mirror of
https://github.com/Evolution-X/hardware_interfaces
synced 2026-02-01 11:36:00 +00:00
Do not rely on sleep in tests, but wait for the events to happen
before timeout. Set the timeout to be large enough (5s) so that the
tests are more stable.
Test: atest RecurrentTimerTest
Bug: 289759453
Change-Id: Iff271ca440426871ed3a798bab50b9532f9256f0
Merged-In: Iff271ca440426871ed3a798bab50b9532f9256f0
(cherry picked from commit 76d7fbf6a1)
236 lines
7.5 KiB
C++
236 lines
7.5 KiB
C++
/*
|
|
* Copyright (C) 2021 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "RecurrentTimer.h"
|
|
|
|
#include <android-base/thread_annotations.h>
|
|
#include <gtest/gtest.h>
|
|
#include <condition_variable>
|
|
|
|
#include <chrono>
|
|
#include <memory>
|
|
#include <mutex>
|
|
|
|
namespace android {
|
|
namespace hardware {
|
|
namespace automotive {
|
|
namespace vehicle {
|
|
|
|
using ::android::base::ScopedLockAssertion;
|
|
|
|
class RecurrentTimerTest : public testing::Test {
|
|
public:
|
|
std::shared_ptr<RecurrentTimer::Callback> getCallback(size_t token) {
|
|
return std::make_shared<RecurrentTimer::Callback>([this, token] {
|
|
std::scoped_lock<std::mutex> lockGuard(mLock);
|
|
|
|
mCallbacks.push_back(token);
|
|
mCond.notify_all();
|
|
});
|
|
}
|
|
|
|
bool waitForCalledCallbacks(size_t count, size_t timeoutInMs) {
|
|
std::unique_lock<std::mutex> uniqueLock(mLock);
|
|
return mCond.wait_for(uniqueLock, std::chrono::milliseconds(timeoutInMs), [this, count] {
|
|
ScopedLockAssertion lockAssertion(mLock);
|
|
return mCallbacks.size() >= count;
|
|
});
|
|
}
|
|
|
|
std::vector<size_t> getCalledCallbacks() {
|
|
std::scoped_lock<std::mutex> lockGuard(mLock);
|
|
return mCallbacks;
|
|
}
|
|
|
|
void clearCalledCallbacks() {
|
|
std::scoped_lock<std::mutex> lockGuard(mLock);
|
|
mCallbacks.clear();
|
|
}
|
|
|
|
size_t countTimerCallbackQueue(RecurrentTimer* timer) {
|
|
std::scoped_lock<std::mutex> lockGuard(timer->mLock);
|
|
return timer->mCallbackQueue.size();
|
|
}
|
|
|
|
private:
|
|
std::condition_variable mCond;
|
|
std::mutex mLock;
|
|
std::vector<size_t> mCallbacks GUARDED_BY(mLock);
|
|
};
|
|
|
|
TEST_F(RecurrentTimerTest, testRegisterCallback) {
|
|
RecurrentTimer timer;
|
|
// 0.1s
|
|
int64_t interval = 100000000;
|
|
|
|
auto action = getCallback(0);
|
|
timer.registerTimerCallback(interval, action);
|
|
|
|
// Should only takes 1s, use 5s as timeout to be safe.
|
|
ASSERT_TRUE(waitForCalledCallbacks(/* count= */ 10u, /* timeoutInMs= */ 5000))
|
|
<< "Not enough callbacks called before timeout";
|
|
|
|
timer.unregisterTimerCallback(action);
|
|
}
|
|
|
|
TEST_F(RecurrentTimerTest, testRegisterUnregisterRegister) {
|
|
RecurrentTimer timer;
|
|
// 0.1s
|
|
int64_t interval = 100000000;
|
|
|
|
auto action = getCallback(0);
|
|
timer.registerTimerCallback(interval, action);
|
|
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(200));
|
|
|
|
timer.unregisterTimerCallback(action);
|
|
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(200));
|
|
|
|
clearCalledCallbacks();
|
|
|
|
timer.registerTimerCallback(interval, action);
|
|
|
|
// Should only takes 1s, use 5s as timeout to be safe.
|
|
ASSERT_TRUE(waitForCalledCallbacks(/* count= */ 10u, /* timeoutInMs= */ 5000))
|
|
<< "Not enough callbacks called before timeout";
|
|
|
|
timer.unregisterTimerCallback(action);
|
|
}
|
|
|
|
TEST_F(RecurrentTimerTest, testDestroyTimerWithCallback) {
|
|
std::unique_ptr<RecurrentTimer> timer = std::make_unique<RecurrentTimer>();
|
|
// 0.1s
|
|
int64_t interval = 100000000;
|
|
|
|
auto action = getCallback(0);
|
|
timer->registerTimerCallback(interval, action);
|
|
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(200));
|
|
|
|
timer.reset();
|
|
|
|
clearCalledCallbacks();
|
|
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(200));
|
|
|
|
// Should be 0, but in rare cases there might be 1 events in the queue while the timer is
|
|
// being destroyed.
|
|
ASSERT_LE(getCalledCallbacks().size(), 1u);
|
|
}
|
|
|
|
TEST_F(RecurrentTimerTest, testRegisterMultipleCallbacks) {
|
|
RecurrentTimer timer;
|
|
// 0.1s
|
|
int64_t interval1 = 100000000;
|
|
auto action1 = getCallback(1);
|
|
timer.registerTimerCallback(interval1, action1);
|
|
// 0.05s
|
|
int64_t interval2 = 50000000;
|
|
auto action2 = getCallback(2);
|
|
timer.registerTimerCallback(interval2, action2);
|
|
// 0.03s
|
|
int64_t interval3 = 30000000;
|
|
auto action3 = getCallback(3);
|
|
timer.registerTimerCallback(interval3, action3);
|
|
|
|
// In 1s, we should generate 10 + 20 + 33 = 63 events.
|
|
// Here we are waiting for more events to make sure we receive enough events for each actions.
|
|
// Use 5s as timeout to be safe.
|
|
ASSERT_TRUE(waitForCalledCallbacks(/* count= */ 70u, /* timeoutInMs= */ 5000))
|
|
<< "Not enough callbacks called before timeout";
|
|
|
|
timer.unregisterTimerCallback(action1);
|
|
timer.unregisterTimerCallback(action2);
|
|
timer.unregisterTimerCallback(action3);
|
|
|
|
size_t action1Count = 0;
|
|
size_t action2Count = 0;
|
|
size_t action3Count = 0;
|
|
for (size_t token : getCalledCallbacks()) {
|
|
if (token == 1) {
|
|
action1Count++;
|
|
}
|
|
if (token == 2) {
|
|
action2Count++;
|
|
}
|
|
if (token == 3) {
|
|
action3Count++;
|
|
}
|
|
}
|
|
|
|
ASSERT_GE(action1Count, static_cast<size_t>(10));
|
|
ASSERT_GE(action2Count, static_cast<size_t>(20));
|
|
ASSERT_GE(action3Count, static_cast<size_t>(33));
|
|
}
|
|
|
|
TEST_F(RecurrentTimerTest, testRegisterSameCallbackMultipleTimes) {
|
|
RecurrentTimer timer;
|
|
// 0.2s
|
|
int64_t interval1 = 200'000'000;
|
|
// 0.1s
|
|
int64_t interval2 = 100'000'000;
|
|
|
|
auto action = getCallback(0);
|
|
for (int i = 0; i < 10; i++) {
|
|
timer.registerTimerCallback(interval1, action);
|
|
timer.registerTimerCallback(interval2, action);
|
|
}
|
|
|
|
clearCalledCallbacks();
|
|
|
|
// Should only takes 1s, use 5s as timeout to be safe.
|
|
ASSERT_TRUE(waitForCalledCallbacks(/* count= */ 10u, /* timeoutInMs= */ 5000))
|
|
<< "Not enough callbacks called before timeout";
|
|
|
|
timer.unregisterTimerCallback(action);
|
|
|
|
// Make sure there is no item in the callback queue.
|
|
ASSERT_EQ(countTimerCallbackQueue(&timer), static_cast<size_t>(0));
|
|
}
|
|
|
|
TEST_F(RecurrentTimerTest, testRegisterCallbackMultipleTimesNoDeadLock) {
|
|
// We want to avoid the following situation:
|
|
// Caller holds a lock while calling registerTimerCallback, registerTimerCallback will try
|
|
// to obtain an internal lock inside timer.
|
|
// Meanwhile an recurrent action happens with timer holding an internal lock. The action
|
|
// tries to obtain the lock currently hold by the caller.
|
|
// The solution is that while calling recurrent actions, timer must not hold the internal lock.
|
|
|
|
std::unique_ptr<RecurrentTimer> timer = std::make_unique<RecurrentTimer>();
|
|
std::mutex lock;
|
|
for (size_t i = 0; i < 1000; i++) {
|
|
std::scoped_lock<std::mutex> lockGuard(lock);
|
|
auto action = std::make_shared<RecurrentTimer::Callback>([&lock] {
|
|
// While calling this function, the timer must not hold lock in order not to dead
|
|
// lock.
|
|
std::scoped_lock<std::mutex> lockGuard(lock);
|
|
});
|
|
// 10ms
|
|
int64_t interval = 10'000'000;
|
|
timer->registerTimerCallback(interval, action);
|
|
// Sleep for a little while to let the recurrent actions begin.
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
|
}
|
|
// Make sure we stop the timer before we destroy lock.
|
|
timer.reset();
|
|
}
|
|
|
|
} // namespace vehicle
|
|
} // namespace automotive
|
|
} // namespace hardware
|
|
} // namespace android
|