Files
hardware_interfaces/power/stats/aidl/vts/VtsHalPowerStatsTargetTest.cpp
Darren Hsu e05cbc6325 Exclude timed power entities due to timeout mechanism
The AoC power stats reporting might not be present when the
AoC latency exceeds the allowed time after the timeout mechanism
introduced in AoC state residency data provider.

Bug: 229696611
Test: run vts -m VtsHalPowerStatsTargetTest
Change-Id: I7c59ab50065961ed338314d6c8d22d41ece43e5f
Signed-off-by: Darren Hsu <darrenhsu@google.com>
2022-04-21 03:51:18 +00:00

475 lines
16 KiB
C++

/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <aidl/Gtest.h>
#include <aidl/Vintf.h>
#include <aidl/android/hardware/power/stats/IPowerStats.h>
#include <android-base/properties.h>
#include <android/binder_manager.h>
#include <android/binder_process.h>
#include <algorithm>
#include <iterator>
#include <random>
#include <unordered_map>
using aidl::android::hardware::power::stats::Channel;
using aidl::android::hardware::power::stats::EnergyConsumer;
using aidl::android::hardware::power::stats::EnergyConsumerAttribution;
using aidl::android::hardware::power::stats::EnergyConsumerResult;
using aidl::android::hardware::power::stats::EnergyConsumerType;
using aidl::android::hardware::power::stats::EnergyMeasurement;
using aidl::android::hardware::power::stats::IPowerStats;
using aidl::android::hardware::power::stats::PowerEntity;
using aidl::android::hardware::power::stats::State;
using aidl::android::hardware::power::stats::StateResidency;
using aidl::android::hardware::power::stats::StateResidencyResult;
using ndk::SpAIBinder;
#define ASSERT_OK(a) \
do { \
auto ret = a; \
ASSERT_TRUE(ret.isOk()) << ret.getDescription(); \
} while (0)
class PowerStatsAidl : public testing::TestWithParam<std::string> {
public:
virtual void SetUp() override {
powerstats = IPowerStats::fromBinder(
SpAIBinder(AServiceManager_waitForService(GetParam().c_str())));
ASSERT_NE(nullptr, powerstats.get());
}
template <typename T>
std::vector<T> getRandomSubset(std::vector<T> const& collection);
void testNameValid(const std::string& name);
template <typename T, typename S>
void testUnique(std::vector<T> const& collection, S T::*field);
template <typename T, typename S, typename R>
void testMatching(std::vector<T> const& c1, R T::*f1, std::vector<S> const& c2, R S::*f2);
bool containsTimedEntity(const std::string& str);
void excludeTimedEntities(std::vector<PowerEntity>* entities,
std::vector<StateResidencyResult>* results);
std::shared_ptr<IPowerStats> powerstats;
};
// Returns a random subset from a collection
template <typename T>
std::vector<T> PowerStatsAidl::getRandomSubset(std::vector<T> const& collection) {
if (collection.empty()) {
return {};
}
std::vector<T> selected;
std::sample(collection.begin(), collection.end(), std::back_inserter(selected),
rand() % collection.size() + 1, std::mt19937{std::random_device{}()});
return selected;
}
// Tests whether a name is valid
void PowerStatsAidl::testNameValid(const std::string& name) {
EXPECT_NE(name, "");
}
// Tests whether the fields in a given collection are unique
template <typename T, typename S>
void PowerStatsAidl::testUnique(std::vector<T> const& collection, S T::*field) {
std::set<S> cSet;
for (auto const& elem : collection) {
EXPECT_TRUE(cSet.insert(elem.*field).second);
}
}
template <typename T, typename S, typename R>
void PowerStatsAidl::testMatching(std::vector<T> const& c1, R T::*f1, std::vector<S> const& c2,
R S::*f2) {
std::set<R> c1fields, c2fields;
for (auto elem : c1) {
c1fields.insert(elem.*f1);
}
for (auto elem : c2) {
c2fields.insert(elem.*f2);
}
EXPECT_EQ(c1fields, c2fields);
}
bool PowerStatsAidl::containsTimedEntity(const std::string& str) {
// TODO(b/229698505): Extend PowerEntityInfo to identify timed power entity
return str.find("AoC") != std::string::npos;
}
void PowerStatsAidl::excludeTimedEntities(std::vector<PowerEntity>* entities,
std::vector<StateResidencyResult>* results) {
for (auto it = entities->begin(); it != entities->end(); it++) {
if (containsTimedEntity((*it).name)) {
auto entityId = (*it).id;
entities->erase(it--);
// Erase result element matching the entity ID
for (auto resultsIt = results->begin(); resultsIt != results->end(); resultsIt++) {
if ((*resultsIt).id == entityId) {
results->erase(resultsIt--);
break;
}
}
}
}
}
// Each PowerEntity must have a valid name
TEST_P(PowerStatsAidl, ValidatePowerEntityNames) {
std::vector<PowerEntity> infos;
ASSERT_OK(powerstats->getPowerEntityInfo(&infos));
for (auto info : infos) {
testNameValid(info.name);
}
}
// Each power entity must have a unique name
TEST_P(PowerStatsAidl, ValidatePowerEntityUniqueNames) {
std::vector<PowerEntity> entities;
ASSERT_OK(powerstats->getPowerEntityInfo(&entities));
testUnique(entities, &PowerEntity::name);
}
// Each PowerEntity must have a unique ID
TEST_P(PowerStatsAidl, ValidatePowerEntityIds) {
std::vector<PowerEntity> entities;
ASSERT_OK(powerstats->getPowerEntityInfo(&entities));
testUnique(entities, &PowerEntity::id);
}
// Each power entity must have at least one state
TEST_P(PowerStatsAidl, ValidateStateSize) {
std::vector<PowerEntity> entities;
ASSERT_OK(powerstats->getPowerEntityInfo(&entities));
for (auto entity : entities) {
EXPECT_GT(entity.states.size(), 0);
}
}
// Each state must have a valid name
TEST_P(PowerStatsAidl, ValidateStateNames) {
std::vector<PowerEntity> entities;
ASSERT_OK(powerstats->getPowerEntityInfo(&entities));
for (auto entity : entities) {
for (auto state : entity.states) {
testNameValid(state.name);
}
}
}
// Each state must have a name that is unique to the given PowerEntity
TEST_P(PowerStatsAidl, ValidateStateUniqueNames) {
std::vector<PowerEntity> entities;
ASSERT_OK(powerstats->getPowerEntityInfo(&entities));
for (auto entity : entities) {
testUnique(entity.states, &State::name);
}
}
// Each state must have an ID that is unique to the given PowerEntity
TEST_P(PowerStatsAidl, ValidateStateUniqueIds) {
std::vector<PowerEntity> entities;
ASSERT_OK(powerstats->getPowerEntityInfo(&entities));
for (auto entity : entities) {
testUnique(entity.states, &State::id);
}
}
// State residency must return a valid status
TEST_P(PowerStatsAidl, TestGetStateResidency) {
std::vector<StateResidencyResult> results;
ASSERT_OK(powerstats->getStateResidency({}, &results));
}
// State residency must return all results except timed power entities
TEST_P(PowerStatsAidl, TestGetStateResidencyAllResultsExceptTimedEntities) {
std::vector<PowerEntity> entities;
ASSERT_OK(powerstats->getPowerEntityInfo(&entities));
std::vector<StateResidencyResult> results;
ASSERT_OK(powerstats->getStateResidency({}, &results));
excludeTimedEntities(&entities, &results);
testMatching(entities, &PowerEntity::id, results, &StateResidencyResult::id);
}
// Each result must contain all state residencies except timed power entities
TEST_P(PowerStatsAidl, TestGetStateResidencyAllStateResidenciesExceptTimedEntities) {
std::vector<PowerEntity> entities;
ASSERT_OK(powerstats->getPowerEntityInfo(&entities));
std::vector<StateResidencyResult> results;
ASSERT_OK(powerstats->getStateResidency({}, &results));
for (auto entity : entities) {
if (!containsTimedEntity(entity.name)) {
auto it = std::find_if(results.begin(), results.end(),
[&entity](const auto& x) { return x.id == entity.id; });
ASSERT_NE(it, results.end());
testMatching(entity.states, &State::id, it->stateResidencyData, &StateResidency::id);
}
}
}
// State residency must return results for each requested power entity except timed power entities
TEST_P(PowerStatsAidl, TestGetStateResidencySelectedResultsExceptTimedEntities) {
std::vector<PowerEntity> entities;
ASSERT_OK(powerstats->getPowerEntityInfo(&entities));
if (entities.empty()) {
return;
}
std::vector<PowerEntity> selectedEntities = getRandomSubset(entities);
std::vector<int32_t> selectedIds;
for (auto it = selectedEntities.begin(); it != selectedEntities.end(); it++) {
if (!containsTimedEntity((*it).name)) {
selectedIds.push_back((*it).id);
} else {
selectedEntities.erase(it--);
}
}
std::vector<StateResidencyResult> selectedResults;
ASSERT_OK(powerstats->getStateResidency(selectedIds, &selectedResults));
testMatching(selectedEntities, &PowerEntity::id, selectedResults, &StateResidencyResult::id);
}
// Energy meter info must return a valid status
TEST_P(PowerStatsAidl, TestGetEnergyMeterInfo) {
std::vector<Channel> info;
ASSERT_OK(powerstats->getEnergyMeterInfo(&info));
}
// Each channel must have a valid name
TEST_P(PowerStatsAidl, ValidateChannelNames) {
std::vector<Channel> channels;
ASSERT_OK(powerstats->getEnergyMeterInfo(&channels));
for (auto channel : channels) {
testNameValid(channel.name);
}
}
// Each channel must have a valid subsystem
TEST_P(PowerStatsAidl, ValidateSubsystemNames) {
std::vector<Channel> channels;
ASSERT_OK(powerstats->getEnergyMeterInfo(&channels));
for (auto channel : channels) {
testNameValid(channel.subsystem);
}
}
// Each channel must have a unique name
TEST_P(PowerStatsAidl, ValidateChannelUniqueNames) {
std::vector<Channel> channels;
ASSERT_OK(powerstats->getEnergyMeterInfo(&channels));
testUnique(channels, &Channel::name);
}
// Each channel must have a unique ID
TEST_P(PowerStatsAidl, ValidateChannelUniqueIds) {
std::vector<Channel> channels;
ASSERT_OK(powerstats->getEnergyMeterInfo(&channels));
testUnique(channels, &Channel::id);
}
// Reading energy meter must return a valid status
TEST_P(PowerStatsAidl, TestReadEnergyMeter) {
std::vector<EnergyMeasurement> data;
ASSERT_OK(powerstats->readEnergyMeter({}, &data));
}
// Reading energy meter must return results for all available channels
TEST_P(PowerStatsAidl, TestGetAllEnergyMeasurements) {
std::vector<Channel> channels;
ASSERT_OK(powerstats->getEnergyMeterInfo(&channels));
std::vector<EnergyMeasurement> measurements;
ASSERT_OK(powerstats->readEnergyMeter({}, &measurements));
testMatching(channels, &Channel::id, measurements, &EnergyMeasurement::id);
}
// Reading energy must must return results for each selected channel
TEST_P(PowerStatsAidl, TestGetSelectedEnergyMeasurements) {
std::vector<Channel> channels;
ASSERT_OK(powerstats->getEnergyMeterInfo(&channels));
if (channels.empty()) {
return;
}
std::vector<Channel> selectedChannels = getRandomSubset(channels);
std::vector<int32_t> selectedIds;
for (auto const& channel : selectedChannels) {
selectedIds.push_back(channel.id);
}
std::vector<EnergyMeasurement> selectedMeasurements;
ASSERT_OK(powerstats->readEnergyMeter(selectedIds, &selectedMeasurements));
testMatching(selectedChannels, &Channel::id, selectedMeasurements, &EnergyMeasurement::id);
}
// Energy consumer info must return a valid status
TEST_P(PowerStatsAidl, TestGetEnergyConsumerInfo) {
std::vector<EnergyConsumer> consumers;
ASSERT_OK(powerstats->getEnergyConsumerInfo(&consumers));
}
// Each energy consumer must have a unique id
TEST_P(PowerStatsAidl, TestGetEnergyConsumerUniqueId) {
std::vector<EnergyConsumer> consumers;
ASSERT_OK(powerstats->getEnergyConsumerInfo(&consumers));
testUnique(consumers, &EnergyConsumer::id);
}
// Each energy consumer must have a valid name
TEST_P(PowerStatsAidl, ValidateEnergyConsumerNames) {
std::vector<EnergyConsumer> consumers;
ASSERT_OK(powerstats->getEnergyConsumerInfo(&consumers));
for (auto consumer : consumers) {
testNameValid(consumer.name);
}
}
// Each energy consumer must have a unique name
TEST_P(PowerStatsAidl, ValidateEnergyConsumerUniqueNames) {
std::vector<EnergyConsumer> consumers;
ASSERT_OK(powerstats->getEnergyConsumerInfo(&consumers));
testUnique(consumers, &EnergyConsumer::name);
}
// Energy consumers of the same type must have ordinals that are 0,1,2,..., N - 1
TEST_P(PowerStatsAidl, ValidateEnergyConsumerOrdinals) {
std::vector<EnergyConsumer> consumers;
ASSERT_OK(powerstats->getEnergyConsumerInfo(&consumers));
std::unordered_map<EnergyConsumerType, std::set<int32_t>> ordinalMap;
// Ordinals must be unique for each type
for (auto consumer : consumers) {
EXPECT_TRUE(ordinalMap[consumer.type].insert(consumer.ordinal).second);
}
// Min ordinal must be 0, max ordinal must be N - 1
for (const auto& [unused, ordinals] : ordinalMap) {
EXPECT_EQ(0, *std::min_element(ordinals.begin(), ordinals.end()));
EXPECT_EQ(ordinals.size() - 1, *std::max_element(ordinals.begin(), ordinals.end()));
}
}
// Energy consumed must return a valid status
TEST_P(PowerStatsAidl, TestGetEnergyConsumed) {
std::vector<EnergyConsumerResult> results;
ASSERT_OK(powerstats->getEnergyConsumed({}, &results));
}
// Energy consumed must return data for all energy consumers
TEST_P(PowerStatsAidl, TestGetAllEnergyConsumed) {
std::vector<EnergyConsumer> consumers;
ASSERT_OK(powerstats->getEnergyConsumerInfo(&consumers));
std::vector<EnergyConsumerResult> results;
ASSERT_OK(powerstats->getEnergyConsumed({}, &results));
testMatching(consumers, &EnergyConsumer::id, results, &EnergyConsumerResult::id);
}
// Energy consumed must return data for each selected energy consumer
TEST_P(PowerStatsAidl, TestGetSelectedEnergyConsumed) {
std::vector<EnergyConsumer> consumers;
ASSERT_OK(powerstats->getEnergyConsumerInfo(&consumers));
if (consumers.empty()) {
return;
}
std::vector<EnergyConsumer> selectedConsumers = getRandomSubset(consumers);
std::vector<int32_t> selectedIds;
for (auto const& consumer : selectedConsumers) {
selectedIds.push_back(consumer.id);
}
std::vector<EnergyConsumerResult> selectedResults;
ASSERT_OK(powerstats->getEnergyConsumed(selectedIds, &selectedResults));
testMatching(selectedConsumers, &EnergyConsumer::id, selectedResults,
&EnergyConsumerResult::id);
}
// Energy consumed attribution uids must be unique for a given energy consumer
TEST_P(PowerStatsAidl, ValidateEnergyConsumerAttributionUniqueUids) {
std::vector<EnergyConsumerResult> results;
ASSERT_OK(powerstats->getEnergyConsumed({}, &results));
for (auto result : results) {
testUnique(result.attribution, &EnergyConsumerAttribution::uid);
}
}
// Energy consumed total energy >= sum total of uid-attributed energy
TEST_P(PowerStatsAidl, TestGetEnergyConsumedAttributedEnergy) {
std::vector<EnergyConsumerResult> results;
ASSERT_OK(powerstats->getEnergyConsumed({}, &results));
for (auto result : results) {
int64_t totalAttributedEnergyUWs = 0;
for (auto attribution : result.attribution) {
totalAttributedEnergyUWs += attribution.energyUWs;
}
EXPECT_TRUE(result.energyUWs >= totalAttributedEnergyUWs);
}
}
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(PowerStatsAidl);
INSTANTIATE_TEST_SUITE_P(
PowerStats, PowerStatsAidl,
testing::ValuesIn(android::getAidlHalInstanceNames(IPowerStats::descriptor)),
android::PrintInstanceNameToString);
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
ABinderProcess_setThreadPoolMaxThreadCount(1);
ABinderProcess_startThreadPool();
return RUN_ALL_TESTS();
}