mirror of
https://github.com/Evolution-X/hardware_interfaces
synced 2026-02-01 16:50:18 +00:00
This change allows GeneralErrors to be created from a string and allows ExecutionErrors to be created from a string or a GeneralError. This makes error handling more terse, removing the need for helper functions such as makeGeneralFailure or makeExecutionFailure. Bug: N/A Test: mma Change-Id: I8c5e80a2eb4f399fad64aab763fe6fa08cf8d1db
124 lines
4.7 KiB
C++
124 lines
4.7 KiB
C++
/*
|
|
* Copyright (C) 2020 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "Callbacks.h"
|
|
|
|
#include "Conversions.h"
|
|
#include "PreparedModel.h"
|
|
#include "Utils.h"
|
|
|
|
#include <android/hardware/neuralnetworks/1.0/types.h>
|
|
#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
|
|
#include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
|
|
#include <android/hardware/neuralnetworks/1.2/types.h>
|
|
#include <nnapi/IPreparedModel.h>
|
|
#include <nnapi/Result.h>
|
|
#include <nnapi/Types.h>
|
|
#include <nnapi/hal/1.0/Callbacks.h>
|
|
#include <nnapi/hal/1.0/Conversions.h>
|
|
#include <nnapi/hal/1.0/PreparedModel.h>
|
|
#include <nnapi/hal/CommonUtils.h>
|
|
#include <nnapi/hal/HandleError.h>
|
|
#include <nnapi/hal/ProtectCallback.h>
|
|
#include <nnapi/hal/TransferValue.h>
|
|
|
|
#include <utility>
|
|
|
|
// See hardware/interfaces/neuralnetworks/utils/README.md for more information on HIDL interface
|
|
// lifetimes across processes and for protecting asynchronous calls across HIDL.
|
|
|
|
namespace android::hardware::neuralnetworks::V1_2::utils {
|
|
namespace {
|
|
|
|
nn::GeneralResult<nn::SharedPreparedModel> prepareModelCallback(
|
|
V1_0::ErrorStatus status, const sp<V1_0::IPreparedModel>& preparedModel) {
|
|
if (const auto dynamicPreparedModel =
|
|
V1_2::IPreparedModel::castFrom(preparedModel).withDefault(nullptr)) {
|
|
return V1_2::utils::prepareModelCallback(status, dynamicPreparedModel);
|
|
}
|
|
return V1_0::utils::prepareModelCallback(status, preparedModel);
|
|
}
|
|
|
|
nn::GeneralResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>>
|
|
convertExecutionGeneralResultsHelper(const hidl_vec<OutputShape>& outputShapes,
|
|
const Timing& timing) {
|
|
return std::make_pair(NN_TRY(nn::convert(outputShapes)), NN_TRY(nn::convert(timing)));
|
|
}
|
|
|
|
} // namespace
|
|
|
|
nn::GeneralResult<nn::SharedPreparedModel> prepareModelCallback(
|
|
V1_0::ErrorStatus status, const sp<IPreparedModel>& preparedModel) {
|
|
HANDLE_HAL_STATUS(status) << "model preparation failed with " << toString(status);
|
|
return NN_TRY(PreparedModel::create(preparedModel, /*executeSynchronously=*/true));
|
|
}
|
|
|
|
nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> executionCallback(
|
|
V1_0::ErrorStatus status, const hidl_vec<OutputShape>& outputShapes, const Timing& timing) {
|
|
if (status == V1_0::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) {
|
|
auto canonicalOutputShapes =
|
|
nn::convert(outputShapes).value_or(std::vector<nn::OutputShape>{});
|
|
return NN_ERROR(nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, std::move(canonicalOutputShapes))
|
|
<< "execution failed with " << toString(status);
|
|
}
|
|
HANDLE_HAL_STATUS(status) << "execution failed with " << toString(status);
|
|
return convertExecutionGeneralResultsHelper(outputShapes, timing);
|
|
}
|
|
|
|
Return<void> PreparedModelCallback::notify(V1_0::ErrorStatus status,
|
|
const sp<V1_0::IPreparedModel>& preparedModel) {
|
|
mData.put(prepareModelCallback(status, preparedModel));
|
|
return Void();
|
|
}
|
|
|
|
Return<void> PreparedModelCallback::notify_1_2(V1_0::ErrorStatus status,
|
|
const sp<IPreparedModel>& preparedModel) {
|
|
mData.put(prepareModelCallback(status, preparedModel));
|
|
return Void();
|
|
}
|
|
|
|
void PreparedModelCallback::notifyAsDeadObject() {
|
|
mData.put(NN_ERROR(nn::ErrorStatus::DEAD_OBJECT) << "Dead object");
|
|
}
|
|
|
|
PreparedModelCallback::Data PreparedModelCallback::get() {
|
|
return mData.take();
|
|
}
|
|
|
|
// ExecutionCallback methods begin here
|
|
|
|
Return<void> ExecutionCallback::notify(V1_0::ErrorStatus status) {
|
|
mData.put(V1_0::utils::executionCallback(status));
|
|
return Void();
|
|
}
|
|
|
|
Return<void> ExecutionCallback::notify_1_2(V1_0::ErrorStatus status,
|
|
const hidl_vec<OutputShape>& outputShapes,
|
|
const Timing& timing) {
|
|
mData.put(executionCallback(status, outputShapes, timing));
|
|
return Void();
|
|
}
|
|
|
|
void ExecutionCallback::notifyAsDeadObject() {
|
|
mData.put(NN_ERROR(nn::ErrorStatus::DEAD_OBJECT) << "Dead object");
|
|
}
|
|
|
|
ExecutionCallback::Data ExecutionCallback::get() {
|
|
return mData.take();
|
|
}
|
|
|
|
} // namespace android::hardware::neuralnetworks::V1_2::utils
|