Add utils for AIDL types conversions

Add conversions between canonical types and NNAPI AIDL interface types
that are needed for AIDL sample driver implementation.

Bug: 172922059
Test: VtsNeuralnetworksTargetTest
Change-Id: I02803302e02457e52c752114b47b94239eff20e9
Merged-In: I02803302e02457e52c752114b47b94239eff20e9
(cherry picked from commit 532136b9d4)
This commit is contained in:
Lev Proleev
2020-11-11 18:28:50 +00:00
parent bfd12c66e4
commit 6b6dfcd439
9 changed files with 1155 additions and 3 deletions

View File

@@ -15,5 +15,13 @@ aidl_interface {
cpp: {
enabled: false,
},
ndk: {
apex_available: [
"//apex_available:platform",
"com.android.neuralnetworks",
"test_com.android.neuralnetworks",
],
min_sdk_version: "30",
},
},
}

View File

@@ -0,0 +1,32 @@
//
// Copyright (C) 2021 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
cc_library_static {
name: "neuralnetworks_utils_hal_aidl",
defaults: ["neuralnetworks_utils_defaults"],
srcs: ["src/*"],
local_include_dirs: ["include/nnapi/hal/aidl/"],
export_include_dirs: ["include"],
static_libs: [
"neuralnetworks_types",
"neuralnetworks_utils_hal_common",
],
shared_libs: [
"libhidlbase",
"android.hardware.neuralnetworks-V1-ndk_platform",
"libbinder_ndk",
],
}

View File

@@ -0,0 +1,11 @@
# Neuralnetworks team
butlermichael@google.com
dgross@google.com
galarragas@google.com
jeanluc@google.com
levp@google.com
miaowang@google.com
pszczepaniak@google.com
slavash@google.com
vddang@google.com
xusongw@google.com

View File

@@ -0,0 +1,134 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_CONVERSIONS_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_CONVERSIONS_H
#include <aidl/android/hardware/neuralnetworks/BufferDesc.h>
#include <aidl/android/hardware/neuralnetworks/BufferRole.h>
#include <aidl/android/hardware/neuralnetworks/Capabilities.h>
#include <aidl/android/hardware/neuralnetworks/DataLocation.h>
#include <aidl/android/hardware/neuralnetworks/DeviceType.h>
#include <aidl/android/hardware/neuralnetworks/ErrorStatus.h>
#include <aidl/android/hardware/neuralnetworks/ExecutionPreference.h>
#include <aidl/android/hardware/neuralnetworks/Extension.h>
#include <aidl/android/hardware/neuralnetworks/ExtensionNameAndPrefix.h>
#include <aidl/android/hardware/neuralnetworks/ExtensionOperandTypeInformation.h>
#include <aidl/android/hardware/neuralnetworks/Memory.h>
#include <aidl/android/hardware/neuralnetworks/Model.h>
#include <aidl/android/hardware/neuralnetworks/Operand.h>
#include <aidl/android/hardware/neuralnetworks/OperandExtraParams.h>
#include <aidl/android/hardware/neuralnetworks/OperandLifeTime.h>
#include <aidl/android/hardware/neuralnetworks/OperandPerformance.h>
#include <aidl/android/hardware/neuralnetworks/OperandType.h>
#include <aidl/android/hardware/neuralnetworks/Operation.h>
#include <aidl/android/hardware/neuralnetworks/OperationType.h>
#include <aidl/android/hardware/neuralnetworks/OutputShape.h>
#include <aidl/android/hardware/neuralnetworks/PerformanceInfo.h>
#include <aidl/android/hardware/neuralnetworks/Priority.h>
#include <aidl/android/hardware/neuralnetworks/Request.h>
#include <aidl/android/hardware/neuralnetworks/RequestArgument.h>
#include <aidl/android/hardware/neuralnetworks/RequestMemoryPool.h>
#include <aidl/android/hardware/neuralnetworks/Subgraph.h>
#include <aidl/android/hardware/neuralnetworks/SymmPerChannelQuantParams.h>
#include <aidl/android/hardware/neuralnetworks/Timing.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <nnapi/hal/CommonUtils.h>
#include <vector>
namespace android::nn {
GeneralResult<OperandType> unvalidatedConvert(const aidl_hal::OperandType& operandType);
GeneralResult<OperationType> unvalidatedConvert(const aidl_hal::OperationType& operationType);
GeneralResult<DeviceType> unvalidatedConvert(const aidl_hal::DeviceType& deviceType);
GeneralResult<Priority> unvalidatedConvert(const aidl_hal::Priority& priority);
GeneralResult<Capabilities> unvalidatedConvert(const aidl_hal::Capabilities& capabilities);
GeneralResult<Capabilities::OperandPerformance> unvalidatedConvert(
const aidl_hal::OperandPerformance& operandPerformance);
GeneralResult<Capabilities::PerformanceInfo> unvalidatedConvert(
const aidl_hal::PerformanceInfo& performanceInfo);
GeneralResult<DataLocation> unvalidatedConvert(const aidl_hal::DataLocation& location);
GeneralResult<Operand> unvalidatedConvert(const aidl_hal::Operand& operand);
GeneralResult<Operand::ExtraParams> unvalidatedConvert(
const std::optional<aidl_hal::OperandExtraParams>& optionalExtraParams);
GeneralResult<Operand::LifeTime> unvalidatedConvert(
const aidl_hal::OperandLifeTime& operandLifeTime);
GeneralResult<Operand::SymmPerChannelQuantParams> unvalidatedConvert(
const aidl_hal::SymmPerChannelQuantParams& symmPerChannelQuantParams);
GeneralResult<Operation> unvalidatedConvert(const aidl_hal::Operation& operation);
GeneralResult<Model> unvalidatedConvert(const aidl_hal::Model& model);
GeneralResult<Model::ExtensionNameAndPrefix> unvalidatedConvert(
const aidl_hal::ExtensionNameAndPrefix& extensionNameAndPrefix);
GeneralResult<Model::OperandValues> unvalidatedConvert(const std::vector<uint8_t>& operandValues);
GeneralResult<Model::Subgraph> unvalidatedConvert(const aidl_hal::Subgraph& subgraph);
GeneralResult<OutputShape> unvalidatedConvert(const aidl_hal::OutputShape& outputShape);
GeneralResult<MeasureTiming> unvalidatedConvert(bool measureTiming);
GeneralResult<Memory> unvalidatedConvert(const aidl_hal::Memory& memory);
GeneralResult<Timing> unvalidatedConvert(const aidl_hal::Timing& timing);
GeneralResult<BufferDesc> unvalidatedConvert(const aidl_hal::BufferDesc& bufferDesc);
GeneralResult<BufferRole> unvalidatedConvert(const aidl_hal::BufferRole& bufferRole);
GeneralResult<Request> unvalidatedConvert(const aidl_hal::Request& request);
GeneralResult<Request::Argument> unvalidatedConvert(
const aidl_hal::RequestArgument& requestArgument);
GeneralResult<Request::MemoryPool> unvalidatedConvert(
const aidl_hal::RequestMemoryPool& memoryPool);
GeneralResult<ErrorStatus> unvalidatedConvert(const aidl_hal::ErrorStatus& errorStatus);
GeneralResult<ExecutionPreference> unvalidatedConvert(
const aidl_hal::ExecutionPreference& executionPreference);
GeneralResult<Extension> unvalidatedConvert(const aidl_hal::Extension& extension);
GeneralResult<Extension::OperandTypeInformation> unvalidatedConvert(
const aidl_hal::ExtensionOperandTypeInformation& operandTypeInformation);
GeneralResult<SharedHandle> unvalidatedConvert(
const ::aidl::android::hardware::common::NativeHandle& handle);
GeneralResult<ExecutionPreference> convert(
const aidl_hal::ExecutionPreference& executionPreference);
GeneralResult<Memory> convert(const aidl_hal::Memory& memory);
GeneralResult<Model> convert(const aidl_hal::Model& model);
GeneralResult<Operand> convert(const aidl_hal::Operand& operand);
GeneralResult<OperandType> convert(const aidl_hal::OperandType& operandType);
GeneralResult<Priority> convert(const aidl_hal::Priority& priority);
GeneralResult<Request::MemoryPool> convert(const aidl_hal::RequestMemoryPool& memoryPool);
GeneralResult<Request> convert(const aidl_hal::Request& request);
GeneralResult<std::vector<Operation>> convert(const std::vector<aidl_hal::Operation>& outputShapes);
GeneralResult<std::vector<Memory>> convert(const std::vector<aidl_hal::Memory>& memories);
GeneralResult<std::vector<uint32_t>> toUnsigned(const std::vector<int32_t>& vec);
} // namespace android::nn
namespace aidl::android::hardware::neuralnetworks::utils {
namespace nn = ::android::nn;
nn::GeneralResult<Memory> unvalidatedConvert(const nn::Memory& memory);
nn::GeneralResult<OutputShape> unvalidatedConvert(const nn::OutputShape& outputShape);
nn::GeneralResult<ErrorStatus> unvalidatedConvert(const nn::ErrorStatus& errorStatus);
nn::GeneralResult<Memory> convert(const nn::Memory& memory);
nn::GeneralResult<ErrorStatus> convert(const nn::ErrorStatus& errorStatus);
nn::GeneralResult<std::vector<OutputShape>> convert(
const std::vector<nn::OutputShape>& outputShapes);
nn::GeneralResult<std::vector<int32_t>> toSigned(const std::vector<uint32_t>& vec);
} // namespace aidl::android::hardware::neuralnetworks::utils
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_CONVERSIONS_H

View File

@@ -0,0 +1,54 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_H
#include "nnapi/hal/aidl/Conversions.h"
#include <android-base/logging.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
namespace aidl::android::hardware::neuralnetworks::utils {
constexpr auto kDefaultPriority = Priority::MEDIUM;
constexpr auto kVersion = nn::Version::ANDROID_S;
template <typename Type>
nn::Result<void> validate(const Type& halObject) {
const auto maybeCanonical = nn::convert(halObject);
if (!maybeCanonical.has_value()) {
return nn::error() << maybeCanonical.error().message;
}
return {};
}
template <typename Type>
bool valid(const Type& halObject) {
const auto result = utils::validate(halObject);
if (!result.has_value()) {
LOG(ERROR) << result.error();
}
return result.has_value();
}
nn::GeneralResult<Model> copyModel(const Model& model);
} // namespace aidl::android::hardware::neuralnetworks::utils
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_AIDL_UTILS_H

View File

@@ -0,0 +1,269 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <aidl/android/hardware/neuralnetworks/DeviceType.h>
#include <aidl/android/hardware/neuralnetworks/ErrorStatus.h>
#include <aidl/android/hardware/neuralnetworks/ExecutionPreference.h>
#include <aidl/android/hardware/neuralnetworks/FusedActivationFunc.h>
#include <aidl/android/hardware/neuralnetworks/IDevice.h>
#include <aidl/android/hardware/neuralnetworks/OperandLifeTime.h>
#include <aidl/android/hardware/neuralnetworks/OperandType.h>
#include <aidl/android/hardware/neuralnetworks/OperationType.h>
#include <aidl/android/hardware/neuralnetworks/Priority.h>
#include <ControlFlow.h>
#include <nnapi/OperandTypes.h>
#include <nnapi/OperationTypes.h>
#include <nnapi/Types.h>
#include <type_traits>
namespace {
#define COMPARE_ENUMS_TYPES(lhsType, rhsType) \
static_assert( \
std::is_same_v< \
std::underlying_type_t<::aidl::android::hardware::neuralnetworks::lhsType>, \
std::underlying_type_t<::android::nn::rhsType>>, \
"::aidl::android::hardware::neuralnetworks::" #lhsType \
" does not have the same underlying type as ::android::nn::" #rhsType)
COMPARE_ENUMS_TYPES(OperandType, OperandType);
COMPARE_ENUMS_TYPES(OperationType, OperationType);
COMPARE_ENUMS_TYPES(Priority, Priority);
COMPARE_ENUMS_TYPES(OperandLifeTime, Operand::LifeTime);
COMPARE_ENUMS_TYPES(ErrorStatus, ErrorStatus);
#undef COMPARE_ENUMS_TYPES
#define COMPARE_ENUMS_FULL(lhsSymbol, rhsSymbol, lhsType, rhsType) \
static_assert( \
static_cast< \
std::underlying_type_t<::aidl::android::hardware::neuralnetworks::lhsType>>( \
::aidl::android::hardware::neuralnetworks::lhsType::lhsSymbol) == \
static_cast<std::underlying_type_t<::android::nn::rhsType>>( \
::android::nn::rhsType::rhsSymbol), \
"::aidl::android::hardware::neuralnetworks::" #lhsType "::" #lhsSymbol \
" does not match ::android::nn::" #rhsType "::" #rhsSymbol)
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, symbol, OperandType, OperandType)
COMPARE_ENUMS(FLOAT32);
COMPARE_ENUMS(INT32);
COMPARE_ENUMS(UINT32);
COMPARE_ENUMS(TENSOR_FLOAT32);
COMPARE_ENUMS(TENSOR_INT32);
COMPARE_ENUMS(TENSOR_QUANT8_ASYMM);
COMPARE_ENUMS(BOOL);
COMPARE_ENUMS(TENSOR_QUANT16_SYMM);
COMPARE_ENUMS(TENSOR_FLOAT16);
COMPARE_ENUMS(TENSOR_BOOL8);
COMPARE_ENUMS(FLOAT16);
COMPARE_ENUMS(TENSOR_QUANT8_SYMM_PER_CHANNEL);
COMPARE_ENUMS(TENSOR_QUANT16_ASYMM);
COMPARE_ENUMS(TENSOR_QUANT8_SYMM);
COMPARE_ENUMS(TENSOR_QUANT8_ASYMM_SIGNED);
COMPARE_ENUMS(SUBGRAPH);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, symbol, OperationType, OperationType)
COMPARE_ENUMS(ADD);
COMPARE_ENUMS(AVERAGE_POOL_2D);
COMPARE_ENUMS(CONCATENATION);
COMPARE_ENUMS(CONV_2D);
COMPARE_ENUMS(DEPTHWISE_CONV_2D);
COMPARE_ENUMS(DEPTH_TO_SPACE);
COMPARE_ENUMS(DEQUANTIZE);
COMPARE_ENUMS(EMBEDDING_LOOKUP);
COMPARE_ENUMS(FLOOR);
COMPARE_ENUMS(FULLY_CONNECTED);
COMPARE_ENUMS(HASHTABLE_LOOKUP);
COMPARE_ENUMS(L2_NORMALIZATION);
COMPARE_ENUMS(L2_POOL_2D);
COMPARE_ENUMS(LOCAL_RESPONSE_NORMALIZATION);
COMPARE_ENUMS(LOGISTIC);
COMPARE_ENUMS(LSH_PROJECTION);
COMPARE_ENUMS(LSTM);
COMPARE_ENUMS(MAX_POOL_2D);
COMPARE_ENUMS(MUL);
COMPARE_ENUMS(RELU);
COMPARE_ENUMS(RELU1);
COMPARE_ENUMS(RELU6);
COMPARE_ENUMS(RESHAPE);
COMPARE_ENUMS(RESIZE_BILINEAR);
COMPARE_ENUMS(RNN);
COMPARE_ENUMS(SOFTMAX);
COMPARE_ENUMS(SPACE_TO_DEPTH);
COMPARE_ENUMS(SVDF);
COMPARE_ENUMS(TANH);
COMPARE_ENUMS(BATCH_TO_SPACE_ND);
COMPARE_ENUMS(DIV);
COMPARE_ENUMS(MEAN);
COMPARE_ENUMS(PAD);
COMPARE_ENUMS(SPACE_TO_BATCH_ND);
COMPARE_ENUMS(SQUEEZE);
COMPARE_ENUMS(STRIDED_SLICE);
COMPARE_ENUMS(SUB);
COMPARE_ENUMS(TRANSPOSE);
COMPARE_ENUMS(ABS);
COMPARE_ENUMS(ARGMAX);
COMPARE_ENUMS(ARGMIN);
COMPARE_ENUMS(AXIS_ALIGNED_BBOX_TRANSFORM);
COMPARE_ENUMS(BIDIRECTIONAL_SEQUENCE_LSTM);
COMPARE_ENUMS(BIDIRECTIONAL_SEQUENCE_RNN);
COMPARE_ENUMS(BOX_WITH_NMS_LIMIT);
COMPARE_ENUMS(CAST);
COMPARE_ENUMS(CHANNEL_SHUFFLE);
COMPARE_ENUMS(DETECTION_POSTPROCESSING);
COMPARE_ENUMS(EQUAL);
COMPARE_ENUMS(EXP);
COMPARE_ENUMS(EXPAND_DIMS);
COMPARE_ENUMS(GATHER);
COMPARE_ENUMS(GENERATE_PROPOSALS);
COMPARE_ENUMS(GREATER);
COMPARE_ENUMS(GREATER_EQUAL);
COMPARE_ENUMS(GROUPED_CONV_2D);
COMPARE_ENUMS(HEATMAP_MAX_KEYPOINT);
COMPARE_ENUMS(INSTANCE_NORMALIZATION);
COMPARE_ENUMS(LESS);
COMPARE_ENUMS(LESS_EQUAL);
COMPARE_ENUMS(LOG);
COMPARE_ENUMS(LOGICAL_AND);
COMPARE_ENUMS(LOGICAL_NOT);
COMPARE_ENUMS(LOGICAL_OR);
COMPARE_ENUMS(LOG_SOFTMAX);
COMPARE_ENUMS(MAXIMUM);
COMPARE_ENUMS(MINIMUM);
COMPARE_ENUMS(NEG);
COMPARE_ENUMS(NOT_EQUAL);
COMPARE_ENUMS(PAD_V2);
COMPARE_ENUMS(POW);
COMPARE_ENUMS(PRELU);
COMPARE_ENUMS(QUANTIZE);
COMPARE_ENUMS(QUANTIZED_16BIT_LSTM);
COMPARE_ENUMS(RANDOM_MULTINOMIAL);
COMPARE_ENUMS(REDUCE_ALL);
COMPARE_ENUMS(REDUCE_ANY);
COMPARE_ENUMS(REDUCE_MAX);
COMPARE_ENUMS(REDUCE_MIN);
COMPARE_ENUMS(REDUCE_PROD);
COMPARE_ENUMS(REDUCE_SUM);
COMPARE_ENUMS(ROI_ALIGN);
COMPARE_ENUMS(ROI_POOLING);
COMPARE_ENUMS(RSQRT);
COMPARE_ENUMS(SELECT);
COMPARE_ENUMS(SIN);
COMPARE_ENUMS(SLICE);
COMPARE_ENUMS(SPLIT);
COMPARE_ENUMS(SQRT);
COMPARE_ENUMS(TILE);
COMPARE_ENUMS(TOPK_V2);
COMPARE_ENUMS(TRANSPOSE_CONV_2D);
COMPARE_ENUMS(UNIDIRECTIONAL_SEQUENCE_LSTM);
COMPARE_ENUMS(UNIDIRECTIONAL_SEQUENCE_RNN);
COMPARE_ENUMS(RESIZE_NEAREST_NEIGHBOR);
COMPARE_ENUMS(QUANTIZED_LSTM);
COMPARE_ENUMS(IF);
COMPARE_ENUMS(WHILE);
COMPARE_ENUMS(ELU);
COMPARE_ENUMS(HARD_SWISH);
COMPARE_ENUMS(FILL);
COMPARE_ENUMS(RANK);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, symbol, Priority, Priority)
COMPARE_ENUMS(LOW);
COMPARE_ENUMS(MEDIUM);
COMPARE_ENUMS(HIGH);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(lhsSymbol, rhsSymbol) \
COMPARE_ENUMS_FULL(lhsSymbol, rhsSymbol, OperandLifeTime, Operand::LifeTime)
COMPARE_ENUMS(TEMPORARY_VARIABLE, TEMPORARY_VARIABLE);
COMPARE_ENUMS(SUBGRAPH_INPUT, SUBGRAPH_INPUT);
COMPARE_ENUMS(SUBGRAPH_OUTPUT, SUBGRAPH_OUTPUT);
COMPARE_ENUMS(CONSTANT_COPY, CONSTANT_COPY);
COMPARE_ENUMS(CONSTANT_POOL, CONSTANT_REFERENCE);
COMPARE_ENUMS(NO_VALUE, NO_VALUE);
COMPARE_ENUMS(SUBGRAPH, SUBGRAPH);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, symbol, ErrorStatus, ErrorStatus)
COMPARE_ENUMS(NONE);
COMPARE_ENUMS(DEVICE_UNAVAILABLE);
COMPARE_ENUMS(GENERAL_FAILURE);
COMPARE_ENUMS(OUTPUT_INSUFFICIENT_SIZE);
COMPARE_ENUMS(INVALID_ARGUMENT);
COMPARE_ENUMS(MISSED_DEADLINE_TRANSIENT);
COMPARE_ENUMS(MISSED_DEADLINE_PERSISTENT);
COMPARE_ENUMS(RESOURCE_EXHAUSTED_TRANSIENT);
COMPARE_ENUMS(RESOURCE_EXHAUSTED_PERSISTENT);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(symbol) \
COMPARE_ENUMS_FULL(symbol, symbol, ExecutionPreference, ExecutionPreference)
COMPARE_ENUMS(LOW_POWER);
COMPARE_ENUMS(FAST_SINGLE_ANSWER);
COMPARE_ENUMS(SUSTAINED_SPEED);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(symbol) COMPARE_ENUMS_FULL(symbol, symbol, DeviceType, DeviceType)
COMPARE_ENUMS(OTHER);
COMPARE_ENUMS(CPU);
COMPARE_ENUMS(GPU);
COMPARE_ENUMS(ACCELERATOR);
#undef COMPARE_ENUMS
#define COMPARE_ENUMS(symbol) \
COMPARE_ENUMS_FULL(symbol, symbol, FusedActivationFunc, FusedActivationFunc)
COMPARE_ENUMS(NONE);
COMPARE_ENUMS(RELU);
COMPARE_ENUMS(RELU1);
COMPARE_ENUMS(RELU6);
#undef COMPARE_ENUMS
#undef COMPARE_ENUMS_FULL
#define COMPARE_CONSTANTS(halSymbol, canonicalSymbol) \
static_assert(::aidl::android::hardware::neuralnetworks::halSymbol == \
::android::nn::canonicalSymbol);
COMPARE_CONSTANTS(IDevice::BYTE_SIZE_OF_CACHE_TOKEN, kByteSizeOfCacheToken);
COMPARE_CONSTANTS(IDevice::MAX_NUMBER_OF_CACHE_FILES, kMaxNumberOfCacheFiles);
COMPARE_CONSTANTS(IDevice::EXTENSION_TYPE_HIGH_BITS_PREFIX, kExtensionPrefixBits - 1);
COMPARE_CONSTANTS(IDevice::EXTENSION_TYPE_LOW_BITS_TYPE, kExtensionTypeBits);
COMPARE_CONSTANTS(IPreparedModel::DEFAULT_LOOP_TIMEOUT_DURATION_NS,
operation_while::kTimeoutNsDefault);
COMPARE_CONSTANTS(IPreparedModel::MAXIMUM_LOOP_TIMEOUT_DURATION_NS,
operation_while::kTimeoutNsMaximum);
#undef COMPARE_CONSTANTS
} // anonymous namespace

View File

@@ -0,0 +1,582 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Conversions.h"
#include <aidl/android/hardware/common/NativeHandle.h>
#include <android-base/logging.h>
#include <nnapi/OperandTypes.h>
#include <nnapi/OperationTypes.h>
#include <nnapi/Result.h>
#include <nnapi/SharedMemory.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
#include <nnapi/hal/CommonUtils.h>
#include <nnapi/hal/HandleError.h>
#include <algorithm>
#include <chrono>
#include <functional>
#include <iterator>
#include <limits>
#include <type_traits>
#include <utility>
#define VERIFY_NON_NEGATIVE(value) \
while (UNLIKELY(value < 0)) return NN_ERROR()
namespace {
template <typename Type>
constexpr std::underlying_type_t<Type> underlyingType(Type value) {
return static_cast<std::underlying_type_t<Type>>(value);
}
constexpr auto kVersion = android::nn::Version::ANDROID_S;
} // namespace
namespace android::nn {
namespace {
constexpr auto validOperandType(nn::OperandType operandType) {
switch (operandType) {
case nn::OperandType::FLOAT32:
case nn::OperandType::INT32:
case nn::OperandType::UINT32:
case nn::OperandType::TENSOR_FLOAT32:
case nn::OperandType::TENSOR_INT32:
case nn::OperandType::TENSOR_QUANT8_ASYMM:
case nn::OperandType::BOOL:
case nn::OperandType::TENSOR_QUANT16_SYMM:
case nn::OperandType::TENSOR_FLOAT16:
case nn::OperandType::TENSOR_BOOL8:
case nn::OperandType::FLOAT16:
case nn::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
case nn::OperandType::TENSOR_QUANT16_ASYMM:
case nn::OperandType::TENSOR_QUANT8_SYMM:
case nn::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
case nn::OperandType::SUBGRAPH:
return true;
case nn::OperandType::OEM:
case nn::OperandType::TENSOR_OEM_BYTE:
return false;
}
return nn::isExtension(operandType);
}
template <typename Input>
using UnvalidatedConvertOutput =
std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>;
template <typename Type>
GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvertVec(
const std::vector<Type>& arguments) {
std::vector<UnvalidatedConvertOutput<Type>> canonical;
canonical.reserve(arguments.size());
for (const auto& argument : arguments) {
canonical.push_back(NN_TRY(nn::unvalidatedConvert(argument)));
}
return canonical;
}
template <typename Type>
GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvert(
const std::vector<Type>& arguments) {
return unvalidatedConvertVec(arguments);
}
template <typename Type>
GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& halObject) {
auto canonical = NN_TRY(nn::unvalidatedConvert(halObject));
const auto maybeVersion = validate(canonical);
if (!maybeVersion.has_value()) {
return error() << maybeVersion.error();
}
const auto version = maybeVersion.value();
if (version > kVersion) {
return NN_ERROR() << "Insufficient version: " << version << " vs required " << kVersion;
}
return canonical;
}
template <typename Type>
GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> validatedConvert(
const std::vector<Type>& arguments) {
std::vector<UnvalidatedConvertOutput<Type>> canonical;
canonical.reserve(arguments.size());
for (const auto& argument : arguments) {
canonical.push_back(NN_TRY(validatedConvert(argument)));
}
return canonical;
}
} // anonymous namespace
GeneralResult<OperandType> unvalidatedConvert(const aidl_hal::OperandType& operandType) {
VERIFY_NON_NEGATIVE(underlyingType(operandType)) << "Negative operand types are not allowed.";
return static_cast<OperandType>(operandType);
}
GeneralResult<OperationType> unvalidatedConvert(const aidl_hal::OperationType& operationType) {
VERIFY_NON_NEGATIVE(underlyingType(operationType))
<< "Negative operation types are not allowed.";
return static_cast<OperationType>(operationType);
}
GeneralResult<DeviceType> unvalidatedConvert(const aidl_hal::DeviceType& deviceType) {
return static_cast<DeviceType>(deviceType);
}
GeneralResult<Priority> unvalidatedConvert(const aidl_hal::Priority& priority) {
return static_cast<Priority>(priority);
}
GeneralResult<Capabilities> unvalidatedConvert(const aidl_hal::Capabilities& capabilities) {
const bool validOperandTypes = std::all_of(
capabilities.operandPerformance.begin(), capabilities.operandPerformance.end(),
[](const aidl_hal::OperandPerformance& operandPerformance) {
const auto maybeType = unvalidatedConvert(operandPerformance.type);
return !maybeType.has_value() ? false : validOperandType(maybeType.value());
});
if (!validOperandTypes) {
return NN_ERROR() << "Invalid OperandType when unvalidatedConverting OperandPerformance in "
"Capabilities";
}
auto operandPerformance = NN_TRY(unvalidatedConvert(capabilities.operandPerformance));
auto table = NN_TRY(hal::utils::makeGeneralFailure(
Capabilities::OperandPerformanceTable::create(std::move(operandPerformance)),
nn::ErrorStatus::GENERAL_FAILURE));
return Capabilities{
.relaxedFloat32toFloat16PerformanceScalar = NN_TRY(
unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
.relaxedFloat32toFloat16PerformanceTensor = NN_TRY(
unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
.operandPerformance = std::move(table),
.ifPerformance = NN_TRY(unvalidatedConvert(capabilities.ifPerformance)),
.whilePerformance = NN_TRY(unvalidatedConvert(capabilities.whilePerformance)),
};
}
GeneralResult<Capabilities::OperandPerformance> unvalidatedConvert(
const aidl_hal::OperandPerformance& operandPerformance) {
return Capabilities::OperandPerformance{
.type = NN_TRY(unvalidatedConvert(operandPerformance.type)),
.info = NN_TRY(unvalidatedConvert(operandPerformance.info)),
};
}
GeneralResult<Capabilities::PerformanceInfo> unvalidatedConvert(
const aidl_hal::PerformanceInfo& performanceInfo) {
return Capabilities::PerformanceInfo{
.execTime = performanceInfo.execTime,
.powerUsage = performanceInfo.powerUsage,
};
}
GeneralResult<DataLocation> unvalidatedConvert(const aidl_hal::DataLocation& location) {
VERIFY_NON_NEGATIVE(location.poolIndex) << "DataLocation: pool index must not be negative";
VERIFY_NON_NEGATIVE(location.offset) << "DataLocation: offset must not be negative";
VERIFY_NON_NEGATIVE(location.length) << "DataLocation: length must not be negative";
if (location.offset > std::numeric_limits<uint32_t>::max()) {
return NN_ERROR() << "DataLocation: offset must be <= std::numeric_limits<uint32_t>::max()";
}
if (location.length > std::numeric_limits<uint32_t>::max()) {
return NN_ERROR() << "DataLocation: length must be <= std::numeric_limits<uint32_t>::max()";
}
return DataLocation{
.poolIndex = static_cast<uint32_t>(location.poolIndex),
.offset = static_cast<uint32_t>(location.offset),
.length = static_cast<uint32_t>(location.length),
};
}
GeneralResult<Operation> unvalidatedConvert(const aidl_hal::Operation& operation) {
return Operation{
.type = NN_TRY(unvalidatedConvert(operation.type)),
.inputs = NN_TRY(toUnsigned(operation.inputs)),
.outputs = NN_TRY(toUnsigned(operation.outputs)),
};
}
GeneralResult<Operand::LifeTime> unvalidatedConvert(
const aidl_hal::OperandLifeTime& operandLifeTime) {
return static_cast<Operand::LifeTime>(operandLifeTime);
}
GeneralResult<Operand> unvalidatedConvert(const aidl_hal::Operand& operand) {
return Operand{
.type = NN_TRY(unvalidatedConvert(operand.type)),
.dimensions = NN_TRY(toUnsigned(operand.dimensions)),
.scale = operand.scale,
.zeroPoint = operand.zeroPoint,
.lifetime = NN_TRY(unvalidatedConvert(operand.lifetime)),
.location = NN_TRY(unvalidatedConvert(operand.location)),
.extraParams = NN_TRY(unvalidatedConvert(operand.extraParams)),
};
}
GeneralResult<Operand::ExtraParams> unvalidatedConvert(
const std::optional<aidl_hal::OperandExtraParams>& optionalExtraParams) {
if (!optionalExtraParams.has_value()) {
return Operand::NoParams{};
}
const auto& extraParams = optionalExtraParams.value();
using Tag = aidl_hal::OperandExtraParams::Tag;
switch (extraParams.getTag()) {
case Tag::channelQuant:
return unvalidatedConvert(extraParams.get<Tag::channelQuant>());
case Tag::extension:
return extraParams.get<Tag::extension>();
}
return NN_ERROR() << "Unrecognized Operand::ExtraParams tag: "
<< underlyingType(extraParams.getTag());
}
GeneralResult<Operand::SymmPerChannelQuantParams> unvalidatedConvert(
const aidl_hal::SymmPerChannelQuantParams& symmPerChannelQuantParams) {
VERIFY_NON_NEGATIVE(symmPerChannelQuantParams.channelDim)
<< "Per-channel quantization channel dimension must not be negative.";
return Operand::SymmPerChannelQuantParams{
.scales = symmPerChannelQuantParams.scales,
.channelDim = static_cast<uint32_t>(symmPerChannelQuantParams.channelDim),
};
}
GeneralResult<Model> unvalidatedConvert(const aidl_hal::Model& model) {
return Model{
.main = NN_TRY(unvalidatedConvert(model.main)),
.referenced = NN_TRY(unvalidatedConvert(model.referenced)),
.operandValues = NN_TRY(unvalidatedConvert(model.operandValues)),
.pools = NN_TRY(unvalidatedConvert(model.pools)),
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
.extensionNameToPrefix = NN_TRY(unvalidatedConvert(model.extensionNameToPrefix)),
};
}
GeneralResult<Model::Subgraph> unvalidatedConvert(const aidl_hal::Subgraph& subgraph) {
return Model::Subgraph{
.operands = NN_TRY(unvalidatedConvert(subgraph.operands)),
.operations = NN_TRY(unvalidatedConvert(subgraph.operations)),
.inputIndexes = NN_TRY(toUnsigned(subgraph.inputIndexes)),
.outputIndexes = NN_TRY(toUnsigned(subgraph.outputIndexes)),
};
}
GeneralResult<Model::ExtensionNameAndPrefix> unvalidatedConvert(
const aidl_hal::ExtensionNameAndPrefix& extensionNameAndPrefix) {
return Model::ExtensionNameAndPrefix{
.name = extensionNameAndPrefix.name,
.prefix = extensionNameAndPrefix.prefix,
};
}
GeneralResult<Extension> unvalidatedConvert(const aidl_hal::Extension& extension) {
return Extension{
.name = extension.name,
.operandTypes = NN_TRY(unvalidatedConvert(extension.operandTypes)),
};
}
GeneralResult<Extension::OperandTypeInformation> unvalidatedConvert(
const aidl_hal::ExtensionOperandTypeInformation& operandTypeInformation) {
VERIFY_NON_NEGATIVE(operandTypeInformation.byteSize)
<< "Extension operand type byte size must not be negative";
return Extension::OperandTypeInformation{
.type = operandTypeInformation.type,
.isTensor = operandTypeInformation.isTensor,
.byteSize = static_cast<uint32_t>(operandTypeInformation.byteSize),
};
}
GeneralResult<OutputShape> unvalidatedConvert(const aidl_hal::OutputShape& outputShape) {
return OutputShape{
.dimensions = NN_TRY(toUnsigned(outputShape.dimensions)),
.isSufficient = outputShape.isSufficient,
};
}
GeneralResult<MeasureTiming> unvalidatedConvert(bool measureTiming) {
return measureTiming ? MeasureTiming::YES : MeasureTiming::NO;
}
GeneralResult<Memory> unvalidatedConvert(const aidl_hal::Memory& memory) {
VERIFY_NON_NEGATIVE(memory.size) << "Memory size must not be negative";
return Memory{
.handle = NN_TRY(unvalidatedConvert(memory.handle)),
.size = static_cast<uint32_t>(memory.size),
.name = memory.name,
};
}
GeneralResult<Model::OperandValues> unvalidatedConvert(const std::vector<uint8_t>& operandValues) {
return Model::OperandValues(operandValues.data(), operandValues.size());
}
GeneralResult<BufferDesc> unvalidatedConvert(const aidl_hal::BufferDesc& bufferDesc) {
return BufferDesc{.dimensions = NN_TRY(toUnsigned(bufferDesc.dimensions))};
}
GeneralResult<BufferRole> unvalidatedConvert(const aidl_hal::BufferRole& bufferRole) {
VERIFY_NON_NEGATIVE(bufferRole.modelIndex) << "BufferRole: modelIndex must not be negative";
VERIFY_NON_NEGATIVE(bufferRole.ioIndex) << "BufferRole: ioIndex must not be negative";
return BufferRole{
.modelIndex = static_cast<uint32_t>(bufferRole.modelIndex),
.ioIndex = static_cast<uint32_t>(bufferRole.ioIndex),
.frequency = bufferRole.frequency,
};
}
GeneralResult<Request> unvalidatedConvert(const aidl_hal::Request& request) {
return Request{
.inputs = NN_TRY(unvalidatedConvert(request.inputs)),
.outputs = NN_TRY(unvalidatedConvert(request.outputs)),
.pools = NN_TRY(unvalidatedConvert(request.pools)),
};
}
GeneralResult<Request::Argument> unvalidatedConvert(const aidl_hal::RequestArgument& argument) {
const auto lifetime = argument.hasNoValue ? Request::Argument::LifeTime::NO_VALUE
: Request::Argument::LifeTime::POOL;
return Request::Argument{
.lifetime = lifetime,
.location = NN_TRY(unvalidatedConvert(argument.location)),
.dimensions = NN_TRY(toUnsigned(argument.dimensions)),
};
}
GeneralResult<Request::MemoryPool> unvalidatedConvert(
const aidl_hal::RequestMemoryPool& memoryPool) {
using Tag = aidl_hal::RequestMemoryPool::Tag;
switch (memoryPool.getTag()) {
case Tag::pool:
return unvalidatedConvert(memoryPool.get<Tag::pool>());
case Tag::token: {
const auto token = memoryPool.get<Tag::token>();
VERIFY_NON_NEGATIVE(token) << "Memory pool token must not be negative";
return static_cast<Request::MemoryDomainToken>(token);
}
}
return NN_ERROR() << "Invalid Request::MemoryPool tag " << underlyingType(memoryPool.getTag());
}
GeneralResult<ErrorStatus> unvalidatedConvert(const aidl_hal::ErrorStatus& status) {
switch (status) {
case aidl_hal::ErrorStatus::NONE:
case aidl_hal::ErrorStatus::DEVICE_UNAVAILABLE:
case aidl_hal::ErrorStatus::GENERAL_FAILURE:
case aidl_hal::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
case aidl_hal::ErrorStatus::INVALID_ARGUMENT:
case aidl_hal::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
case aidl_hal::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
case aidl_hal::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
case aidl_hal::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
return static_cast<ErrorStatus>(status);
}
return NN_ERROR() << "Invalid ErrorStatus " << underlyingType(status);
}
GeneralResult<ExecutionPreference> unvalidatedConvert(
const aidl_hal::ExecutionPreference& executionPreference) {
return static_cast<ExecutionPreference>(executionPreference);
}
GeneralResult<SharedHandle> unvalidatedConvert(
const ::aidl::android::hardware::common::NativeHandle& aidlNativeHandle) {
std::vector<base::unique_fd> fds;
fds.reserve(aidlNativeHandle.fds.size());
for (const auto& fd : aidlNativeHandle.fds) {
int dupFd = dup(fd.get());
if (dupFd == -1) {
// TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct error to return
// here?
return NN_ERROR() << "Failed to dup the fd";
}
fds.emplace_back(dupFd);
}
return std::make_shared<const Handle>(Handle{
.fds = std::move(fds),
.ints = aidlNativeHandle.ints,
});
}
GeneralResult<ExecutionPreference> convert(
const aidl_hal::ExecutionPreference& executionPreference) {
return validatedConvert(executionPreference);
}
GeneralResult<Memory> convert(const aidl_hal::Memory& operand) {
return validatedConvert(operand);
}
GeneralResult<Model> convert(const aidl_hal::Model& model) {
return validatedConvert(model);
}
GeneralResult<Operand> convert(const aidl_hal::Operand& operand) {
return unvalidatedConvert(operand);
}
GeneralResult<OperandType> convert(const aidl_hal::OperandType& operandType) {
return unvalidatedConvert(operandType);
}
GeneralResult<Priority> convert(const aidl_hal::Priority& priority) {
return validatedConvert(priority);
}
GeneralResult<Request::MemoryPool> convert(const aidl_hal::RequestMemoryPool& memoryPool) {
return unvalidatedConvert(memoryPool);
}
GeneralResult<Request> convert(const aidl_hal::Request& request) {
return validatedConvert(request);
}
GeneralResult<std::vector<Operation>> convert(const std::vector<aidl_hal::Operation>& operations) {
return unvalidatedConvert(operations);
}
GeneralResult<std::vector<Memory>> convert(const std::vector<aidl_hal::Memory>& memories) {
return validatedConvert(memories);
}
GeneralResult<std::vector<uint32_t>> toUnsigned(const std::vector<int32_t>& vec) {
if (!std::all_of(vec.begin(), vec.end(), [](int32_t v) { return v >= 0; })) {
return NN_ERROR() << "Negative value passed to conversion from signed to unsigned";
}
return std::vector<uint32_t>(vec.begin(), vec.end());
}
} // namespace android::nn
namespace aidl::android::hardware::neuralnetworks::utils {
namespace {
template <typename Input>
using UnvalidatedConvertOutput =
std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>;
template <typename Type>
nn::GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvertVec(
const std::vector<Type>& arguments) {
std::vector<UnvalidatedConvertOutput<Type>> halObject(arguments.size());
for (size_t i = 0; i < arguments.size(); ++i) {
halObject[i] = NN_TRY(unvalidatedConvert(arguments[i]));
}
return halObject;
}
template <typename Type>
nn::GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& canonical) {
const auto maybeVersion = nn::validate(canonical);
if (!maybeVersion.has_value()) {
return nn::error() << maybeVersion.error();
}
const auto version = maybeVersion.value();
if (version > kVersion) {
return NN_ERROR() << "Insufficient version: " << version << " vs required " << kVersion;
}
return utils::unvalidatedConvert(canonical);
}
template <typename Type>
nn::GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> validatedConvert(
const std::vector<Type>& arguments) {
std::vector<UnvalidatedConvertOutput<Type>> halObject(arguments.size());
for (size_t i = 0; i < arguments.size(); ++i) {
halObject[i] = NN_TRY(validatedConvert(arguments[i]));
}
return halObject;
}
} // namespace
nn::GeneralResult<common::NativeHandle> unvalidatedConvert(const nn::SharedHandle& sharedHandle) {
common::NativeHandle aidlNativeHandle;
aidlNativeHandle.fds.reserve(sharedHandle->fds.size());
for (const auto& fd : sharedHandle->fds) {
int dupFd = dup(fd.get());
if (dupFd == -1) {
// TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct error to return
// here?
return NN_ERROR() << "Failed to dup the fd";
}
aidlNativeHandle.fds.emplace_back(dupFd);
}
aidlNativeHandle.ints = sharedHandle->ints;
return aidlNativeHandle;
}
nn::GeneralResult<Memory> unvalidatedConvert(const nn::Memory& memory) {
if (memory.size > std::numeric_limits<int64_t>::max()) {
return NN_ERROR() << "Memory size doesn't fit into int64_t.";
}
return Memory{
.handle = NN_TRY(unvalidatedConvert(memory.handle)),
.size = static_cast<int64_t>(memory.size),
.name = memory.name,
};
}
nn::GeneralResult<ErrorStatus> unvalidatedConvert(const nn::ErrorStatus& errorStatus) {
switch (errorStatus) {
case nn::ErrorStatus::NONE:
case nn::ErrorStatus::DEVICE_UNAVAILABLE:
case nn::ErrorStatus::GENERAL_FAILURE:
case nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
case nn::ErrorStatus::INVALID_ARGUMENT:
case nn::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
case nn::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
case nn::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
case nn::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
return static_cast<ErrorStatus>(errorStatus);
default:
return ErrorStatus::GENERAL_FAILURE;
}
}
nn::GeneralResult<OutputShape> unvalidatedConvert(const nn::OutputShape& outputShape) {
return OutputShape{.dimensions = NN_TRY(toSigned(outputShape.dimensions)),
.isSufficient = outputShape.isSufficient};
}
nn::GeneralResult<Memory> convert(const nn::Memory& memory) {
return validatedConvert(memory);
}
nn::GeneralResult<ErrorStatus> convert(const nn::ErrorStatus& errorStatus) {
return validatedConvert(errorStatus);
}
nn::GeneralResult<std::vector<OutputShape>> convert(
const std::vector<nn::OutputShape>& outputShapes) {
return validatedConvert(outputShapes);
}
nn::GeneralResult<std::vector<int32_t>> toSigned(const std::vector<uint32_t>& vec) {
if (!std::all_of(vec.begin(), vec.end(),
[](uint32_t v) { return v <= std::numeric_limits<int32_t>::max(); })) {
return NN_ERROR() << "Vector contains a value that doesn't fit into int32_t.";
}
return std::vector<int32_t>(vec.begin(), vec.end());
}
} // namespace aidl::android::hardware::neuralnetworks::utils

View File

@@ -0,0 +1,56 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Utils.h"
#include <nnapi/Result.h>
namespace aidl::android::hardware::neuralnetworks::utils {
using ::android::nn::GeneralResult;
GeneralResult<Model> copyModel(const Model& model) {
Model newModel{
.main = model.main,
.referenced = model.referenced,
.operandValues = model.operandValues,
.pools = {},
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
.extensionNameToPrefix = model.extensionNameToPrefix,
};
newModel.pools.reserve(model.pools.size());
for (const auto& pool : model.pools) {
common::NativeHandle nativeHandle;
nativeHandle.ints = pool.handle.ints;
nativeHandle.fds.reserve(pool.handle.fds.size());
for (const auto& fd : pool.handle.fds) {
const int newFd = dup(fd.get());
if (newFd == -1) {
return NN_ERROR() << "Couldn't dup a file descriptor.";
}
nativeHandle.fds.emplace_back(newFd);
}
Memory memory = {
.handle = std::move(nativeHandle),
.size = pool.size,
.name = pool.name,
};
newModel.pools.push_back(std::move(memory));
}
return newModel;
}
} // namespace aidl::android::hardware::neuralnetworks::utils

View File

@@ -24,15 +24,21 @@
#include <functional>
#include <vector>
// Shorthand
// Shorthands
namespace android::hardware::neuralnetworks {
namespace hal = ::android::hardware::neuralnetworks;
} // namespace android::hardware::neuralnetworks
// Shorthand
// Shorthands
namespace aidl::android::hardware::neuralnetworks {
namespace aidl_hal = ::aidl::android::hardware::neuralnetworks;
} // namespace aidl::android::hardware::neuralnetworks
// Shorthands
namespace android::nn {
namespace hal = ::android::hardware::neuralnetworks;
}
namespace aidl_hal = ::aidl::android::hardware::neuralnetworks;
} // namespace android::nn
namespace android::hardware::neuralnetworks::utils {