Merge changes from topic "aosp-nnapi-memory-domain"

* changes:
  Add memory domain VTS generated tests.
  Memory Domain HAL: Define HAL APIs.
This commit is contained in:
Xusong Wang
2020-01-28 18:24:34 +00:00
committed by Gerrit Code Review
12 changed files with 646 additions and 57 deletions

View File

@@ -622,10 +622,11 @@ bbeee9604128ede83ee755b67e73b5ad29e6e1dbac9ec41fea6ffe2745b0c50a android.hardwar
27ae3724053940462114228872b3ffaf0b8e6177d5ba97f5a76339d12b8a99dd android.hardware.keymaster@4.1::IKeymasterDevice
adb0efdf1462e9b2e742c0dcadd598666aac551f178be06e755bfcdf5797abd0 android.hardware.keymaster@4.1::IOperation
ac429fca0da4ce91218768ec31b64ded88251f8a26d8c4f27c06abdc5b1926d9 android.hardware.keymaster@4.1::types
9e59fffceed0dd72a9799e04505db5f777bbbea1af0695ba4107ef6d967c6fda android.hardware.neuralnetworks@1.3::IDevice
258825966435b3ed08832055bb736d81516013e405f161d9ccde9a90cfcdde83 android.hardware.neuralnetworks@1.3::IPreparedModel
4b5c8546533db9412fec6d32c0ef42b22e5e68dbf390c775ec3c22bb2d501102 android.hardware.neuralnetworks@1.3::IBuffer
234cc547d63d2f24a447aee0a9a76cab68b31c080adadc5a960598b827a69fa2 android.hardware.neuralnetworks@1.3::IDevice
058b48f0e2e725bb2b3fa2b7917b0f0a696383d03a4c57afe26f0eadb6a7af28 android.hardware.neuralnetworks@1.3::IPreparedModel
94e803236398bed1febb11cc21051bc42ec003700139b099d6c479e02a7ca3c3 android.hardware.neuralnetworks@1.3::IPreparedModelCallback
f3c1e7298da628a755b452cd3325e8d0fe867a2debb873069baab6a27434a72d android.hardware.neuralnetworks@1.3::types
2576ba54711218ce0d7f207baa533fca9af3c630756938ede6e73fe197b7ea38 android.hardware.neuralnetworks@1.3::types
3e01d4446cd69fd1c48f8572efd97487bc179564b32bd795800b97bbe10be37b android.hardware.wifi@1.4::IWifi
a64467bae843569f0d465c5be7f0c7a5b987985b55a3ef4794dd5afc68538650 android.hardware.wifi.supplicant@1.3::ISupplicant
44445b8a03d7b9e68b2fbd954672c18a8fce9e32851b0692f4f4ab3407f86ecb android.hardware.wifi.supplicant@1.3::ISupplicantStaIface

View File

@@ -8,6 +8,7 @@ hidl_interface {
},
srcs: [
"types.hal",
"IBuffer.hal",
"IDevice.hal",
"IPreparedModel.hal",
"IPreparedModelCallback.hal",

View File

@@ -0,0 +1,57 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.hardware.neuralnetworks@1.3;
import @1.0::ErrorStatus;
/**
* This interface represents a device memory buffer.
*/
interface IBuffer {
/**
* Retrieves the content of this buffer to a shared memory region.
*
* The IBuffer object must have been initialized before the call to IBuffer::copyTo.
* For more information on the state of the IBuffer object, refer to IDevice::allocate.
*
* @param dst The destination shared memory region.
* @return status Error status of the call, must be:
* - NONE if successful
* - DEVICE_UNAVAILABLE if driver is offline or busy
* - GENERAL_FAILURE if the IBuffer object is uninitialized, or there is an unspecified
* error
* - INVALID_ARGUMENT if provided memory is invalid
*/
copyTo(memory dst) generates (ErrorStatus status);
/**
* Sets the content of this buffer from a shared memory region.
*
* @param src The source shared memory region.
* @param dimensions Updated dimensional information. If the dimensions of the IBuffer object
* are not fully specified, then the dimensions must be fully specified here. If the
* dimensions of the IBuffer object are fully specified, then the dimensions may be empty
* here. If dimensions.size() > 0, then all dimensions must be specified here, and any
* dimension that was specified in the IBuffer object must have the same value here.
* @return status Error status of the call, must be:
* - NONE if successful
* - DEVICE_UNAVAILABLE if driver is offline or busy
* - GENERAL_FAILURE if there is an unspecified error
* - INVALID_ARGUMENT if provided memory is invalid, or if the dimensions is invalid
*/
copyFrom(memory src, vec<uint32_t> dimensions) generates (ErrorStatus status);
};

View File

@@ -22,6 +22,12 @@ import @1.2::Constant;
import @1.2::DeviceType;
import @1.2::Extension;
import @1.2::IDevice;
import BufferDesc;
import BufferRole;
import Capabilities;
import Model;
import IBuffer;
import IPreparedModel;
import IPreparedModelCallback;
/**
@@ -247,4 +253,61 @@ interface IDevice extends @1.2::IDevice {
uint8_t[Constant:BYTE_SIZE_OF_CACHE_TOKEN] token,
IPreparedModelCallback callback)
generates (ErrorStatus status);
/**
* Allocates a driver-managed buffer with the properties specified by the buffer descriptor
* as well as the input and output roles.
*
* The allocate function must verify its inputs are correct. If there is an error, or if a
* certain role or property is not supported by the driver, the allocate
* function must return with an appropriate ErrorStatus, a nullptr as the IBuffer, and 0 as the
* buffer token. If the allocation is successful, this method must return with ErrorStatus::NONE
* and the produced IBuffer with a positive token identifying the allocated buffer. A successful
* allocation must accommodate all of the specified roles and buffer properties.
*
* The buffer is allocated to an uninitialized state. An uninitialized buffer may only be used
* in ways that are specified by outputRoles. A buffer is initialized after it is used as an
* output in a successful execution, or after a successful invocation of IBuffer::copyFrom on
* the buffer. An initialized buffer may be used according to all roles specified in inputRoles
* and outputRoles. A buffer will return to the uninitialized state if it is used as an output
* in a failed execution, or after a failed invocation of IBuffer::copyFrom on the buffer.
*
* The dimensions of the buffer can be deduced from the buffer descriptor as well as the
* dimensions of the corresponding model operands of the input and output roles. The dimensions
* or rank of the buffer may be unknown at this stage. As such, some driver services may only
* create a placeholder and defer the actual allocation until execution time. Note that the
* same buffer may be used for different shapes of outputs on different executions. When the
* buffer is used as an input, the input shape must be the same as the output shape from the
* last execution using this buffer as an output.
*
* The driver must apply proper validatation upon every usage of the buffer, and must fail the
* execution immediately if the usage is illegal.
*
* @param desc A buffer descriptor specifying the properties of the buffer to allocate.
* @param preparedModels A vector of IPreparedModel objects. Must only contain IPreparedModel
* objects from the same IDevice as this method is being invoked on.
* @param inputRoles A vector of roles with each specifying an input to a prepared model.
* @param outputRoles A vector of roles with each specifying an output to a prepared model.
* Each role specified in inputRoles and outputRoles must be unique. The corresponding
* model operands of the roles must have the same OperandType, scale, zero point, and
* ExtraParams. The dimensions of the operands and the dimensions specified in the buffer
* descriptor must be compatible with each other. Two dimensions are incompatible if there
* is at least one axis that is fully specified in both but has different values.
* @return status Error status of the buffer allocation. Must be:
* - NONE if successful
* - DEVICE_UNAVAILABLE if driver is offline or busy
* - GENERAL_FAILURE if a certain buffer property or a certain role is not supported,
* or if there is an unspecified error
* - INVALID_ARGUMENT if one of the input arguments is invalid
* @return buffer The allocated IBuffer object. If the buffer was unable to be allocated
* due to an error, nullptr must be returned.
* @return token A positive token identifying the allocated buffer. The same token will be
* provided when referencing the buffer as one of the memory pools in the request of an
* execution. The token must not collide with the tokens of other IBuffer objects that are
* currently alive in the same driver service. If the buffer was unable to be allocated
* due to an error, the token must be 0.
*/
allocate(BufferDesc desc, vec<IPreparedModel> preparedModels, vec<BufferRole> inputRoles,
vec<BufferRole> outputRoles)
generates (ErrorStatus status, IBuffer buffer, int32_t token);
};

View File

@@ -17,12 +17,12 @@
package android.hardware.neuralnetworks@1.3;
import @1.0::ErrorStatus;
import @1.0::Request;
import @1.2::IExecutionCallback;
import @1.2::IPreparedModel;
import @1.2::MeasureTiming;
import @1.2::OutputShape;
import @1.2::Timing;
import Request;
/**
* IPreparedModel describes a model that has been prepared for execution and
@@ -33,7 +33,8 @@ interface IPreparedModel extends @1.2::IPreparedModel {
* Launches an asynchronous execution on a prepared model.
*
* The execution is performed asynchronously with respect to the caller.
* execute_1_3 must verify the inputs to the function are correct. If there is
* execute_1_3 must verify the inputs to the function are correct, and the usages
* of memory pools allocated by IDevice::allocate are valid. If there is
* an error, execute_1_3 must immediately invoke the callback with the
* appropriate ErrorStatus value, then return with the same ErrorStatus. If
* the inputs to the function are valid and there is no error, execute_1_3 must
@@ -95,7 +96,8 @@ interface IPreparedModel extends @1.2::IPreparedModel {
*
* The execution is performed synchronously with respect to the caller.
* executeSynchronously_1_3 must verify the inputs to the function are
* correct. If there is an error, executeSynchronously_1_3 must immediately
* correct, and the usages of memory pools allocated by IDevice::allocate
* are valid. If there is an error, executeSynchronously_1_3 must immediately
* return with the appropriate ErrorStatus value. If the inputs to the
* function are valid and there is no error, executeSynchronously_1_3 must
* perform the execution, and must not return until the execution is

View File

@@ -19,6 +19,7 @@ package android.hardware.neuralnetworks@1.3;
import @1.0::DataLocation;
import @1.0::OperandLifeTime;
import @1.0::PerformanceInfo;
import @1.0::RequestArgument;
import @1.2::OperandType;
import @1.2::OperationType;
import @1.2::SymmPerChannelQuantParams;
@@ -5205,3 +5206,92 @@ struct Model {
LOW_BITS_TYPE = 16,
};
};
/**
* A buffer descriptor. Describes the properties of a buffer.
*/
struct BufferDesc {
/**
* Dimensions of the buffer. May have unknown dimensions or rank. A buffer with some number
* of unspecified dimensions is represented by setting each unspecified dimension to 0. A
* buffer with unspecified rank is represented by providing an empty dimensions vector.
*/
vec<uint32_t> dimensions;
};
/**
* Describes a role of an input or output to a prepared model.
*/
struct BufferRole {
/**
* The index of the IPreparedModel within the "preparedModel" argument passed in
* IDevice::allocate.
*/
uint32_t modelIndex;
/**
* The index of the input or output operand.
*/
uint32_t ioIndex;
/**
* A floating-point value within the range (0.0, 1.0]. Describes how likely the
* buffer is to be used in the specified role. This is provided as a hint to
* optimize the case when multiple roles prefer different buffer locations or data
* layouts.
*/
float frequency;
};
/**
* Inputs to be sent to and outputs to be retrieved from a prepared model.
*
* A Request serves two primary tasks:
* 1) Provides the input and output data to be used when executing the model.
* 2) Specifies any updates to the input operand metadata that were left
* unspecified at model preparation time.
*
* An output must not overlap with any other output, with an input, or
* with an operand of lifetime CONSTANT_REFERENCE.
*/
struct Request {
/**
* Input data and information to be used in the execution of a prepared
* model.
*
* The index of the input corresponds to the index in Model.inputIndexes.
* E.g., input[i] corresponds to Model.inputIndexes[i].
*/
vec<RequestArgument> inputs;
/**
* Output data and information to be used in the execution of a prepared
* model.
*
* The index of the output corresponds to the index in Model.outputIndexes.
* E.g., output[i] corresponds to Model.outputIndexes[i].
*/
vec<RequestArgument> outputs;
/**
* A memory pool.
*/
safe_union MemoryPool {
/**
* Specifies a client-managed shared memory pool.
*/
memory hidlMemory;
/**
* Specifies a driver-managed buffer. It is the token returned from IDevice::allocate,
* and is specific to the IDevice object.
*/
int32_t token;
};
/**
* A collection of memory pools containing operand data for both the
* inputs and the outputs to a model.
*/
vec<MemoryPool> pools;
};

View File

@@ -21,6 +21,7 @@ package android.hardware.neuralnetworks@1.3;
import @1.0::DataLocation;
import @1.0::OperandLifeTime;
import @1.0::PerformanceInfo;
import @1.0::RequestArgument;
import @1.2::OperandType;
import @1.2::OperationType;
import @1.2::SymmPerChannelQuantParams;
@@ -389,3 +390,92 @@ struct Model {
LOW_BITS_TYPE = 16,
};
};
/**
* A buffer descriptor. Describes the properties of a buffer.
*/
struct BufferDesc {
/**
* Dimensions of the buffer. May have unknown dimensions or rank. A buffer with some number
* of unspecified dimensions is represented by setting each unspecified dimension to 0. A
* buffer with unspecified rank is represented by providing an empty dimensions vector.
*/
vec<uint32_t> dimensions;
};
/**
* Describes a role of an input or output to a prepared model.
*/
struct BufferRole {
/**
* The index of the IPreparedModel within the "preparedModel" argument passed in
* IDevice::allocate.
*/
uint32_t modelIndex;
/**
* The index of the input or output operand.
*/
uint32_t ioIndex;
/**
* A floating-point value within the range (0.0, 1.0]. Describes how likely the
* buffer is to be used in the specified role. This is provided as a hint to
* optimize the case when multiple roles prefer different buffer locations or data
* layouts.
*/
float frequency;
};
/**
* Inputs to be sent to and outputs to be retrieved from a prepared model.
*
* A Request serves two primary tasks:
* 1) Provides the input and output data to be used when executing the model.
* 2) Specifies any updates to the input operand metadata that were left
* unspecified at model preparation time.
*
* An output must not overlap with any other output, with an input, or
* with an operand of lifetime CONSTANT_REFERENCE.
*/
struct Request {
/**
* Input data and information to be used in the execution of a prepared
* model.
*
* The index of the input corresponds to the index in Model.inputIndexes.
* E.g., input[i] corresponds to Model.inputIndexes[i].
*/
vec<RequestArgument> inputs;
/**
* Output data and information to be used in the execution of a prepared
* model.
*
* The index of the output corresponds to the index in Model.outputIndexes.
* E.g., output[i] corresponds to Model.outputIndexes[i].
*/
vec<RequestArgument> outputs;
/**
* A memory pool.
*/
safe_union MemoryPool {
/**
* Specifies a client-managed shared memory pool.
*/
memory hidlMemory;
/**
* Specifies a driver-managed buffer. It is the token returned from IDevice::allocate,
* and is specific to the IDevice object.
*/
int32_t token;
};
/**
* A collection of memory pools containing operand data for both the
* inputs and the outputs to a model.
*/
vec<MemoryPool> pools;
};

View File

@@ -456,7 +456,7 @@ TEST_P(CompilationCachingTest, CacheSavingAndRetrieval) {
}
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
}
TEST_P(CompilationCachingTest, CacheSavingAndRetrievalNonZeroOffset) {
@@ -518,7 +518,7 @@ TEST_P(CompilationCachingTest, CacheSavingAndRetrievalNonZeroOffset) {
}
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
}
TEST_P(CompilationCachingTest, SaveToCacheInvalidNumCache) {
@@ -539,7 +539,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidNumCache) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@@ -563,7 +563,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidNumCache) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@@ -586,7 +586,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidNumCache) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@@ -610,7 +610,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidNumCache) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@@ -721,7 +721,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidNumFd) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@@ -745,7 +745,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidNumFd) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@@ -768,7 +768,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidNumFd) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@@ -792,7 +792,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidNumFd) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@@ -904,7 +904,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidAccessMode) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@@ -926,7 +926,7 @@ TEST_P(CompilationCachingTest, SaveToCacheInvalidAccessMode) {
saveModelToCache(model, modelCache, dataCache, &preparedModel);
ASSERT_NE(preparedModel, nullptr);
// Execute and verify results.
EvaluatePreparedModel(preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModel, /*testKind=*/TestKind::GENERAL);
// Check if prepareModelFromCache fails.
preparedModel = nullptr;
ErrorStatus status;
@@ -1070,7 +1070,8 @@ TEST_P(CompilationCachingTest, SaveToCache_TOCTOU) {
ASSERT_EQ(preparedModel, nullptr);
} else {
ASSERT_NE(preparedModel, nullptr);
EvaluatePreparedModel(preparedModel, testModelAdd, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModelAdd,
/*testKind=*/TestKind::GENERAL);
}
}
}
@@ -1131,7 +1132,8 @@ TEST_P(CompilationCachingTest, PrepareFromCache_TOCTOU) {
ASSERT_EQ(preparedModel, nullptr);
} else {
ASSERT_NE(preparedModel, nullptr);
EvaluatePreparedModel(preparedModel, testModelAdd, /*testKind=*/TestKind::GENERAL);
EvaluatePreparedModel(kDevice, preparedModel, testModelAdd,
/*testKind=*/TestKind::GENERAL);
}
}
}

View File

@@ -60,7 +60,7 @@ using implementation::PreparedModelCallback;
using V1_0::DataLocation;
using V1_0::ErrorStatus;
using V1_0::OperandLifeTime;
using V1_0::Request;
using V1_0::RequestArgument;
using V1_1::ExecutionPreference;
using V1_2::Constant;
using V1_2::MeasureTiming;
@@ -76,27 +76,118 @@ enum class Executor { ASYNC, SYNC, BURST };
enum class OutputType { FULLY_SPECIFIED, UNSPECIFIED, INSUFFICIENT };
enum class MemoryType { SHARED, DEVICE };
enum class IOType { INPUT, OUTPUT };
struct TestConfig {
Executor executor;
MeasureTiming measureTiming;
OutputType outputType;
MemoryType memoryType;
// `reportSkipping` indicates if a test should print an info message in case
// it is skipped. The field is set to true by default and is set to false in
// quantization coupling tests to suppress skipping a test
bool reportSkipping;
TestConfig(Executor executor, MeasureTiming measureTiming, OutputType outputType)
TestConfig(Executor executor, MeasureTiming measureTiming, OutputType outputType,
MemoryType memoryType)
: executor(executor),
measureTiming(measureTiming),
outputType(outputType),
memoryType(memoryType),
reportSkipping(true) {}
TestConfig(Executor executor, MeasureTiming measureTiming, OutputType outputType,
bool reportSkipping)
MemoryType memoryType, bool reportSkipping)
: executor(executor),
measureTiming(measureTiming),
outputType(outputType),
memoryType(memoryType),
reportSkipping(reportSkipping) {}
};
class DeviceMemoryAllocator {
public:
DeviceMemoryAllocator(const sp<IDevice>& device, const sp<IPreparedModel>& preparedModel,
const TestModel& testModel)
: kDevice(device), kPreparedModel(preparedModel), kTestModel(testModel) {}
// Allocate device memory for a target input/output operand.
// Return {IBuffer object, token} if successful.
// Return {nullptr, 0} if device memory is not supported.
template <IOType ioType>
std::pair<sp<IBuffer>, int32_t> allocate(uint32_t index) {
std::pair<sp<IBuffer>, int32_t> buffer;
allocateInternal<ioType>(index, &buffer);
return buffer;
}
private:
template <IOType ioType>
void allocateInternal(uint32_t index, std::pair<sp<IBuffer>, int32_t>* result) {
ASSERT_NE(result, nullptr);
// Prepare arguments.
BufferRole role = {.modelIndex = 0, .ioIndex = index, .frequency = 1.0f};
hidl_vec<BufferRole> inputRoles, outputRoles;
if constexpr (ioType == IOType::INPUT) {
inputRoles = {role};
} else {
outputRoles = {role};
}
// Allocate device memory.
ErrorStatus status;
sp<IBuffer> buffer;
int32_t token;
const auto ret = kDevice->allocate(
{}, {kPreparedModel}, inputRoles, outputRoles,
[&status, &buffer, &token](ErrorStatus error, const sp<IBuffer>& buf, int32_t tok) {
status = error;
buffer = buf;
token = tok;
});
// Check allocation results.
ASSERT_TRUE(ret.isOk());
if (status == ErrorStatus::NONE) {
ASSERT_NE(buffer, nullptr);
ASSERT_GT(token, 0);
} else {
ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
ASSERT_EQ(buffer, nullptr);
ASSERT_EQ(token, 0);
}
// Initialize input data from TestBuffer.
if constexpr (ioType == IOType::INPUT) {
if (buffer != nullptr) {
// TestBuffer -> Shared memory.
const auto& testBuffer = kTestModel.operands[kTestModel.inputIndexes[index]].data;
ASSERT_GT(testBuffer.size(), 0);
hidl_memory tmp = nn::allocateSharedMemory(testBuffer.size());
sp<IMemory> inputMemory = mapMemory(tmp);
ASSERT_NE(inputMemory.get(), nullptr);
uint8_t* inputPtr =
static_cast<uint8_t*>(static_cast<void*>(inputMemory->getPointer()));
ASSERT_NE(inputPtr, nullptr);
const uint8_t* begin = testBuffer.get<uint8_t>();
const uint8_t* end = begin + testBuffer.size();
std::copy(begin, end, inputPtr);
// Shared memory -> IBuffer.
auto ret = buffer->copyFrom(tmp, {});
ASSERT_TRUE(ret.isOk());
ASSERT_EQ(static_cast<ErrorStatus>(ret), ErrorStatus::NONE);
}
}
*result = {std::move(buffer), token};
}
const sp<IDevice> kDevice;
const sp<IPreparedModel> kPreparedModel;
const TestModel& kTestModel;
};
} // namespace
Model createModel(const TestModel& testModel) {
@@ -205,6 +296,161 @@ static void makeOutputDimensionsUnspecified(Model* model) {
}
}
constexpr uint32_t kInputPoolIndex = 0;
constexpr uint32_t kOutputPoolIndex = 1;
constexpr uint32_t kDeviceMemoryBeginIndex = 2;
static std::pair<Request, std::vector<sp<IBuffer>>> createRequest(
const sp<IDevice>& device, const sp<IPreparedModel>& preparedModel,
const TestModel& testModel, bool preferDeviceMemory) {
// Memory pools are organized as:
// - 0: Input shared memory pool
// - 1: Output shared memory pool
// - [2, 2+i): Input device memories
// - [2+i, 2+i+o): Output device memories
DeviceMemoryAllocator allocator(device, preparedModel, testModel);
std::vector<sp<IBuffer>> buffers;
std::vector<int32_t> tokens;
// Model inputs.
hidl_vec<RequestArgument> inputs(testModel.inputIndexes.size());
size_t inputSize = 0;
for (uint32_t i = 0; i < testModel.inputIndexes.size(); i++) {
const auto& op = testModel.operands[testModel.inputIndexes[i]];
if (op.data.size() == 0) {
// Omitted input.
inputs[i] = {.hasNoValue = true};
continue;
} else if (preferDeviceMemory) {
SCOPED_TRACE("Input index = " + std::to_string(i));
auto [buffer, token] = allocator.allocate<IOType::INPUT>(i);
if (buffer != nullptr) {
DataLocation loc = {.poolIndex = static_cast<uint32_t>(buffers.size() +
kDeviceMemoryBeginIndex)};
buffers.push_back(std::move(buffer));
tokens.push_back(token);
inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
continue;
}
}
// Reserve shared memory for input.
DataLocation loc = {.poolIndex = kInputPoolIndex,
.offset = static_cast<uint32_t>(inputSize),
.length = static_cast<uint32_t>(op.data.size())};
inputSize += op.data.alignedSize();
inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
}
// Model outputs.
hidl_vec<RequestArgument> outputs(testModel.outputIndexes.size());
size_t outputSize = 0;
for (uint32_t i = 0; i < testModel.outputIndexes.size(); i++) {
const auto& op = testModel.operands[testModel.outputIndexes[i]];
if (preferDeviceMemory) {
SCOPED_TRACE("Output index = " + std::to_string(i));
auto [buffer, token] = allocator.allocate<IOType::OUTPUT>(i);
if (buffer != nullptr) {
DataLocation loc = {.poolIndex = static_cast<uint32_t>(buffers.size() +
kDeviceMemoryBeginIndex)};
buffers.push_back(std::move(buffer));
tokens.push_back(token);
outputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
continue;
}
}
// In the case of zero-sized output, we should at least provide a one-byte buffer.
// This is because zero-sized tensors are only supported internally to the driver, or
// reported in output shapes. It is illegal for the client to pre-specify a zero-sized
// tensor as model output. Otherwise, we will have two semantic conflicts:
// - "Zero dimension" conflicts with "unspecified dimension".
// - "Omitted operand buffer" conflicts with "zero-sized operand buffer".
size_t bufferSize = std::max<size_t>(op.data.size(), 1);
// Reserve shared memory for output.
DataLocation loc = {.poolIndex = kOutputPoolIndex,
.offset = static_cast<uint32_t>(outputSize),
.length = static_cast<uint32_t>(bufferSize)};
outputSize += op.data.size() == 0 ? TestBuffer::kAlignment : op.data.alignedSize();
outputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
}
// Memory pools.
hidl_vec<Request::MemoryPool> pools(kDeviceMemoryBeginIndex + buffers.size());
pools[kInputPoolIndex].hidlMemory(nn::allocateSharedMemory(std::max<size_t>(inputSize, 1)));
pools[kOutputPoolIndex].hidlMemory(nn::allocateSharedMemory(std::max<size_t>(outputSize, 1)));
CHECK_NE(pools[kInputPoolIndex].hidlMemory().size(), 0u);
CHECK_NE(pools[kOutputPoolIndex].hidlMemory().size(), 0u);
for (uint32_t i = 0; i < buffers.size(); i++) {
pools[kDeviceMemoryBeginIndex + i].token(tokens[i]);
}
// Copy input data to the input shared memory pool.
sp<IMemory> inputMemory = mapMemory(pools[kInputPoolIndex].hidlMemory());
CHECK(inputMemory.get() != nullptr);
uint8_t* inputPtr = static_cast<uint8_t*>(static_cast<void*>(inputMemory->getPointer()));
CHECK(inputPtr != nullptr);
for (uint32_t i = 0; i < testModel.inputIndexes.size(); i++) {
if (!inputs[i].hasNoValue && inputs[i].location.poolIndex == kInputPoolIndex) {
const auto& op = testModel.operands[testModel.inputIndexes[i]];
const uint8_t* begin = op.data.get<uint8_t>();
const uint8_t* end = begin + op.data.size();
std::copy(begin, end, inputPtr + inputs[i].location.offset);
}
}
Request request = {
.inputs = std::move(inputs), .outputs = std::move(outputs), .pools = std::move(pools)};
return {std::move(request), std::move(buffers)};
}
// Get a TestBuffer with data copied from an IBuffer object.
static void getBuffer(const sp<IBuffer>& buffer, size_t size, TestBuffer* testBuffer) {
// IBuffer -> Shared memory.
hidl_memory tmp = nn::allocateSharedMemory(size);
const auto ret = buffer->copyTo(tmp);
ASSERT_TRUE(ret.isOk());
ASSERT_EQ(static_cast<ErrorStatus>(ret), ErrorStatus::NONE);
// Shared memory -> TestBuffer.
sp<IMemory> outputMemory = mapMemory(tmp);
ASSERT_NE(outputMemory.get(), nullptr);
uint8_t* outputPtr = static_cast<uint8_t*>(static_cast<void*>(outputMemory->getPointer()));
ASSERT_NE(outputPtr, nullptr);
ASSERT_NE(testBuffer, nullptr);
*testBuffer = TestBuffer(size, outputPtr);
}
static std::vector<TestBuffer> getOutputBuffers(const TestModel& testModel, const Request& request,
const std::vector<sp<IBuffer>>& buffers) {
sp<IMemory> outputMemory = mapMemory(request.pools[kOutputPoolIndex].hidlMemory());
CHECK(outputMemory.get() != nullptr);
uint8_t* outputPtr = static_cast<uint8_t*>(static_cast<void*>(outputMemory->getPointer()));
CHECK(outputPtr != nullptr);
// Copy out output results.
std::vector<TestBuffer> outputBuffers;
for (uint32_t i = 0; i < request.outputs.size(); i++) {
const auto& outputLoc = request.outputs[i].location;
if (outputLoc.poolIndex == kOutputPoolIndex) {
outputBuffers.emplace_back(outputLoc.length, outputPtr + outputLoc.offset);
} else {
const auto& op = testModel.operands[testModel.outputIndexes[i]];
if (op.data.size() == 0) {
outputBuffers.emplace_back();
} else {
SCOPED_TRACE("Output index = " + std::to_string(i));
const uint32_t bufferIndex = outputLoc.poolIndex - kDeviceMemoryBeginIndex;
TestBuffer buffer;
getBuffer(buffers[bufferIndex], op.data.size(), &buffer);
outputBuffers.push_back(std::move(buffer));
}
}
}
return outputBuffers;
}
static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
const Request& request, MeasureTiming measure,
sp<ExecutionCallback>& callback) {
@@ -234,8 +480,9 @@ static std::shared_ptr<::android::nn::ExecutionBurstController> CreateBurst(
std::chrono::microseconds{0});
}
void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
const TestConfig& testConfig, bool* skipped = nullptr) {
void EvaluatePreparedModel(const sp<IDevice>& device, const sp<IPreparedModel>& preparedModel,
const TestModel& testModel, const TestConfig& testConfig,
bool* skipped = nullptr) {
if (skipped != nullptr) {
*skipped = false;
}
@@ -245,7 +492,13 @@ void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestMo
return;
}
Request request = createRequest(testModel);
auto [request, buffers] =
createRequest(device, preparedModel, testModel,
/*preferDeviceMemory=*/testConfig.memoryType == MemoryType::DEVICE);
// Skip if testing memory domain but no device memory has been allocated.
if (testConfig.memoryType == MemoryType::DEVICE && buffers.empty()) {
return;
}
if (testConfig.outputType == OutputType::INSUFFICIENT) {
makeOutputInsufficientSize(/*outputIndex=*/0, &request);
}
@@ -284,23 +537,29 @@ void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestMo
break;
}
case Executor::BURST: {
// TODO(butlermichael): Check if we need to test burst in V1_3 if the interface remains
// V1_2.
SCOPED_TRACE("burst");
// check compliance
ASSERT_TRUE(nn::compliantWithV1_0(request));
V1_0::Request request10 = nn::convertToV1_0(request);
// create burst
const std::shared_ptr<::android::nn::ExecutionBurstController> controller =
CreateBurst(preparedModel);
ASSERT_NE(nullptr, controller.get());
// create memory keys
std::vector<intptr_t> keys(request.pools.size());
std::vector<intptr_t> keys(request10.pools.size());
for (size_t i = 0; i < keys.size(); ++i) {
keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
keys[i] = reinterpret_cast<intptr_t>(&request10.pools[i]);
}
// execute burst
int n;
std::tie(n, outputShapes, timing, std::ignore) =
controller->compute(request, testConfig.measureTiming, keys);
controller->compute(request10, testConfig.measureTiming, keys);
executionStatus = nn::convertResultCodeToErrorStatus(n);
break;
@@ -361,17 +620,18 @@ void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestMo
}
// Retrieve execution results.
const std::vector<TestBuffer> outputs = getOutputBuffers(request);
const std::vector<TestBuffer> outputs = getOutputBuffers(testModel, request, buffers);
// We want "close-enough" results.
checkResults(testModel, outputs);
}
void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
TestKind testKind) {
void EvaluatePreparedModel(const sp<IDevice>& device, const sp<IPreparedModel>& preparedModel,
const TestModel& testModel, TestKind testKind) {
std::vector<OutputType> outputTypesList;
std::vector<MeasureTiming> measureTimingList;
std::vector<Executor> executorList;
MemoryType memoryType = MemoryType::SHARED;
switch (testKind) {
case TestKind::GENERAL: {
@@ -384,6 +644,12 @@ void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestMo
measureTimingList = {MeasureTiming::NO, MeasureTiming::YES};
executorList = {Executor::ASYNC, Executor::SYNC, Executor::BURST};
} break;
case TestKind::MEMORY_DOMAIN: {
outputTypesList = {OutputType::FULLY_SPECIFIED};
measureTimingList = {MeasureTiming::NO};
executorList = {Executor::ASYNC, Executor::SYNC};
memoryType = MemoryType::DEVICE;
} break;
case TestKind::QUANTIZATION_COUPLING: {
LOG(FATAL) << "Wrong TestKind for EvaluatePreparedModel";
return;
@@ -393,14 +659,15 @@ void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestMo
for (const OutputType outputType : outputTypesList) {
for (const MeasureTiming measureTiming : measureTimingList) {
for (const Executor executor : executorList) {
const TestConfig testConfig(executor, measureTiming, outputType);
EvaluatePreparedModel(preparedModel, testModel, testConfig);
const TestConfig testConfig(executor, measureTiming, outputType, memoryType);
EvaluatePreparedModel(device, preparedModel, testModel, testConfig);
}
}
}
}
void EvaluatePreparedCoupledModels(const sp<IPreparedModel>& preparedModel,
void EvaluatePreparedCoupledModels(const sp<IDevice>& device,
const sp<IPreparedModel>& preparedModel,
const TestModel& testModel,
const sp<IPreparedModel>& preparedCoupledModel,
const TestModel& coupledModel) {
@@ -411,12 +678,12 @@ void EvaluatePreparedCoupledModels(const sp<IPreparedModel>& preparedModel,
for (const OutputType outputType : outputTypesList) {
for (const MeasureTiming measureTiming : measureTimingList) {
for (const Executor executor : executorList) {
const TestConfig testConfig(executor, measureTiming, outputType,
const TestConfig testConfig(executor, measureTiming, outputType, MemoryType::SHARED,
/*reportSkipping=*/false);
bool baseSkipped = false;
EvaluatePreparedModel(preparedModel, testModel, testConfig, &baseSkipped);
EvaluatePreparedModel(device, preparedModel, testModel, testConfig, &baseSkipped);
bool coupledSkipped = false;
EvaluatePreparedModel(preparedCoupledModel, coupledModel, testConfig,
EvaluatePreparedModel(device, preparedCoupledModel, coupledModel, testConfig,
&coupledSkipped);
ASSERT_EQ(baseSkipped, coupledSkipped);
if (baseSkipped) {
@@ -441,15 +708,12 @@ void Execute(const sp<IDevice>& device, const TestModel& testModel, TestKind tes
sp<IPreparedModel> preparedModel;
switch (testKind) {
case TestKind::GENERAL: {
case TestKind::GENERAL:
case TestKind::DYNAMIC_SHAPE:
case TestKind::MEMORY_DOMAIN: {
createPreparedModel(device, model, &preparedModel);
if (preparedModel == nullptr) return;
EvaluatePreparedModel(preparedModel, testModel, TestKind::GENERAL);
} break;
case TestKind::DYNAMIC_SHAPE: {
createPreparedModel(device, model, &preparedModel);
if (preparedModel == nullptr) return;
EvaluatePreparedModel(preparedModel, testModel, TestKind::DYNAMIC_SHAPE);
EvaluatePreparedModel(device, preparedModel, testModel, testKind);
} break;
case TestKind::QUANTIZATION_COUPLING: {
ASSERT_TRUE(testModel.hasQuant8CoupledOperands());
@@ -473,7 +737,7 @@ void Execute(const sp<IDevice>& device, const TestModel& testModel, TestKind tes
GTEST_SKIP();
}
ASSERT_NE(preparedCoupledModel, nullptr);
EvaluatePreparedCoupledModels(preparedModel, testModel, preparedCoupledModel,
EvaluatePreparedCoupledModels(device, preparedModel, testModel, preparedCoupledModel,
signedQuantizedModel);
} break;
}
@@ -499,6 +763,9 @@ class GeneratedTest : public GeneratedTestBase {};
// Tag for the dynamic output shape tests
class DynamicOutputShapeTest : public GeneratedTest {};
// Tag for the memory domain tests
class MemoryDomainTest : public GeneratedTest {};
// Tag for the dynamic output shape tests
class QuantizationCouplingTest : public GeneratedTest {};
@@ -510,6 +777,10 @@ TEST_P(DynamicOutputShapeTest, Test) {
Execute(kDevice, kTestModel, /*testKind=*/TestKind::DYNAMIC_SHAPE);
}
TEST_P(MemoryDomainTest, Test) {
Execute(kDevice, kTestModel, /*testKind=*/TestKind::MEMORY_DOMAIN);
}
TEST_P(QuantizationCouplingTest, Test) {
Execute(kDevice, kTestModel, /*testKind=*/TestKind::QUANTIZATION_COUPLING);
}
@@ -520,6 +791,9 @@ INSTANTIATE_GENERATED_TEST(GeneratedTest,
INSTANTIATE_GENERATED_TEST(DynamicOutputShapeTest,
[](const TestModel& testModel) { return !testModel.expectFailure; });
INSTANTIATE_GENERATED_TEST(MemoryDomainTest,
[](const TestModel& testModel) { return !testModel.expectFailure; });
INSTANTIATE_GENERATED_TEST(QuantizationCouplingTest, [](const TestModel& testModel) {
return testModel.hasQuant8CoupledOperands() && testModel.operations.size() == 1;
});

View File

@@ -62,13 +62,15 @@ enum class TestKind {
GENERAL,
// Same as GENERAL but sets dimensions for the output tensors to zeros
DYNAMIC_SHAPE,
// Same as GENERAL but use device memories for inputs and outputs
MEMORY_DOMAIN,
// Tests if quantized model with TENSOR_QUANT8_ASYMM produces the same result
// (OK/SKIPPED/FAILED) as the model with all such tensors converted to
// TENSOR_QUANT8_ASYMM_SIGNED.
QUANTIZATION_COUPLING
};
void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel,
void EvaluatePreparedModel(const sp<IDevice>& device, const sp<IPreparedModel>& preparedModel,
const test_helper::TestModel& testModel, TestKind testKind);
} // namespace android::hardware::neuralnetworks::V1_3::vts::functional

View File

@@ -28,7 +28,6 @@
namespace android::hardware::neuralnetworks::V1_3::vts::functional {
using V1_0::ErrorStatus;
using V1_0::Request;
using V1_2::MeasureTiming;
using V1_2::OutputShape;
using V1_2::Timing;
@@ -93,9 +92,13 @@ static void validate(const sp<IPreparedModel>& preparedModel, const std::string&
}
// burst
// TODO(butlermichael): Check if we need to test burst in V1_3 if the interface remains V1_2.
{
SCOPED_TRACE(message + " [burst]");
ASSERT_TRUE(nn::compliantWithV1_0(request));
V1_0::Request request10 = nn::convertToV1_0(request);
// create burst
std::shared_ptr<::android::nn::ExecutionBurstController> burst =
android::nn::ExecutionBurstController::create(preparedModel,
@@ -103,13 +106,13 @@ static void validate(const sp<IPreparedModel>& preparedModel, const std::string&
ASSERT_NE(nullptr, burst.get());
// create memory keys
std::vector<intptr_t> keys(request.pools.size());
std::vector<intptr_t> keys(request10.pools.size());
for (size_t i = 0; i < keys.size(); ++i) {
keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
keys[i] = reinterpret_cast<intptr_t>(&request10.pools[i]);
}
// execute and verify
const auto [n, outputShapes, timing, fallback] = burst->compute(request, measure, keys);
const auto [n, outputShapes, timing, fallback] = burst->compute(request10, measure, keys);
const ErrorStatus status = nn::convertResultCodeToErrorStatus(n);
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
EXPECT_EQ(outputShapes.size(), 0);
@@ -117,7 +120,7 @@ static void validate(const sp<IPreparedModel>& preparedModel, const std::string&
EXPECT_FALSE(fallback);
// additional burst testing
if (request.pools.size() > 0) {
if (request10.pools.size() > 0) {
// valid free
burst->freeMemory(keys.front());

View File

@@ -25,6 +25,7 @@
#include "1.3/Callbacks.h"
#include "GeneratedTestHarness.h"
#include "TestHarness.h"
#include "Utils.h"
namespace android::hardware::neuralnetworks::V1_3::vts::functional {
@@ -32,7 +33,6 @@ using HidlToken =
hidl_array<uint8_t, static_cast<uint32_t>(V1_2::Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
using implementation::PreparedModelCallback;
using V1_0::ErrorStatus;
using V1_0::Request;
using V1_1::ExecutionPreference;
// internal helper function
@@ -124,9 +124,9 @@ INSTANTIATE_DEVICE_TEST(NeuralnetworksHidlTest);
// Forward declaration from ValidateModel.cpp
void validateModel(const sp<IDevice>& device, const Model& model);
// Forward declaration from ValidateRequest.cpp
void validateRequest(const sp<IPreparedModel>& preparedModel, const V1_0::Request& request);
void validateRequest(const sp<IPreparedModel>& preparedModel, const Request& request);
// Forward declaration from ValidateRequest.cpp
void validateRequestFailure(const sp<IPreparedModel>& preparedModel, const V1_0::Request& request);
void validateRequestFailure(const sp<IPreparedModel>& preparedModel, const Request& request);
// Forward declaration from ValidateBurst.cpp
void validateBurst(const sp<IPreparedModel>& preparedModel, const V1_0::Request& request);
@@ -139,7 +139,11 @@ void validateEverything(const sp<IDevice>& device, const Model& model, const Req
if (preparedModel == nullptr) return;
validateRequest(preparedModel, request);
validateBurst(preparedModel, request);
// TODO(butlermichael): Check if we need to test burst in V1_3 if the interface remains V1_2.
ASSERT_TRUE(nn::compliantWithV1_0(request));
V1_0::Request request10 = nn::convertToV1_0(request);
validateBurst(preparedModel, request10);
}
void validateFailure(const sp<IDevice>& device, const Model& model, const Request& request) {
@@ -157,7 +161,7 @@ void validateFailure(const sp<IDevice>& device, const Model& model, const Reques
TEST_P(ValidationTest, Test) {
const Model model = createModel(kTestModel);
const Request request = createRequest(kTestModel);
const Request request = nn::convertToV1_3(createRequest(kTestModel));
if (kTestModel.expectFailure) {
validateFailure(kDevice, model, request);
} else {