Files
hardware_interfaces/neuralnetworks/1.2/vts/functional/ValidateRequest.cpp
Michael Butler 0763328464 Change NNAPI VTS to use TEST_P to iterate across all service instances
This CL removes a dependency on the VTS test runner by dynamically
discovering all NN HAL service instances in the gtest binary itself,
and runs through all service instances with parameterized tests.

This CL converts TEST_F cases to TEST_P cases, where the test parameter
is the name of the service instance. For existing TEST_P cases (such as
the generated test cases), the service instance name is made to be the
first test parameter.

This CL enables the NN VTS tests to be more portable, e.g., they can
run directly as a presubmit test.

Fixes: 124540002
Test: mma
Test: VtsHalNeuralnetworksV1_*TargetTest (with sample-all)
Test: cd $ANDROID_BUILD_TOP/hardware/interfaces/neuralnetworks && atest
Change-Id: I1e301d7c9f9342bb8f35a267bef180f510944b19
Merged-In: I1e301d7c9f9342bb8f35a267bef180f510944b19
(cherry picked from commit 7076f629b7)
2019-09-20 11:20:48 -07:00

169 lines
6.6 KiB
C++

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "1.0/Utils.h"
#include "1.2/Callbacks.h"
#include "ExecutionBurstController.h"
#include "GeneratedTestHarness.h"
#include "TestHarness.h"
#include "Utils.h"
#include "VtsHalNeuralnetworks.h"
namespace android::hardware::neuralnetworks::V1_2::vts::functional {
using implementation::ExecutionCallback;
using V1_0::ErrorStatus;
using V1_0::Request;
///////////////////////// UTILITY FUNCTIONS /////////////////////////
static bool badTiming(Timing timing) {
return timing.timeOnDevice == UINT64_MAX && timing.timeInDriver == UINT64_MAX;
}
// Primary validation function. This function will take a valid request, apply a
// mutation to it to invalidate the request, then pass it to interface calls
// that use the request. Note that the request here is passed by value, and any
// mutation to the request does not leave this function.
static void validate(const sp<IPreparedModel>& preparedModel, const std::string& message,
Request request, const std::function<void(Request*)>& mutation) {
mutation(&request);
// We'd like to test both with timing requested and without timing
// requested. Rather than running each test both ways, we'll decide whether
// to request timing by hashing the message. We do not use std::hash because
// it is not guaranteed stable across executions.
char hash = 0;
for (auto c : message) {
hash ^= c;
};
MeasureTiming measure = (hash & 1) ? MeasureTiming::YES : MeasureTiming::NO;
// asynchronous
{
SCOPED_TRACE(message + " [execute_1_2]");
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
Return<ErrorStatus> executeLaunchStatus =
preparedModel->execute_1_2(request, measure, executionCallback);
ASSERT_TRUE(executeLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
executionCallback->wait();
ErrorStatus executionReturnStatus = executionCallback->getStatus();
const auto& outputShapes = executionCallback->getOutputShapes();
Timing timing = executionCallback->getTiming();
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
ASSERT_EQ(outputShapes.size(), 0);
ASSERT_TRUE(badTiming(timing));
}
// synchronous
{
SCOPED_TRACE(message + " [executeSynchronously]");
Return<void> executeStatus = preparedModel->executeSynchronously(
request, measure,
[](ErrorStatus error, const hidl_vec<OutputShape>& outputShapes,
const Timing& timing) {
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, error);
EXPECT_EQ(outputShapes.size(), 0);
EXPECT_TRUE(badTiming(timing));
});
ASSERT_TRUE(executeStatus.isOk());
}
// burst
{
SCOPED_TRACE(message + " [burst]");
// create burst
std::shared_ptr<::android::nn::ExecutionBurstController> burst =
android::nn::ExecutionBurstController::create(preparedModel, /*blocking=*/true);
ASSERT_NE(nullptr, burst.get());
// create memory keys
std::vector<intptr_t> keys(request.pools.size());
for (size_t i = 0; i < keys.size(); ++i) {
keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
}
// execute and verify
ErrorStatus error;
std::vector<OutputShape> outputShapes;
Timing timing;
std::tie(error, outputShapes, timing) = burst->compute(request, measure, keys);
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, error);
EXPECT_EQ(outputShapes.size(), 0);
EXPECT_TRUE(badTiming(timing));
// additional burst testing
if (request.pools.size() > 0) {
// valid free
burst->freeMemory(keys.front());
// negative test: invalid free of unknown (blank) memory
burst->freeMemory(intptr_t{});
// negative test: double free of memory
burst->freeMemory(keys.front());
}
}
}
///////////////////////// REMOVE INPUT ////////////////////////////////////
static void removeInputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
for (size_t input = 0; input < request.inputs.size(); ++input) {
const std::string message = "removeInput: removed input " + std::to_string(input);
validate(preparedModel, message, request,
[input](Request* request) { hidl_vec_removeAt(&request->inputs, input); });
}
}
///////////////////////// REMOVE OUTPUT ////////////////////////////////////
static void removeOutputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
for (size_t output = 0; output < request.outputs.size(); ++output) {
const std::string message = "removeOutput: removed Output " + std::to_string(output);
validate(preparedModel, message, request,
[output](Request* request) { hidl_vec_removeAt(&request->outputs, output); });
}
}
///////////////////////////// ENTRY POINT //////////////////////////////////
void validateRequest(const sp<IPreparedModel>& preparedModel, const Request& request) {
removeInputTest(preparedModel, request);
removeOutputTest(preparedModel, request);
}
void validateRequestFailure(const sp<IPreparedModel>& preparedModel, const Request& request) {
SCOPED_TRACE("Expecting request to fail [executeSynchronously]");
Return<void> executeStatus = preparedModel->executeSynchronously(
request, MeasureTiming::NO,
[](ErrorStatus error, const hidl_vec<OutputShape>& outputShapes, const Timing& timing) {
ASSERT_NE(ErrorStatus::NONE, error);
EXPECT_EQ(outputShapes.size(), 0);
EXPECT_TRUE(badTiming(timing));
});
ASSERT_TRUE(executeStatus.isOk());
}
} // namespace android::hardware::neuralnetworks::V1_2::vts::functional