIONAL_SEQUENCE_RNN) {
|
|
for (const size_t outOprand : operation.outputs) {
|
|
if (operand == outOprand) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void removeOperandTest(const sp<IDevice>& device, const Model& model) {
|
|
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
|
if (removeOperandSkip(operand, model)) {
|
|
continue;
|
|
}
|
|
const std::string message = "removeOperandTest: operand " + std::to_string(operand);
|
|
validate(device, message, model,
|
|
[operand](Model* model) { removeOperand(model, operand); });
|
|
}
|
|
}
|
|
|
|
///////////////////////// REMOVE OPERATION /////////////////////////
|
|
|
|
static void removeOperation(Model* model, uint32_t index) {
|
|
for (uint32_t operand : model->operations[index].inputs) {
|
|
model->operands[operand].numberOfConsumers--;
|
|
}
|
|
hidl_vec_removeAt(&model->operations, index);
|
|
}
|
|
|
|
static void removeOperationTest(const sp<IDevice>& device, const Model& model) {
|
|
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
|
const std::string message = "removeOperationTest: operation " + std::to_string(operation);
|
|
validate(device, message, model,
|
|
[operation](Model* model) { removeOperation(model, operation); });
|
|
}
|
|
}
|
|
|
|
///////////////////////// REMOVE OPERATION INPUT /////////////////////////
|
|
|
|
static bool removeOperationInputSkip(const Operation& op, size_t input) {
|
|
// Skip removeOperationInputTest for the following operations.
|
|
// - CONCATENATION has at least 2 inputs, with the last element being INT32.
|
|
// - CONV_2D, DEPTHWISE_CONV_2D, MAX_POOL_2D, AVERAGE_POOL_2D, L2_POOL_2D, RESIZE_BILINEAR,
|
|
// SPACE_TO_DEPTH, SPACE_TO_DEPTH, SPACE_TO_BATCH_ND, BATCH_TO_SPACE_ND can have an optional
|
|
// layout parameter.
|
|
// - L2_NORMALIZATION, LOCAL_RESPONSE_NORMALIZATION, SOFTMAX can have an optional axis
|
|
// parameter.
|
|
switch (op.type) {
|
|
case OperationType::CONCATENATION: {
|
|
if (op.inputs.size() > 2 && input != op.inputs.size() - 1) {
|
|
return true;
|
|
}
|
|
} break;
|
|
case OperationType::DEPTHWISE_CONV_2D: {
|
|
if ((op.inputs.size() == 12 && input == 11) || (op.inputs.size() == 9 && input == 8)) {
|
|
return true;
|
|
}
|
|
} break;
|
|
case OperationType::CONV_2D:
|
|
case OperationType::AVERAGE_POOL_2D:
|
|
case OperationType::MAX_POOL_2D:
|
|
case OperationType::L2_POOL_2D: {
|
|
if ((op.inputs.size() == 11 && input == 10) || (op.inputs.size() == 8 && input == 7)) {
|
|
return true;
|
|
}
|
|
} break;
|
|
case OperationType::RESIZE_BILINEAR: {
|
|
if (op.inputs.size() == 4 && input == 3) {
|
|
return true;
|
|
}
|
|
} break;
|
|
case OperationType::SPACE_TO_DEPTH:
|
|
case OperationType::DEPTH_TO_SPACE:
|
|
case OperationType::BATCH_TO_SPACE_ND: {
|
|
if (op.inputs.size() == 3 && input == 2) {
|
|
return true;
|
|
}
|
|
} break;
|
|
case OperationType::SPACE_TO_BATCH_ND: {
|
|
if (op.inputs.size() == 4 && input == 3) {
|
|
return true;
|
|
}
|
|
} break;
|
|
case OperationType::L2_NORMALIZATION: {
|
|
if (op.inputs.size() == 2 && input == 1) {
|
|
return true;
|
|
}
|
|
} break;
|
|
case OperationType::LOCAL_RESPONSE_NORMALIZATION: {
|
|
if (op.inputs.size() == 6 && input == 5) {
|
|
return true;
|
|
}
|
|
} break;
|
|
case OperationType::SOFTMAX: {
|
|
if (op.inputs.size() == 3 && input == 2) {
|
|
return true;
|
|
}
|
|
} break;
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void removeOperationInputTest(const sp<IDevice>& device, const Model& model) {
|
|
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
|
for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
|
|
const Operation& op = model.operations[operation];
|
|
if (removeOperationInputSkip(op, input)) {
|
|
continue;
|
|
}
|
|
const std::string message = "removeOperationInputTest: operation " +
|
|
std::to_string(operation) + ", input " +
|
|
std::to_string(input);
|
|
validate(device, message, model, [operation, input](Model* model) {
|
|
uint32_t operand = model->operations[operation].inputs[input];
|
|
model->operands[operand].numberOfConsumers--;
|
|
hidl_vec_removeAt(&model->operations[operation].inputs, input);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
|
|
|
|
static void removeOperationOutputTest(const sp<IDevice>& device, const Model& model) {
|
|
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
|
for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
|
|
const std::string message = "removeOperationOutputTest: operation " +
|
|
std::to_string(operation) + ", output " +
|
|
std::to_string(output);
|
|
validate(device, message, model, [operation, output](Model* model) {
|
|
hidl_vec_removeAt(&model->operations[operation].outputs, output);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////// MODEL VALIDATION /////////////////////////
|
|
|
|
// TODO: remove model input
|
|
// TODO: remove model output
|
|
// TODO: add unused operation
|
|
|
|
///////////////////////// ADD OPERATION INPUT /////////////////////////
|
|
|
|
static bool addOperationInputSkip(const Operation& op) {
|
|
// Skip addOperationInputTest for the following operations.
|
|
// - L2_NORMALIZATION, LOCAL_RESPONSE_NORMALIZATION, SOFTMAX can have an optional INT32 axis
|
|
// parameter.
|
|
if ((op.type == OperationType::L2_NORMALIZATION && op.inputs.size() == 1) ||
|
|
(op.type == OperationType::LOCAL_RESPONSE_NORMALIZATION && op.inputs.size() == 5) ||
|
|
(op.type == OperationType::SOFTMAX && op.inputs.size() == 2)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void addOperationInputTest(const sp<IDevice>& device, const Model& model) {
|
|
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
|
if (addOperationInputSkip(model.operations[operation])) {
|
|
continue;
|
|
}
|
|
const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
|
|
validate(device, message, model, [operation](Model* model) {
|
|
uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
|
|
hidl_vec_push_back(&model->operations[operation].inputs, index);
|
|
hidl_vec_push_back(&model->inputIndexes, index);
|
|
});
|
|
}
|
|
}
|
|
|
|
///////////////////////// ADD OPERATION OUTPUT /////////////////////////
|
|
|
|
static void addOperationOutputTest(const sp<IDevice>& device, const Model& model) {
|
|
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
|
const std::string message =
|
|
"addOperationOutputTest: operation " + std::to_string(operation);
|
|
validate(device, message, model, [operation](Model* model) {
|
|
uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
|
|
hidl_vec_push_back(&model->operations[operation].outputs, index);
|
|
hidl_vec_push_back(&model->outputIndexes, index);
|
|
});
|
|
}
|
|
}
|
|
|
|
///////////////////////// VALIDATE EXECUTION PREFERENCE /////////////////////////
|
|
|
|
static const int32_t invalidExecutionPreferences[] = {
|
|
static_cast<int32_t>(ExecutionPreference::LOW_POWER) - 1, // lower bound
|
|
static_cast<int32_t>(ExecutionPreference::SUSTAINED_SPEED) + 1, // upper bound
|
|
};
|
|
|
|
static void mutateExecutionPreferenceTest(const sp<IDevice>& device, const Model& model) {
|
|
for (int32_t preference : invalidExecutionPreferences) {
|
|
const std::string message =
|
|
"mutateExecutionPreferenceTest: preference " + std::to_string(preference);
|
|
validate(
|
|
device, message, model, [](Model*) {},
|
|
static_cast<ExecutionPreference>(preference));
|
|
}
|
|
}
|
|
|
|
////////////////////////// ENTRY POINT //////////////////////////////
|
|
|
|
void validateModel(const sp<IDevice>& device, const Model& model) {
|
|
mutateOperandTypeTest(device, model);
|
|
mutateOperandRankTest(device, model);
|
|
mutateOperandScaleTest(device, model);
|
|
mutateOperandZeroPointTest(device, model);
|
|
mutateOperationOperandTypeTest(device, model);
|
|
mutateOperationTypeTest(device, model);
|
|
mutateOperationInputOperandIndexTest(device, model);
|
|
mutateOperationOutputOperandIndexTest(device, model);
|
|
removeOperandTest(device, model);
|
|
removeOperationTest(device, model);
|
|
removeOperationInputTest(device, model);
|
|
removeOperationOutputTest(device, model);
|
|
addOperationInputTest(device, model);
|
|
addOperationOutputTest(device, model);
|
|
mutateExecutionPreferenceTest(device, model);
|
|
}
|
|
|
|
} // namespace android::hardware::neuralnetworks::V1_2::vts::functional
|