Merge "Test dynamic output shape in GeneratedTests."

This commit is contained in:
Xusong Wang
2019-01-19 00:20:30 +00:00
committed by Android (Google) Code Review
7 changed files with 65 additions and 27 deletions

View File

@@ -51,14 +51,13 @@ using ::test_helper::for_each;
using ::test_helper::Int32Operands;
using ::test_helper::MixedTyped;
using ::test_helper::MixedTypedExample;
using ::test_helper::MixedTypedIndex;
using ::test_helper::Quant8Operands;
using ::test_helper::resize_accordingly;
template <typename T>
void copy_back_(MixedTyped* dst, const std::vector<RequestArgument>& ra, char* src) {
MixedTyped& test = *dst;
for_each<T>(test, [&ra, src](int index, std::vector<T>& m) {
void copy_back_(std::map<int, std::vector<T>>* dst, const std::vector<RequestArgument>& ra,
char* src) {
for_each<T>(*dst, [&ra, src](int index, std::vector<T>& m) {
ASSERT_EQ(m.size(), ra[index].location.length / sizeof(T));
char* begin = src + ra[index].location.offset;
memcpy(m.data(), begin, ra[index].location.length);
@@ -66,14 +65,14 @@ void copy_back_(MixedTyped* dst, const std::vector<RequestArgument>& ra, char* s
}
void copy_back(MixedTyped* dst, const std::vector<RequestArgument>& ra, char* src) {
copy_back_<float>(dst, ra, src);
copy_back_<int32_t>(dst, ra, src);
copy_back_<uint8_t>(dst, ra, src);
copy_back_<int16_t>(dst, ra, src);
copy_back_<_Float16>(dst, ra, src);
copy_back_<bool8>(dst, ra, src);
copy_back_<int8_t>(dst, ra, src);
static_assert(7 == std::tuple_size<MixedTyped>::value,
copy_back_(&dst->float32Operands, ra, src);
copy_back_(&dst->int32Operands, ra, src);
copy_back_(&dst->quant8Operands, ra, src);
copy_back_(&dst->quant16Operands, ra, src);
copy_back_(&dst->float16Operands, ra, src);
copy_back_(&dst->bool8Operands, ra, src);
copy_back_(&dst->quant8ChannelOperands, ra, src);
static_assert(7 == MixedTyped::kNumTypes,
"Number of types in MixedTyped changed, but copy_back function wasn't updated");
}
@@ -115,7 +114,8 @@ template <typename T_IPreparedModel>
void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
const std::vector<MixedTypedExample>& examples,
bool hasRelaxedFloat32Model = false, float fpAtol = kDefaultAtol,
float fpRtol = kDefaultRtol, Synchronously sync = Synchronously::NO) {
float fpRtol = kDefaultRtol, Synchronously sync = Synchronously::NO,
bool testDynamicOutputShape = false) {
const uint32_t INPUT = 0;
const uint32_t OUTPUT = 1;
@@ -125,7 +125,7 @@ void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bo
const MixedTyped& inputs = example.operands.first;
const MixedTyped& golden = example.operands.second;
const bool hasFloat16Inputs = !std::get<MixedTypedIndex<_Float16>::index>(inputs).empty();
const bool hasFloat16Inputs = !inputs.float16Operands.empty();
if (hasRelaxedFloat32Model || hasFloat16Inputs) {
// TODO: Adjust the error limit based on testing.
// If in relaxed mode, set the absolute tolerance to be 5ULP of FP16.
@@ -237,10 +237,24 @@ void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bo
executionStatus = static_cast<ErrorStatus>(executionReturnStatus);
}
if (testDynamicOutputShape && executionStatus != ErrorStatus::NONE) {
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"execute model that it does not support.";
std::cout << "[ ] Early termination of test because vendor service cannot "
"execute model that it does not support."
<< std::endl;
return;
}
ASSERT_EQ(ErrorStatus::NONE, executionStatus);
// TODO(xusongw): Check if the returned output shapes match with expectation once the
// sample driver implementation of dynamic output shape is finished.
ASSERT_EQ(outputShapes.size(), 0);
// Go through all outputs, overwrite output dimensions with returned output shapes
if (testDynamicOutputShape) {
ASSERT_NE(outputShapes.size(), 0);
for_each<uint32_t>(test.operandDimensions,
[&outputShapes](int idx, std::vector<uint32_t>& dim) {
dim = outputShapes[idx].dimensions;
});
}
// validate results
outputMemory->read();
@@ -261,9 +275,10 @@ void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bo
template <typename T_IPreparedModel>
void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
const std::vector<MixedTypedExample>& examples,
bool hasRelaxedFloat32Model, Synchronously sync) {
bool hasRelaxedFloat32Model, Synchronously sync,
bool testDynamicOutputShape) {
EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, kDefaultAtol,
kDefaultRtol, sync);
kDefaultRtol, sync, testDynamicOutputShape);
}
static void getPreparedModel(sp<PreparedModelCallback> callback,
@@ -319,7 +334,8 @@ void Execute(const sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> c
float fpAtol = 1e-5f, fpRtol = 5.0f * 1.1920928955078125e-7f;
EvaluatePreparedModel(preparedModel, is_ignored, examples,
/*hasRelaxedFloat32Model=*/false, fpAtol, fpRtol);
/*hasRelaxedFloat32Model=*/false, fpAtol, fpRtol, Synchronously::NO,
/*testDynamicOutputShape=*/false);
}
void Execute(const sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> create_model,
@@ -365,12 +381,14 @@ void Execute(const sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> c
ASSERT_NE(nullptr, preparedModel.get());
EvaluatePreparedModel(preparedModel, is_ignored, examples,
model.relaxComputationFloat32toFloat16);
model.relaxComputationFloat32toFloat16, 1e-5f, 1e-5f, Synchronously::NO,
/*testDynamicOutputShape=*/false);
}
// TODO: Reduce code duplication.
void Execute(const sp<V1_2::IDevice>& device, std::function<V1_2::Model(void)> create_model,
std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) {
std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples,
bool testDynamicOutputShape) {
V1_2::Model model = create_model();
// see if service can handle model
@@ -412,9 +430,11 @@ void Execute(const sp<V1_2::IDevice>& device, std::function<V1_2::Model(void)> c
ASSERT_NE(nullptr, preparedModel.get());
EvaluatePreparedModel(preparedModel, is_ignored, examples,
model.relaxComputationFloat32toFloat16, Synchronously::NO);
model.relaxComputationFloat32toFloat16, Synchronously::NO,
testDynamicOutputShape);
EvaluatePreparedModel(preparedModel, is_ignored, examples,
model.relaxComputationFloat32toFloat16, Synchronously::YES);
model.relaxComputationFloat32toFloat16, Synchronously::YES,
testDynamicOutputShape);
}
} // namespace generated_tests

View File

@@ -21,6 +21,9 @@ cc_test {
srcs: [
"GeneratedTestsV1_0.cpp",
],
cflags: [
"-DNN_TEST_DYNAMIC_OUTPUT_SHAPE"
],
test_suites: ["general-tests"],
}
@@ -31,6 +34,9 @@ cc_test {
srcs: [
"GeneratedTestsV1_1.cpp",
],
cflags: [
"-DNN_TEST_DYNAMIC_OUTPUT_SHAPE"
],
test_suites: ["general-tests"],
}
@@ -42,5 +48,8 @@ cc_test {
"BasicTests.cpp",
"GeneratedTests.cpp",
],
cflags: [
"-DNN_TEST_DYNAMIC_OUTPUT_SHAPE"
],
test_suites: ["general-tests"],
}

View File

@@ -33,7 +33,8 @@ namespace neuralnetworks {
namespace generated_tests {
using ::test_helper::MixedTypedExample;
extern void Execute(const sp<V1_2::IDevice>&, std::function<V1_2::Model(void)>,
std::function<bool(int)>, const std::vector<MixedTypedExample>&);
std::function<bool(int)>, const std::vector<MixedTypedExample>&,
bool testDynamicOutputShape = false);
} // namespace generated_tests
namespace V1_2 {

View File

@@ -33,7 +33,8 @@ namespace neuralnetworks {
namespace generated_tests {
using ::test_helper::MixedTypedExample;
extern void Execute(const sp<V1_2::IDevice>&, std::function<V1_2::Model(void)>,
std::function<bool(int)>, const std::vector<MixedTypedExample>&);
std::function<bool(int)>, const std::vector<MixedTypedExample>&,
bool testDynamicOutputShape = false);
} // namespace generated_tests
namespace V1_2 {

View File

@@ -33,7 +33,8 @@ namespace neuralnetworks {
namespace generated_tests {
using ::test_helper::MixedTypedExample;
extern void Execute(const sp<V1_2::IDevice>&, std::function<V1_2::Model(void)>,
std::function<bool(int)>, const std::vector<MixedTypedExample>&);
std::function<bool(int)>, const std::vector<MixedTypedExample>&,
bool testDynamicOutputShape = false);
} // namespace generated_tests
namespace V1_2 {

View File

@@ -172,6 +172,9 @@ static uint32_t getInvalidRank(OperandType type) {
static void mutateOperandRankTest(const sp<IDevice>& device, const Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
if (invalidRank == 0) {
continue;
}
const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
" has rank of " + std::to_string(invalidRank);
validate(device, message, model, [operand, invalidRank](Model* model) {

View File

@@ -79,6 +79,9 @@ class ValidationTest : public NeuralnetworksHidlTest {
// Tag for the generated tests
class GeneratedTest : public NeuralnetworksHidlTest {};
// Tag for the dynamic output shape tests
class DynamicOutputShapeTest : public NeuralnetworksHidlTest {};
// Utility function to get PreparedModel from callback and downcast to V1_2.
sp<IPreparedModel> getPreparedModel_1_2(
const sp<V1_2::implementation::PreparedModelCallback>& callback);