Implement full canonical Burst in NN util code

Bug: 180492058
Bug: 177267324
Test: mma
Test: presubmit
Change-Id: I5018f6cf2dbaf705f74f4f46318142c64433e19d
Merged-In: I5018f6cf2dbaf705f74f4f46318142c64433e19d
(cherry picked from commit acff4063b6)
This commit is contained in:
Michael Butler
2020-12-19 01:55:32 -08:00
committed by Xusong Wang
parent 900c28a250
commit 76e491fa46
16 changed files with 1021 additions and 1068 deletions

View File

@@ -27,7 +27,6 @@ cc_library_static {
name: "neuralnetworks_utils_hal_1_2",
defaults: ["neuralnetworks_utils_defaults"],
srcs: ["src/*"],
exclude_srcs: ["src/ExecutionBurst*"],
local_include_dirs: ["include/nnapi/hal/1.2/"],
export_include_dirs: ["include"],
cflags: ["-Wthread-safety"],
@@ -41,10 +40,16 @@ cc_library_static {
"android.hardware.neuralnetworks@1.0",
"android.hardware.neuralnetworks@1.1",
"android.hardware.neuralnetworks@1.2",
"libfmq",
],
export_static_lib_headers: [
"neuralnetworks_utils_hal_common",
],
product_variables: {
debuggable: { // eng and userdebug builds
cflags: ["-DNN_DEBUGGABLE"],
},
},
}
cc_test {

View File

@@ -52,6 +52,7 @@ GeneralResult<Capabilities> convert(const hal::V1_2::Capabilities& capabilities)
GeneralResult<Model> convert(const hal::V1_2::Model& model);
GeneralResult<MeasureTiming> convert(const hal::V1_2::MeasureTiming& measureTiming);
GeneralResult<Timing> convert(const hal::V1_2::Timing& timing);
GeneralResult<SharedMemory> convert(const hardware::hidl_memory& memory);
GeneralResult<std::vector<Extension>> convert(
const hardware::hidl_vec<hal::V1_2::Extension>& extensions);

View File

@@ -14,23 +14,28 @@
* limitations under the License.
*/
#ifndef ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_CONTROLLER_H
#define ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_CONTROLLER_H
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_UTILS_EXECUTION_BURST_CONTROLLER_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_UTILS_EXECUTION_BURST_CONTROLLER_H
#include "ExecutionBurstUtils.h"
#include <android-base/macros.h>
#include <android-base/thread_annotations.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hardware/neuralnetworks/1.2/IBurstCallback.h>
#include <android/hardware/neuralnetworks/1.2/IBurstContext.h>
#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <fmq/MessageQueue.h>
#include <hidl/MQDescriptor.h>
#include <nnapi/IBurst.h>
#include <nnapi/IPreparedModel.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <nnapi/hal/ProtectCallback.h>
#include <atomic>
#include <chrono>
#include <functional>
#include <map>
#include <memory>
#include <mutex>
@@ -39,147 +44,145 @@
#include <utility>
#include <vector>
namespace android::nn {
namespace android::hardware::neuralnetworks::V1_2::utils {
/**
* The ExecutionBurstController class manages both the serialization and
* deserialization of data across FMQ, making it appear to the runtime as a
* regular synchronous inference. Additionally, this class manages the burst's
* memory cache.
* The ExecutionBurstController class manages both the serialization and deserialization of data
* across FMQ, making it appear to the runtime as a regular synchronous inference. Additionally,
* this class manages the burst's memory cache.
*/
class ExecutionBurstController {
DISALLOW_IMPLICIT_CONSTRUCTORS(ExecutionBurstController);
class ExecutionBurstController final : public nn::IBurst {
struct PrivateConstructorTag {};
public:
using FallbackFunction =
std::function<nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>>(
const nn::Request&, nn::MeasureTiming)>;
/**
* NN runtime burst callback object and memory cache.
* NN runtime memory cache.
*
* ExecutionBurstCallback associates a hidl_memory object with a slot number
* to be passed across FMQ. The ExecutionBurstServer can use this callback
* to retrieve this hidl_memory corresponding to the slot via HIDL.
* MemoryCache associates a Memory object with a slot number to be passed across FMQ. The
* ExecutionBurstServer can use this callback to retrieve a hidl_memory corresponding to the
* slot via HIDL.
*
* Whenever a hidl_memory object is copied, it will duplicate the underlying
* file descriptor. Because the NN runtime currently copies the hidl_memory
* on each execution, it is difficult to associate hidl_memory objects with
* previously cached hidl_memory objects. For this reason, callers of this
* class must pair each hidl_memory object with an associated key. For
* efficiency, if two hidl_memory objects represent the same underlying
* buffer, they must use the same key.
* Whenever a hidl_memory object is copied, it will duplicate the underlying file descriptor.
* Because the NN runtime currently copies the hidl_memory on each execution, it is difficult to
* associate hidl_memory objects with previously cached hidl_memory objects. For this reason,
* callers of this class must pair each hidl_memory object with an associated key. For
* efficiency, if two hidl_memory objects represent the same underlying buffer, they must use
* the same key.
*
* This class is thread-safe.
*/
class ExecutionBurstCallback : public hardware::neuralnetworks::V1_2::IBurstCallback {
DISALLOW_COPY_AND_ASSIGN(ExecutionBurstCallback);
class MemoryCache : public std::enable_shared_from_this<MemoryCache> {
struct PrivateConstructorTag {};
public:
ExecutionBurstCallback() = default;
using Task = std::function<void()>;
using Cleanup = base::ScopeGuard<Task>;
using SharedCleanup = std::shared_ptr<const Cleanup>;
using WeakCleanup = std::weak_ptr<const Cleanup>;
hardware::Return<void> getMemories(const hardware::hidl_vec<int32_t>& slots,
getMemories_cb cb) override;
// Custom constructor to pre-allocate cache sizes.
MemoryCache();
/**
* This function performs one of two different actions:
* 1) If a key corresponding to a memory resource is unrecognized by the
* ExecutionBurstCallback object, the ExecutionBurstCallback object
* will allocate a slot, bind the memory to the slot, and return the
* slot identifier.
* 2) If a key corresponding to a memory resource is recognized by the
* ExecutionBurstCallback object, the ExecutionBurstCallback object
* will return the existing slot identifier.
* Add a burst context to the MemoryCache object.
*
* @param memories Memory resources used in an inference.
* @param keys Unique identifiers where each element corresponds to a
* memory resource element in "memories".
* @return Unique slot identifiers where each returned slot element
* corresponds to a memory resource element in "memories".
* If this method is called, it must be called before the MemoryCache::cacheMemory or
* MemoryCache::getMemory is used.
*
* @param burstContext Burst context to be added to the MemoryCache object.
*/
std::vector<int32_t> getSlots(const hardware::hidl_vec<hardware::hidl_memory>& memories,
const std::vector<intptr_t>& keys);
void setBurstContext(sp<IBurstContext> burstContext);
/*
* This function performs two different actions:
* 1) Removes an entry from the cache (if present), including the local
* storage of the hidl_memory object. Note that this call does not
* free any corresponding hidl_memory object in ExecutionBurstServer,
* which is separately freed via IBurstContext::freeMemory.
* 2) Return whether a cache entry was removed and which slot was removed if
* found. If the key did not to correspond to any entry in the cache, a
* slot number of 0 is returned. The slot number and whether the entry
* existed is useful so the same slot can be freed in the
* ExecutionBurstServer's cache via IBurstContext::freeMemory.
/**
* Cache a memory object in the MemoryCache object.
*
* @param memory Memory object to be cached while the returned `SharedCleanup` is alive.
* @return A pair of (1) a unique identifier for the cache entry and (2) a ref-counted
* "hold" object which preserves the cache as long as the hold object is alive.
*/
std::pair<bool, int32_t> freeMemory(intptr_t key);
std::pair<int32_t, SharedCleanup> cacheMemory(const nn::SharedMemory& memory);
/**
* Get the memory object corresponding to a slot identifier.
*
* @param slot Slot which identifies the memory object to retrieve.
* @return The memory object corresponding to slot, otherwise GeneralError.
*/
nn::GeneralResult<nn::SharedMemory> getMemory(int32_t slot);
private:
int32_t getSlotLocked(const hardware::hidl_memory& memory, intptr_t key);
int32_t allocateSlotLocked();
void freeMemory(const nn::SharedMemory& memory);
int32_t allocateSlotLocked() REQUIRES(mMutex);
std::mutex mMutex;
std::stack<int32_t, std::vector<int32_t>> mFreeSlots;
std::map<intptr_t, int32_t> mMemoryIdToSlot;
std::vector<hardware::hidl_memory> mMemoryCache;
std::condition_variable mCond;
sp<IBurstContext> mBurstContext GUARDED_BY(mMutex);
std::stack<int32_t, std::vector<int32_t>> mFreeSlots GUARDED_BY(mMutex);
std::map<nn::SharedMemory, int32_t> mMemoryIdToSlot GUARDED_BY(mMutex);
std::vector<nn::SharedMemory> mMemoryCache GUARDED_BY(mMutex);
std::vector<WeakCleanup> mCacheCleaner GUARDED_BY(mMutex);
};
/**
* HIDL Callback class to pass memory objects to the Burst server when given corresponding
* slots.
*/
class ExecutionBurstCallback : public IBurstCallback {
public:
// Precondition: memoryCache must be non-null.
explicit ExecutionBurstCallback(const std::shared_ptr<MemoryCache>& memoryCache);
// See IBurstCallback::getMemories for information on this method.
Return<void> getMemories(const hidl_vec<int32_t>& slots, getMemories_cb cb) override;
private:
const std::weak_ptr<MemoryCache> kMemoryCache;
};
/**
* Creates a burst controller on a prepared model.
*
* Prefer this over ExecutionBurstController's constructor.
*
* @param preparedModel Model prepared for execution to execute on.
* @param pollingTimeWindow How much time (in microseconds) the
* ExecutionBurstController is allowed to poll the FMQ before waiting on
* the blocking futex. Polling may result in lower latencies at the
* potential cost of more power usage.
* @param pollingTimeWindow How much time (in microseconds) the ExecutionBurstController is
* allowed to poll the FMQ before waiting on the blocking futex. Polling may result in lower
* latencies at the potential cost of more power usage.
* @return ExecutionBurstController Execution burst controller object.
*/
static std::unique_ptr<ExecutionBurstController> create(
const sp<hardware::neuralnetworks::V1_2::IPreparedModel>& preparedModel,
static nn::GeneralResult<std::shared_ptr<const ExecutionBurstController>> create(
const sp<IPreparedModel>& preparedModel, FallbackFunction fallback,
std::chrono::microseconds pollingTimeWindow);
// prefer calling ExecutionBurstController::create
ExecutionBurstController(const std::shared_ptr<RequestChannelSender>& requestChannelSender,
const std::shared_ptr<ResultChannelReceiver>& resultChannelReceiver,
const sp<hardware::neuralnetworks::V1_2::IBurstContext>& burstContext,
const sp<ExecutionBurstCallback>& callback,
const sp<hardware::hidl_death_recipient>& deathHandler = nullptr);
ExecutionBurstController(PrivateConstructorTag tag, FallbackFunction fallback,
std::unique_ptr<RequestChannelSender> requestChannelSender,
std::unique_ptr<ResultChannelReceiver> resultChannelReceiver,
sp<ExecutionBurstCallback> callback, sp<IBurstContext> burstContext,
std::shared_ptr<MemoryCache> memoryCache,
neuralnetworks::utils::DeathHandler deathHandler);
// explicit destructor to unregister the death recipient
~ExecutionBurstController();
// See IBurst::cacheMemory for information on this method.
OptionalCacheHold cacheMemory(const nn::SharedMemory& memory) const override;
/**
* Execute a request on a model.
*
* @param request Arguments to be executed on a model.
* @param measure Whether to collect timing measurements, either YES or NO
* @param memoryIds Identifiers corresponding to each memory object in the
* request's pools.
* @return A tuple of:
* - result code of the execution
* - dynamic output shapes from the execution
* - any execution time measurements of the execution
* - whether or not a failed burst execution should be re-run using a
* different path (e.g., IPreparedModel::executeSynchronously)
*/
std::tuple<int, std::vector<hardware::neuralnetworks::V1_2::OutputShape>,
hardware::neuralnetworks::V1_2::Timing, bool>
compute(const hardware::neuralnetworks::V1_0::Request& request,
hardware::neuralnetworks::V1_2::MeasureTiming measure,
const std::vector<intptr_t>& memoryIds);
/**
* Propagate a user's freeing of memory to the service.
*
* @param key Key corresponding to the memory object.
*/
void freeMemory(intptr_t key);
// See IBurst::execute for information on this method.
nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> execute(
const nn::Request& request, nn::MeasureTiming measure) const override;
private:
std::mutex mMutex;
const std::shared_ptr<RequestChannelSender> mRequestChannelSender;
const std::shared_ptr<ResultChannelReceiver> mResultChannelReceiver;
const sp<hardware::neuralnetworks::V1_2::IBurstContext> mBurstContext;
const sp<ExecutionBurstCallback> mMemoryCache;
const sp<hardware::hidl_death_recipient> mDeathHandler;
mutable std::atomic_flag mExecutionInFlight = ATOMIC_FLAG_INIT;
const FallbackFunction kFallback;
const std::unique_ptr<RequestChannelSender> mRequestChannelSender;
const std::unique_ptr<ResultChannelReceiver> mResultChannelReceiver;
const sp<ExecutionBurstCallback> mBurstCallback;
const sp<IBurstContext> mBurstContext;
const std::shared_ptr<MemoryCache> mMemoryCache;
// `kDeathHandler` must come after `mRequestChannelSender` and `mResultChannelReceiver` because
// it holds references to both objects.
const neuralnetworks::utils::DeathHandler kDeathHandler;
};
} // namespace android::nn
} // namespace android::hardware::neuralnetworks::V1_2::utils
#endif // ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_CONTROLLER_H
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_UTILS_EXECUTION_BURST_CONTROLLER_H

View File

@@ -14,19 +14,22 @@
* limitations under the License.
*/
#ifndef ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_SERVER_H
#define ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_SERVER_H
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_UTILS_EXECUTION_BURST_SERVER_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_UTILS_EXECUTION_BURST_SERVER_H
#include "ExecutionBurstUtils.h"
#include <android-base/macros.h>
#include <android-base/thread_annotations.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hardware/neuralnetworks/1.2/IBurstCallback.h>
#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <fmq/MessageQueue.h>
#include <hidl/MQDescriptor.h>
#include <nnapi/IBurst.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <nnapi/hal/ProtectCallback.h>
#include <atomic>
#include <chrono>
@@ -36,84 +39,61 @@
#include <tuple>
#include <vector>
namespace android::nn {
namespace android::hardware::neuralnetworks::V1_2::utils {
/**
* The ExecutionBurstServer class is responsible for waiting for and
* deserializing a request object from a FMQ, performing the inference, and
* serializing the result back across another FMQ.
* The ExecutionBurstServer class is responsible for waiting for and deserializing a request object
* from a FMQ, performing the inference, and serializing the result back across another FMQ.
*/
class ExecutionBurstServer : public hardware::neuralnetworks::V1_2::IBurstContext {
DISALLOW_IMPLICIT_CONSTRUCTORS(ExecutionBurstServer);
class ExecutionBurstServer : public IBurstContext {
struct PrivateConstructorTag {};
public:
/**
* IBurstExecutorWithCache is a callback object passed to
* ExecutionBurstServer's factory function that is used to perform an
* execution. Because some memory resources are needed across multiple
* executions, this object also contains a local cache that can directly be
* used in the execution.
* Class to cache the memory objects for a burst object.
*
* ExecutionBurstServer will never access its IBurstExecutorWithCache object
* with concurrent calls.
* This class is thread-safe.
*/
class IBurstExecutorWithCache {
DISALLOW_COPY_AND_ASSIGN(IBurstExecutorWithCache);
class MemoryCache {
public:
IBurstExecutorWithCache() = default;
virtual ~IBurstExecutorWithCache() = default;
// Precondition: burstExecutor != nullptr
// Precondition: burstCallback != nullptr
MemoryCache(nn::SharedBurst burstExecutor, sp<IBurstCallback> burstCallback);
/**
* Checks if a cache entry specified by a slot is present in the cache.
* Get the cached memory objects corresponding to provided slot identifiers.
*
* @param slot Identifier of the cache entry.
* @return 'true' if the cache entry is present in the cache, 'false'
* otherwise.
* If the slot entry is not present in the cache, this class will use IBurstCallback to
* retrieve those entries that are not present in the cache, then cache them.
*
* @param slots Identifiers of memory objects to be retrieved.
* @return A vector where each element is the memory object and a ref-counted cache "hold"
* object to preserve the cache entry of the IBurst object as long as the "hold" object
* is alive, otherwise GeneralError. Each element of the vector corresponds to the
* element of slot.
*/
virtual bool isCacheEntryPresent(int32_t slot) const = 0;
nn::GeneralResult<std::vector<std::pair<nn::SharedMemory, nn::IBurst::OptionalCacheHold>>>
getCacheEntries(const std::vector<int32_t>& slots);
/**
* Adds an entry specified by a slot to the cache.
* Remove an entry from the cache.
*
* The caller of this function must ensure that the cache entry that is
* being added is not already present in the cache. This can be checked
* via isCacheEntryPresent.
*
* @param memory Memory resource to be cached.
* @param slot Slot identifier corresponding to the memory resource.
* @param slot Identifier of the memory object to be removed from the cache.
*/
virtual void addCacheEntry(const hardware::hidl_memory& memory, int32_t slot) = 0;
void removeCacheEntry(int32_t slot);
/**
* Removes an entry specified by a slot from the cache.
*
* If the cache entry corresponding to the slot number does not exist,
* the call does nothing.
*
* @param slot Slot identifier corresponding to the memory resource.
*/
virtual void removeCacheEntry(int32_t slot) = 0;
private:
nn::GeneralResult<void> ensureCacheEntriesArePresentLocked(
const std::vector<int32_t>& slots) REQUIRES(mMutex);
nn::GeneralResult<std::pair<nn::SharedMemory, nn::IBurst::OptionalCacheHold>>
getCacheEntryLocked(int32_t slot) REQUIRES(mMutex);
void addCacheEntryLocked(int32_t slot, nn::SharedMemory memory) REQUIRES(mMutex);
/**
* Perform an execution.
*
* @param request Request object with inputs and outputs specified.
* Request::pools is empty, and DataLocation::poolIndex instead
* refers to the 'slots' argument as if it were Request::pools.
* @param slots Slots corresponding to the cached memory entries to be
* used.
* @param measure Whether timing information is requested for the
* execution.
* @return Result of the execution, including the status of the
* execution, dynamic output shapes, and any timing information.
*/
virtual std::tuple<hardware::neuralnetworks::V1_0::ErrorStatus,
hardware::hidl_vec<hardware::neuralnetworks::V1_2::OutputShape>,
hardware::neuralnetworks::V1_2::Timing>
execute(const hardware::neuralnetworks::V1_0::Request& request,
const std::vector<int32_t>& slots,
hardware::neuralnetworks::V1_2::MeasureTiming measure) = 0;
std::mutex mMutex;
std::map<int32_t, std::pair<nn::SharedMemory, nn::IBurst::OptionalCacheHold>> mCache
GUARDED_BY(mMutex);
nn::SharedBurst kBurstExecutor;
const sp<IBurstCallback> kBurstCallback;
};
/**
@@ -124,85 +104,52 @@ class ExecutionBurstServer : public hardware::neuralnetworks::V1_2::IBurstContex
* 2) Execute a model with the given information
* 3) Send the result to the created FMQ
*
* @param callback Callback used to retrieve memories corresponding to
* unrecognized slots.
* @param requestChannel Input FMQ channel through which the client passes the
* request to the service.
* @param resultChannel Output FMQ channel from which the client can retrieve
* the result of the execution.
* @param executorWithCache Object which maintains a local cache of the
* memory pools and executes using the cached memory pools.
* @param pollingTimeWindow How much time (in microseconds) the
* ExecutionBurstServer is allowed to poll the FMQ before waiting on
* the blocking futex. Polling may result in lower latencies at the
* potential cost of more power usage.
* @result IBurstContext Handle to the burst context.
*/
static sp<ExecutionBurstServer> create(
const sp<hardware::neuralnetworks::V1_2::IBurstCallback>& callback,
const FmqRequestDescriptor& requestChannel, const FmqResultDescriptor& resultChannel,
std::shared_ptr<IBurstExecutorWithCache> executorWithCache,
std::chrono::microseconds pollingTimeWindow = std::chrono::microseconds{0});
/**
* Create automated context to manage FMQ-based executions.
*
* This function is intended to be used by a service to automatically:
* 1) Receive data from a provided FMQ
* 2) Execute a model with the given information
* 3) Send the result to the created FMQ
*
* @param callback Callback used to retrieve memories corresponding to
* unrecognized slots.
* @param requestChannel Input FMQ channel through which the client passes the
* request to the service.
* @param resultChannel Output FMQ channel from which the client can retrieve
* the result of the execution.
* @param preparedModel PreparedModel that the burst object was created from.
* IPreparedModel::executeSynchronously will be used to perform the
* @param callback Callback used to retrieve memories corresponding to unrecognized slots.
* @param requestChannel Input FMQ channel through which the client passes the request to the
* service.
* @param resultChannel Output FMQ channel from which the client can retrieve the result of the
* execution.
* @param pollingTimeWindow How much time (in microseconds) the
* ExecutionBurstServer is allowed to poll the FMQ before waiting on
* the blocking futex. Polling may result in lower latencies at the
* potential cost of more power usage.
* @result IBurstContext Handle to the burst context.
* @param burstExecutor Object which maintains a local cache of the memory pools and executes
* using the cached memory pools.
* @param pollingTimeWindow How much time (in microseconds) the ExecutionBurstServer is allowed
* to poll the FMQ before waiting on the blocking futex. Polling may result in lower
* latencies at the potential cost of more power usage.
* @return IBurstContext Handle to the burst context.
*/
static sp<ExecutionBurstServer> create(
const sp<hardware::neuralnetworks::V1_2::IBurstCallback>& callback,
const FmqRequestDescriptor& requestChannel, const FmqResultDescriptor& resultChannel,
hardware::neuralnetworks::V1_2::IPreparedModel* preparedModel,
static nn::GeneralResult<sp<ExecutionBurstServer>> create(
const sp<IBurstCallback>& callback,
const MQDescriptorSync<FmqRequestDatum>& requestChannel,
const MQDescriptorSync<FmqResultDatum>& resultChannel, nn::SharedBurst burstExecutor,
std::chrono::microseconds pollingTimeWindow = std::chrono::microseconds{0});
ExecutionBurstServer(const sp<hardware::neuralnetworks::V1_2::IBurstCallback>& callback,
ExecutionBurstServer(PrivateConstructorTag tag, const sp<IBurstCallback>& callback,
std::unique_ptr<RequestChannelReceiver> requestChannel,
std::unique_ptr<ResultChannelSender> resultChannel,
std::shared_ptr<IBurstExecutorWithCache> cachedExecutor);
nn::SharedBurst burstExecutor);
~ExecutionBurstServer();
// Used by the NN runtime to preemptively remove any stored memory.
hardware::Return<void> freeMemory(int32_t slot) override;
// Used by the NN runtime to preemptively remove any stored memory. See
// IBurstContext::freeMemory for more information.
Return<void> freeMemory(int32_t slot) override;
private:
// Ensures all cache entries contained in mExecutorWithCache are present in
// the cache. If they are not present, they are retrieved (via
// IBurstCallback::getMemories) and added to mExecutorWithCache.
//
// This method is locked via mMutex when it is called.
void ensureCacheEntriesArePresentLocked(const std::vector<int32_t>& slots);
// Work loop that will continue processing execution requests until the
// ExecutionBurstServer object is freed.
// Work loop that will continue processing execution requests until the ExecutionBurstServer
// object is freed.
void task();
nn::ExecutionResult<std::pair<hidl_vec<OutputShape>, Timing>> execute(
const V1_0::Request& requestWithoutPools, const std::vector<int32_t>& slotsOfPools,
MeasureTiming measure);
std::thread mWorker;
std::mutex mMutex;
std::atomic<bool> mTeardown{false};
const sp<hardware::neuralnetworks::V1_2::IBurstCallback> mCallback;
const sp<IBurstCallback> mCallback;
const std::unique_ptr<RequestChannelReceiver> mRequestChannelReceiver;
const std::unique_ptr<ResultChannelSender> mResultChannelSender;
const std::shared_ptr<IBurstExecutorWithCache> mExecutorWithCache;
const nn::SharedBurst mBurstExecutor;
MemoryCache mMemoryCache;
};
} // namespace android::nn
} // namespace android::hardware::neuralnetworks::V1_2::utils
#endif // ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_SERVER_H
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_UTILS_EXECUTION_BURST_SERVER_H

View File

@@ -18,15 +18,16 @@
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_UTILS_EXECUTION_BURST_UTILS_H
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <fmq/MessageQueue.h>
#include <hidl/MQDescriptor.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <nnapi/hal/ProtectCallback.h>
#include <atomic>
#include <chrono>
#include <memory>
#include <optional>
#include <tuple>
#include <utility>
#include <vector>
@@ -38,159 +39,139 @@ namespace android::hardware::neuralnetworks::V1_2::utils {
*/
constexpr const size_t kExecutionBurstChannelLength = 1024;
using FmqRequestDescriptor = MQDescriptorSync<FmqRequestDatum>;
using FmqResultDescriptor = MQDescriptorSync<FmqResultDatum>;
/**
* Get how long the burst controller should poll while waiting for results to be returned.
*
* This time can be affected by the property "debug.nn.burst-controller-polling-window".
*
* @return Polling time in microseconds.
*/
std::chrono::microseconds getBurstControllerPollingTimeWindow();
/**
* Get how long the burst server should poll while waiting for a request to be received.
*
* This time can be affected by the property "debug.nn.burst-server-polling-window".
*
* @return Polling time in microseconds.
*/
std::chrono::microseconds getBurstServerPollingTimeWindow();
/**
* Function to serialize a request.
*
* Prefer calling RequestChannelSender::send.
*
* @param request Request object without the pool information.
* @param measure Whether to collect timing information for the execution.
* @param memoryIds Slot identifiers corresponding to memory resources for the
* request.
* @param memoryIds Slot identifiers corresponding to memory resources for the request.
* @return Serialized FMQ request data.
*/
std::vector<hardware::neuralnetworks::V1_2::FmqRequestDatum> serialize(
const hardware::neuralnetworks::V1_0::Request& request,
hardware::neuralnetworks::V1_2::MeasureTiming measure, const std::vector<int32_t>& slots);
std::vector<FmqRequestDatum> serialize(const V1_0::Request& request, MeasureTiming measure,
const std::vector<int32_t>& slots);
/**
* Deserialize the FMQ request data.
*
* The three resulting fields are the Request object (where Request::pools is
* empty), slot identifiers (which are stand-ins for Request::pools), and
* whether timing information must be collected for the run.
* The three resulting fields are the Request object (where Request::pools is empty), slot
* identifiers (which are stand-ins for Request::pools), and whether timing information must be
* collected for the run.
*
* @param data Serialized FMQ request data.
* @return Request object if successfully deserialized, std::nullopt otherwise.
* @return Request object if successfully deserialized, otherwise an error message.
*/
std::optional<std::tuple<hardware::neuralnetworks::V1_0::Request, std::vector<int32_t>,
hardware::neuralnetworks::V1_2::MeasureTiming>>
deserialize(const std::vector<hardware::neuralnetworks::V1_2::FmqRequestDatum>& data);
nn::Result<std::tuple<V1_0::Request, std::vector<int32_t>, MeasureTiming>> deserialize(
const std::vector<FmqRequestDatum>& data);
/**
* Function to serialize results.
*
* Prefer calling ResultChannelSender::send.
*
* @param errorStatus Status of the execution.
* @param outputShapes Dynamic shapes of the output tensors.
* @param timing Timing information of the execution.
* @return Serialized FMQ result data.
*/
std::vector<hardware::neuralnetworks::V1_2::FmqResultDatum> serialize(
hardware::neuralnetworks::V1_0::ErrorStatus errorStatus,
const std::vector<hardware::neuralnetworks::V1_2::OutputShape>& outputShapes,
hardware::neuralnetworks::V1_2::Timing timing);
std::vector<FmqResultDatum> serialize(V1_0::ErrorStatus errorStatus,
const std::vector<OutputShape>& outputShapes, Timing timing);
/**
* Deserialize the FMQ result data.
*
* The three resulting fields are the status of the execution, the dynamic
* shapes of the output tensors, and the timing information of the execution.
* The three resulting fields are the status of the execution, the dynamic shapes of the output
* tensors, and the timing information of the execution.
*
* @param data Serialized FMQ result data.
* @return Result object if successfully deserialized, std::nullopt otherwise.
* @return Result object if successfully deserialized, otherwise an error message.
*/
std::optional<std::tuple<hardware::neuralnetworks::V1_0::ErrorStatus,
std::vector<hardware::neuralnetworks::V1_2::OutputShape>,
hardware::neuralnetworks::V1_2::Timing>>
deserialize(const std::vector<hardware::neuralnetworks::V1_2::FmqResultDatum>& data);
nn::Result<std::tuple<V1_0::ErrorStatus, std::vector<OutputShape>, Timing>> deserialize(
const std::vector<FmqResultDatum>& data);
/**
* Convert result code to error status.
*
* @param resultCode Result code to be converted.
* @return ErrorStatus Resultant error status.
* RequestChannelSender is responsible for serializing the result packet of information, sending it
* on the result channel, and signaling that the data is available.
*/
hardware::neuralnetworks::V1_0::ErrorStatus legacyConvertResultCodeToErrorStatus(int resultCode);
/**
* RequestChannelSender is responsible for serializing the result packet of
* information, sending it on the result channel, and signaling that the data is
* available.
*/
class RequestChannelSender {
using FmqRequestDescriptor =
hardware::MQDescriptorSync<hardware::neuralnetworks::V1_2::FmqRequestDatum>;
using FmqRequestChannel =
hardware::MessageQueue<hardware::neuralnetworks::V1_2::FmqRequestDatum,
hardware::kSynchronizedReadWrite>;
class RequestChannelSender final : public neuralnetworks::utils::IProtectedCallback {
struct PrivateConstructorTag {};
public:
/**
* Create the sending end of a request channel.
*
* Prefer this call over the constructor.
*
* @param channelLength Number of elements in the FMQ.
* @return A pair of ResultChannelReceiver and the FMQ descriptor on
* successful creation, both nullptr otherwise.
* @return A pair of ResultChannelReceiver and the FMQ descriptor on successful creation,
* GeneralError otherwise.
*/
static std::pair<std::unique_ptr<RequestChannelSender>, const FmqRequestDescriptor*> create(
size_t channelLength);
static nn::GeneralResult<std::pair<std::unique_ptr<RequestChannelSender>,
const MQDescriptorSync<FmqRequestDatum>*>>
create(size_t channelLength);
/**
* Send the request to the channel.
*
* @param request Request object without the pool information.
* @param measure Whether to collect timing information for the execution.
* @param memoryIds Slot identifiers corresponding to memory resources for
* the request.
* @return 'true' on successful send, 'false' otherwise.
* @param slots Slot identifiers corresponding to memory resources for the request.
* @return An empty `Result` on successful send, otherwise an error message.
*/
bool send(const hardware::neuralnetworks::V1_0::Request& request,
hardware::neuralnetworks::V1_2::MeasureTiming measure,
const std::vector<int32_t>& slots);
nn::Result<void> send(const V1_0::Request& request, MeasureTiming measure,
const std::vector<int32_t>& slots);
/**
* Method to mark the channel as invalid, causing all future calls to
* RequestChannelSender::send to immediately return false without attempting
* to send a message across the FMQ.
* Method to mark the channel as invalid, causing all future calls to RequestChannelSender::send
* to immediately return false without attempting to send a message across the FMQ.
*/
void invalidate();
void notifyAsDeadObject() override;
// prefer calling RequestChannelSender::send
bool sendPacket(const std::vector<hardware::neuralnetworks::V1_2::FmqRequestDatum>& packet);
nn::Result<void> sendPacket(const std::vector<FmqRequestDatum>& packet);
RequestChannelSender(std::unique_ptr<FmqRequestChannel> fmqRequestChannel);
RequestChannelSender(PrivateConstructorTag tag, size_t channelLength);
private:
const std::unique_ptr<FmqRequestChannel> mFmqRequestChannel;
MessageQueue<FmqRequestDatum, kSynchronizedReadWrite> mFmqRequestChannel;
std::atomic<bool> mValid{true};
};
/**
* RequestChannelReceiver is responsible for waiting on the channel until the
* packet is available, extracting the packet from the channel, and
* deserializing the packet.
* RequestChannelReceiver is responsible for waiting on the channel until the packet is available,
* extracting the packet from the channel, and deserializing the packet.
*
* Because the receiver can wait on a packet that may never come (e.g., because
* the sending side of the packet has been closed), this object can be
* invalidated, unblocking the receiver.
* Because the receiver can wait on a packet that may never come (e.g., because the sending side of
* the packet has been closed), this object can be invalidated, unblocking the receiver.
*/
class RequestChannelReceiver {
using FmqRequestChannel =
hardware::MessageQueue<hardware::neuralnetworks::V1_2::FmqRequestDatum,
hardware::kSynchronizedReadWrite>;
class RequestChannelReceiver final {
struct PrivateConstructorTag {};
public:
/**
* Create the receiving end of a request channel.
*
* Prefer this call over the constructor.
*
* @param requestChannel Descriptor for the request channel.
* @param pollingTimeWindow How much time (in microseconds) the
* RequestChannelReceiver is allowed to poll the FMQ before waiting on
* the blocking futex. Polling may result in lower latencies at the
* potential cost of more power usage.
* @param pollingTimeWindow How much time (in microseconds) the RequestChannelReceiver is
* allowed to poll the FMQ before waiting on the blocking futex. Polling may result in lower
* latencies at the potential cost of more power usage.
* @return RequestChannelReceiver on successful creation, nullptr otherwise.
*/
static std::unique_ptr<RequestChannelReceiver> create(
const FmqRequestDescriptor& requestChannel,
static nn::GeneralResult<std::unique_ptr<RequestChannelReceiver>> create(
const MQDescriptorSync<FmqRequestDatum>& requestChannel,
std::chrono::microseconds pollingTimeWindow);
/**
@@ -200,49 +181,45 @@ class RequestChannelReceiver {
* 1) The packet has been retrieved, or
* 2) The receiver has been invalidated
*
* @return Request object if successfully received, std::nullopt if error or
* if the receiver object was invalidated.
* @return Request object if successfully received, an appropriate message if error or if the
* receiver object was invalidated.
*/
std::optional<std::tuple<hardware::neuralnetworks::V1_0::Request, std::vector<int32_t>,
hardware::neuralnetworks::V1_2::MeasureTiming>>
getBlocking();
nn::Result<std::tuple<V1_0::Request, std::vector<int32_t>, MeasureTiming>> getBlocking();
/**
* Method to mark the channel as invalid, unblocking any current or future
* calls to RequestChannelReceiver::getBlocking.
* Method to mark the channel as invalid, unblocking any current or future calls to
* RequestChannelReceiver::getBlocking.
*/
void invalidate();
RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel,
RequestChannelReceiver(PrivateConstructorTag tag,
const MQDescriptorSync<FmqRequestDatum>& requestChannel,
std::chrono::microseconds pollingTimeWindow);
private:
std::optional<std::vector<hardware::neuralnetworks::V1_2::FmqRequestDatum>> getPacketBlocking();
nn::Result<std::vector<FmqRequestDatum>> getPacketBlocking();
const std::unique_ptr<FmqRequestChannel> mFmqRequestChannel;
MessageQueue<FmqRequestDatum, kSynchronizedReadWrite> mFmqRequestChannel;
std::atomic<bool> mTeardown{false};
const std::chrono::microseconds kPollingTimeWindow;
};
/**
* ResultChannelSender is responsible for serializing the result packet of
* information, sending it on the result channel, and signaling that the data is
* available.
* ResultChannelSender is responsible for serializing the result packet of information, sending it
* on the result channel, and signaling that the data is available.
*/
class ResultChannelSender {
using FmqResultChannel = hardware::MessageQueue<hardware::neuralnetworks::V1_2::FmqResultDatum,
hardware::kSynchronizedReadWrite>;
class ResultChannelSender final {
struct PrivateConstructorTag {};
public:
/**
* Create the sending end of a result channel.
*
* Prefer this call over the constructor.
*
* @param resultChannel Descriptor for the result channel.
* @return ResultChannelSender on successful creation, nullptr otherwise.
*/
static std::unique_ptr<ResultChannelSender> create(const FmqResultDescriptor& resultChannel);
static nn::GeneralResult<std::unique_ptr<ResultChannelSender>> create(
const MQDescriptorSync<FmqResultDatum>& resultChannel);
/**
* Send the result to the channel.
@@ -250,52 +227,44 @@ class ResultChannelSender {
* @param errorStatus Status of the execution.
* @param outputShapes Dynamic shapes of the output tensors.
* @param timing Timing information of the execution.
* @return 'true' on successful send, 'false' otherwise.
*/
bool send(hardware::neuralnetworks::V1_0::ErrorStatus errorStatus,
const std::vector<hardware::neuralnetworks::V1_2::OutputShape>& outputShapes,
hardware::neuralnetworks::V1_2::Timing timing);
void send(V1_0::ErrorStatus errorStatus, const std::vector<OutputShape>& outputShapes,
Timing timing);
// prefer calling ResultChannelSender::send
bool sendPacket(const std::vector<hardware::neuralnetworks::V1_2::FmqResultDatum>& packet);
void sendPacket(const std::vector<FmqResultDatum>& packet);
ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel);
ResultChannelSender(PrivateConstructorTag tag,
const MQDescriptorSync<FmqResultDatum>& resultChannel);
private:
const std::unique_ptr<FmqResultChannel> mFmqResultChannel;
MessageQueue<FmqResultDatum, kSynchronizedReadWrite> mFmqResultChannel;
};
/**
* ResultChannelReceiver is responsible for waiting on the channel until the
* packet is available, extracting the packet from the channel, and
* deserializing the packet.
* ResultChannelReceiver is responsible for waiting on the channel until the packet is available,
* extracting the packet from the channel, and deserializing the packet.
*
* Because the receiver can wait on a packet that may never come (e.g., because
* the sending side of the packet has been closed), this object can be
* invalidated, unblocking the receiver.
* Because the receiver can wait on a packet that may never come (e.g., because the sending side of
* the packet has been closed), this object can be invalidated, unblocking the receiver.
*/
class ResultChannelReceiver {
using FmqResultDescriptor =
hardware::MQDescriptorSync<hardware::neuralnetworks::V1_2::FmqResultDatum>;
using FmqResultChannel = hardware::MessageQueue<hardware::neuralnetworks::V1_2::FmqResultDatum,
hardware::kSynchronizedReadWrite>;
class ResultChannelReceiver final : public neuralnetworks::utils::IProtectedCallback {
struct PrivateConstructorTag {};
public:
/**
* Create the receiving end of a result channel.
*
* Prefer this call over the constructor.
*
* @param channelLength Number of elements in the FMQ.
* @param pollingTimeWindow How much time (in microseconds) the
* ResultChannelReceiver is allowed to poll the FMQ before waiting on
* the blocking futex. Polling may result in lower latencies at the
* potential cost of more power usage.
* @return A pair of ResultChannelReceiver and the FMQ descriptor on
* successful creation, both nullptr otherwise.
* @param pollingTimeWindow How much time (in microseconds) the ResultChannelReceiver is allowed
* to poll the FMQ before waiting on the blocking futex. Polling may result in lower
* latencies at the potential cost of more power usage.
* @return A pair of ResultChannelReceiver and the FMQ descriptor on successful creation, or
* GeneralError otherwise.
*/
static std::pair<std::unique_ptr<ResultChannelReceiver>, const FmqResultDescriptor*> create(
size_t channelLength, std::chrono::microseconds pollingTimeWindow);
static nn::GeneralResult<std::pair<std::unique_ptr<ResultChannelReceiver>,
const MQDescriptorSync<FmqResultDatum>*>>
create(size_t channelLength, std::chrono::microseconds pollingTimeWindow);
/**
* Get the result from the channel.
@@ -304,28 +273,25 @@ class ResultChannelReceiver {
* 1) The packet has been retrieved, or
* 2) The receiver has been invalidated
*
* @return Result object if successfully received, std::nullopt if error or
* @return Result object if successfully received, otherwise an appropriate message if error or
* if the receiver object was invalidated.
*/
std::optional<std::tuple<hardware::neuralnetworks::V1_0::ErrorStatus,
std::vector<hardware::neuralnetworks::V1_2::OutputShape>,
hardware::neuralnetworks::V1_2::Timing>>
getBlocking();
nn::Result<std::tuple<V1_0::ErrorStatus, std::vector<OutputShape>, Timing>> getBlocking();
/**
* Method to mark the channel as invalid, unblocking any current or future
* calls to ResultChannelReceiver::getBlocking.
* Method to mark the channel as invalid, unblocking any current or future calls to
* ResultChannelReceiver::getBlocking.
*/
void invalidate();
void notifyAsDeadObject() override;
// prefer calling ResultChannelReceiver::getBlocking
std::optional<std::vector<hardware::neuralnetworks::V1_2::FmqResultDatum>> getPacketBlocking();
nn::Result<std::vector<FmqResultDatum>> getPacketBlocking();
ResultChannelReceiver(std::unique_ptr<FmqResultChannel> fmqResultChannel,
ResultChannelReceiver(PrivateConstructorTag tag, size_t channelLength,
std::chrono::microseconds pollingTimeWindow);
private:
const std::unique_ptr<FmqResultChannel> mFmqResultChannel;
MessageQueue<FmqResultDatum, kSynchronizedReadWrite> mFmqResultChannel;
std::atomic<bool> mValid{true};
const std::chrono::microseconds kPollingTimeWindow;
};

View File

@@ -331,6 +331,10 @@ GeneralResult<Timing> convert(const hal::V1_2::Timing& timing) {
return validatedConvert(timing);
}
GeneralResult<SharedMemory> convert(const hardware::hidl_memory& memory) {
return validatedConvert(memory);
}
GeneralResult<std::vector<Extension>> convert(const hidl_vec<hal::V1_2::Extension>& extensions) {
return validatedConvert(extensions);
}

View File

@@ -17,283 +17,321 @@
#define LOG_TAG "ExecutionBurstController"
#include "ExecutionBurstController.h"
#include "ExecutionBurstUtils.h"
#include <android-base/logging.h>
#include <android-base/thread_annotations.h>
#include <nnapi/IBurst.h>
#include <nnapi/IPreparedModel.h>
#include <nnapi/Result.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
#include <nnapi/hal/1.0/Conversions.h>
#include <nnapi/hal/HandleError.h>
#include <nnapi/hal/ProtectCallback.h>
#include <nnapi/hal/TransferValue.h>
#include <algorithm>
#include <cstring>
#include <limits>
#include <memory>
#include <string>
#include <thread>
#include <tuple>
#include <utility>
#include <vector>
#include "ExecutionBurstUtils.h"
#include "HalInterfaces.h"
#include "Callbacks.h"
#include "Conversions.h"
#include "Tracing.h"
#include "Utils.h"
namespace android::nn {
namespace android::hardware::neuralnetworks::V1_2::utils {
namespace {
class BurstContextDeathHandler : public hardware::hidl_death_recipient {
public:
using Callback = std::function<void()>;
BurstContextDeathHandler(const Callback& onDeathCallback) : mOnDeathCallback(onDeathCallback) {
CHECK(onDeathCallback != nullptr);
nn::GeneralResult<sp<IBurstContext>> executionBurstResultCallback(
V1_0::ErrorStatus status, const sp<IBurstContext>& burstContext) {
HANDLE_HAL_STATUS(status) << "IPreparedModel::configureExecutionBurst failed with status "
<< toString(status);
if (burstContext == nullptr) {
return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE)
<< "IPreparedModel::configureExecutionBurst returned nullptr for burst";
}
void serviceDied(uint64_t /*cookie*/, const wp<hidl::base::V1_0::IBase>& /*who*/) override {
LOG(ERROR) << "BurstContextDeathHandler::serviceDied -- service unexpectedly died!";
mOnDeathCallback();
}
private:
const Callback mOnDeathCallback;
};
} // anonymous namespace
hardware::Return<void> ExecutionBurstController::ExecutionBurstCallback::getMemories(
const hardware::hidl_vec<int32_t>& slots, getMemories_cb cb) {
std::lock_guard<std::mutex> guard(mMutex);
// get all memories
hardware::hidl_vec<hardware::hidl_memory> memories(slots.size());
std::transform(slots.begin(), slots.end(), memories.begin(), [this](int32_t slot) {
return slot < mMemoryCache.size() ? mMemoryCache[slot] : hardware::hidl_memory{};
});
// ensure all memories are valid
if (!std::all_of(memories.begin(), memories.end(),
[](const hardware::hidl_memory& memory) { return memory.valid(); })) {
cb(V1_0::ErrorStatus::INVALID_ARGUMENT, {});
return hardware::Void();
}
// return successful
cb(V1_0::ErrorStatus::NONE, std::move(memories));
return hardware::Void();
return burstContext;
}
std::vector<int32_t> ExecutionBurstController::ExecutionBurstCallback::getSlots(
const hardware::hidl_vec<hardware::hidl_memory>& memories,
const std::vector<intptr_t>& keys) {
std::lock_guard<std::mutex> guard(mMutex);
// retrieve (or bind) all slots corresponding to memories
std::vector<int32_t> slots;
slots.reserve(memories.size());
for (size_t i = 0; i < memories.size(); ++i) {
slots.push_back(getSlotLocked(memories[i], keys[i]));
nn::GeneralResult<hidl_vec<hidl_memory>> getMemoriesHelper(
const hidl_vec<int32_t>& slots,
const std::shared_ptr<ExecutionBurstController::MemoryCache>& memoryCache) {
hidl_vec<hidl_memory> memories(slots.size());
for (size_t i = 0; i < slots.size(); ++i) {
const int32_t slot = slots[i];
const auto memory = NN_TRY(memoryCache->getMemory(slot));
memories[i] = NN_TRY(V1_0::utils::unvalidatedConvert(memory));
if (!memories[i].valid()) {
return NN_ERROR() << "memory at slot " << slot << " is invalid";
}
}
return slots;
return memories;
}
std::pair<bool, int32_t> ExecutionBurstController::ExecutionBurstCallback::freeMemory(
intptr_t key) {
std::lock_guard<std::mutex> guard(mMutex);
} // namespace
auto iter = mMemoryIdToSlot.find(key);
if (iter == mMemoryIdToSlot.end()) {
return {false, 0};
}
const int32_t slot = iter->second;
mMemoryIdToSlot.erase(key);
mMemoryCache[slot] = {};
mFreeSlots.push(slot);
return {true, slot};
// MemoryCache methods
ExecutionBurstController::MemoryCache::MemoryCache() {
constexpr size_t kPreallocatedCount = 1024;
std::vector<int32_t> freeSlotsSpace;
freeSlotsSpace.reserve(kPreallocatedCount);
mFreeSlots = std::stack<int32_t, std::vector<int32_t>>(std::move(freeSlotsSpace));
mMemoryCache.reserve(kPreallocatedCount);
mCacheCleaner.reserve(kPreallocatedCount);
}
int32_t ExecutionBurstController::ExecutionBurstCallback::getSlotLocked(
const hardware::hidl_memory& memory, intptr_t key) {
auto iter = mMemoryIdToSlot.find(key);
if (iter == mMemoryIdToSlot.end()) {
const int32_t slot = allocateSlotLocked();
mMemoryIdToSlot[key] = slot;
mMemoryCache[slot] = memory;
return slot;
} else {
void ExecutionBurstController::MemoryCache::setBurstContext(sp<IBurstContext> burstContext) {
std::lock_guard guard(mMutex);
mBurstContext = std::move(burstContext);
}
std::pair<int32_t, ExecutionBurstController::MemoryCache::SharedCleanup>
ExecutionBurstController::MemoryCache::cacheMemory(const nn::SharedMemory& memory) {
std::unique_lock lock(mMutex);
base::ScopedLockAssertion lockAssert(mMutex);
// Use existing cache entry if (1) the Memory object is in the cache and (2) the cache entry is
// not currently being freed.
auto iter = mMemoryIdToSlot.find(memory);
while (iter != mMemoryIdToSlot.end()) {
const int32_t slot = iter->second;
return slot;
if (auto cleaner = mCacheCleaner.at(slot).lock()) {
return std::make_pair(slot, std::move(cleaner));
}
// If the code reaches this point, the Memory object was in the cache, but is currently
// being destroyed. This code waits until the cache entry has been freed, then loops to
// ensure the cache entry has been freed or has been made present by another thread.
mCond.wait(lock);
iter = mMemoryIdToSlot.find(memory);
}
// Allocate a new cache entry.
const int32_t slot = allocateSlotLocked();
mMemoryIdToSlot[memory] = slot;
mMemoryCache[slot] = memory;
// Create reference-counted self-cleaning cache object.
auto self = weak_from_this();
Task cleanup = [memory, memoryCache = std::move(self)] {
if (const auto lock = memoryCache.lock()) {
lock->freeMemory(memory);
}
};
auto cleaner = std::make_shared<const Cleanup>(std::move(cleanup));
mCacheCleaner[slot] = cleaner;
return std::make_pair(slot, std::move(cleaner));
}
int32_t ExecutionBurstController::ExecutionBurstCallback::allocateSlotLocked() {
nn::GeneralResult<nn::SharedMemory> ExecutionBurstController::MemoryCache::getMemory(int32_t slot) {
std::lock_guard guard(mMutex);
if (slot < 0 || static_cast<size_t>(slot) >= mMemoryCache.size()) {
return NN_ERROR() << "Invalid slot: " << slot << " vs " << mMemoryCache.size();
}
return mMemoryCache[slot];
}
void ExecutionBurstController::MemoryCache::freeMemory(const nn::SharedMemory& memory) {
{
std::lock_guard guard(mMutex);
const int32_t slot = mMemoryIdToSlot.at(memory);
if (mBurstContext) {
mBurstContext->freeMemory(slot);
}
mMemoryIdToSlot.erase(memory);
mMemoryCache[slot] = {};
mCacheCleaner[slot].reset();
mFreeSlots.push(slot);
}
mCond.notify_all();
}
int32_t ExecutionBurstController::MemoryCache::allocateSlotLocked() {
constexpr size_t kMaxNumberOfSlots = std::numeric_limits<int32_t>::max();
// if there is a free slot, use it
if (mFreeSlots.size() > 0) {
// If there is a free slot, use it.
if (!mFreeSlots.empty()) {
const int32_t slot = mFreeSlots.top();
mFreeSlots.pop();
return slot;
}
// otherwise use a slot for the first time
CHECK(mMemoryCache.size() < kMaxNumberOfSlots) << "Exceeded maximum number of slots!";
// Use a slot for the first time.
CHECK_LT(mMemoryCache.size(), kMaxNumberOfSlots) << "Exceeded maximum number of slots!";
const int32_t slot = static_cast<int32_t>(mMemoryCache.size());
mMemoryCache.emplace_back();
mCacheCleaner.emplace_back();
return slot;
}
std::unique_ptr<ExecutionBurstController> ExecutionBurstController::create(
const sp<V1_2::IPreparedModel>& preparedModel,
// ExecutionBurstCallback methods
ExecutionBurstController::ExecutionBurstCallback::ExecutionBurstCallback(
const std::shared_ptr<MemoryCache>& memoryCache)
: kMemoryCache(memoryCache) {
CHECK(memoryCache != nullptr);
}
Return<void> ExecutionBurstController::ExecutionBurstCallback::getMemories(
const hidl_vec<int32_t>& slots, getMemories_cb cb) {
const auto memoryCache = kMemoryCache.lock();
if (memoryCache == nullptr) {
LOG(ERROR) << "ExecutionBurstController::ExecutionBurstCallback::getMemories called after "
"the MemoryCache has been freed";
cb(V1_0::ErrorStatus::GENERAL_FAILURE, {});
return Void();
}
const auto maybeMemories = getMemoriesHelper(slots, memoryCache);
if (!maybeMemories.has_value()) {
const auto& [message, code] = maybeMemories.error();
LOG(ERROR) << "ExecutionBurstController::ExecutionBurstCallback::getMemories failed with "
<< code << ": " << message;
cb(V1_0::ErrorStatus::INVALID_ARGUMENT, {});
return Void();
}
cb(V1_0::ErrorStatus::NONE, maybeMemories.value());
return Void();
}
// ExecutionBurstController methods
nn::GeneralResult<std::shared_ptr<const ExecutionBurstController>> ExecutionBurstController::create(
const sp<V1_2::IPreparedModel>& preparedModel, FallbackFunction fallback,
std::chrono::microseconds pollingTimeWindow) {
// check inputs
if (preparedModel == nullptr) {
LOG(ERROR) << "ExecutionBurstController::create passed a nullptr";
return nullptr;
return NN_ERROR() << "ExecutionBurstController::create passed a nullptr";
}
// create callback object
sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback();
// create FMQ objects
auto [requestChannelSenderTemp, requestChannelDescriptor] =
RequestChannelSender::create(kExecutionBurstChannelLength);
auto [resultChannelReceiverTemp, resultChannelDescriptor] =
ResultChannelReceiver::create(kExecutionBurstChannelLength, pollingTimeWindow);
std::shared_ptr<RequestChannelSender> requestChannelSender =
std::move(requestChannelSenderTemp);
std::shared_ptr<ResultChannelReceiver> resultChannelReceiver =
std::move(resultChannelReceiverTemp);
auto [requestChannelSender, requestChannelDescriptor] =
NN_TRY(RequestChannelSender::create(kExecutionBurstChannelLength));
auto [resultChannelReceiver, resultChannelDescriptor] =
NN_TRY(ResultChannelReceiver::create(kExecutionBurstChannelLength, pollingTimeWindow));
// check FMQ objects
if (!requestChannelSender || !resultChannelReceiver || !requestChannelDescriptor ||
!resultChannelDescriptor) {
LOG(ERROR) << "ExecutionBurstController::create failed to create FastMessageQueue";
return nullptr;
}
CHECK(requestChannelSender != nullptr);
CHECK(requestChannelDescriptor != nullptr);
CHECK(resultChannelReceiver != nullptr);
CHECK(resultChannelDescriptor != nullptr);
// create memory cache
auto memoryCache = std::make_shared<MemoryCache>();
// create callback object
auto burstCallback = sp<ExecutionBurstCallback>::make(memoryCache);
auto cb = hal::utils::CallbackValue(executionBurstResultCallback);
// configure burst
V1_0::ErrorStatus errorStatus;
sp<IBurstContext> burstContext;
const hardware::Return<void> ret = preparedModel->configureExecutionBurst(
callback, *requestChannelDescriptor, *resultChannelDescriptor,
[&errorStatus, &burstContext](V1_0::ErrorStatus status,
const sp<IBurstContext>& context) {
errorStatus = status;
burstContext = context;
});
const Return<void> ret = preparedModel->configureExecutionBurst(
burstCallback, *requestChannelDescriptor, *resultChannelDescriptor, cb);
HANDLE_TRANSPORT_FAILURE(ret);
// check burst
if (!ret.isOk()) {
LOG(ERROR) << "IPreparedModel::configureExecutionBurst failed with description "
<< ret.description();
return nullptr;
}
if (errorStatus != V1_0::ErrorStatus::NONE) {
LOG(ERROR) << "IPreparedModel::configureExecutionBurst failed with status "
<< toString(errorStatus);
return nullptr;
}
if (burstContext == nullptr) {
LOG(ERROR) << "IPreparedModel::configureExecutionBurst returned nullptr for burst";
return nullptr;
}
auto burstContext = NN_TRY(cb.take());
memoryCache->setBurstContext(burstContext);
// create death handler object
BurstContextDeathHandler::Callback onDeathCallback = [requestChannelSender,
resultChannelReceiver] {
requestChannelSender->invalidate();
resultChannelReceiver->invalidate();
};
const sp<BurstContextDeathHandler> deathHandler = new BurstContextDeathHandler(onDeathCallback);
// linkToDeath registers a callback that will be invoked on service death to
// proactively handle service crashes. If the linkToDeath call fails,
// asynchronous calls are susceptible to hangs if the service crashes before
// providing the response.
const hardware::Return<bool> deathHandlerRet = burstContext->linkToDeath(deathHandler, 0);
if (!deathHandlerRet.isOk() || deathHandlerRet != true) {
LOG(ERROR) << "ExecutionBurstController::create -- Failed to register a death recipient "
"for the IBurstContext object.";
return nullptr;
}
auto deathHandler = NN_TRY(neuralnetworks::utils::DeathHandler::create(burstContext));
deathHandler.protectCallbackForLifetimeOfDeathHandler(requestChannelSender.get());
deathHandler.protectCallbackForLifetimeOfDeathHandler(resultChannelReceiver.get());
// make and return controller
return std::make_unique<ExecutionBurstController>(requestChannelSender, resultChannelReceiver,
burstContext, callback, deathHandler);
return std::make_shared<const ExecutionBurstController>(
PrivateConstructorTag{}, std::move(fallback), std::move(requestChannelSender),
std::move(resultChannelReceiver), std::move(burstCallback), std::move(burstContext),
std::move(memoryCache), std::move(deathHandler));
}
ExecutionBurstController::ExecutionBurstController(
const std::shared_ptr<RequestChannelSender>& requestChannelSender,
const std::shared_ptr<ResultChannelReceiver>& resultChannelReceiver,
const sp<IBurstContext>& burstContext, const sp<ExecutionBurstCallback>& callback,
const sp<hardware::hidl_death_recipient>& deathHandler)
: mRequestChannelSender(requestChannelSender),
mResultChannelReceiver(resultChannelReceiver),
mBurstContext(burstContext),
mMemoryCache(callback),
mDeathHandler(deathHandler) {}
PrivateConstructorTag /*tag*/, FallbackFunction fallback,
std::unique_ptr<RequestChannelSender> requestChannelSender,
std::unique_ptr<ResultChannelReceiver> resultChannelReceiver,
sp<ExecutionBurstCallback> callback, sp<IBurstContext> burstContext,
std::shared_ptr<MemoryCache> memoryCache, neuralnetworks::utils::DeathHandler deathHandler)
: kFallback(std::move(fallback)),
mRequestChannelSender(std::move(requestChannelSender)),
mResultChannelReceiver(std::move(resultChannelReceiver)),
mBurstCallback(std::move(callback)),
mBurstContext(std::move(burstContext)),
mMemoryCache(std::move(memoryCache)),
kDeathHandler(std::move(deathHandler)) {}
ExecutionBurstController::~ExecutionBurstController() {
// It is safe to ignore any errors resulting from this unlinkToDeath call
// because the ExecutionBurstController object is already being destroyed
// and its underlying IBurstContext object is no longer being used by the NN
// runtime.
if (mDeathHandler) {
mBurstContext->unlinkToDeath(mDeathHandler).isOk();
ExecutionBurstController::OptionalCacheHold ExecutionBurstController::cacheMemory(
const nn::SharedMemory& memory) const {
auto [slot, hold] = mMemoryCache->cacheMemory(memory);
return hold;
}
nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>>
ExecutionBurstController::execute(const nn::Request& request, nn::MeasureTiming measure) const {
// This is the first point when we know an execution is occurring, so begin to collect
// systraces. Note that the first point we can begin collecting systraces in
// ExecutionBurstServer is when the RequestChannelReceiver realizes there is data in the FMQ, so
// ExecutionBurstServer collects systraces at different points in the code.
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstController::execute");
// if the request is valid but of a higher version than what's supported in burst execution,
// fall back to another execution path
if (const auto version = NN_TRY(hal::utils::makeExecutionFailure(nn::validate(request)));
version > nn::Version::ANDROID_Q) {
// fallback to another execution path if the packet could not be sent
if (kFallback) {
return kFallback(request, measure);
}
return NN_ERROR() << "Request object has features not supported by IBurst::execute";
}
}
static std::tuple<int, std::vector<V1_2::OutputShape>, V1_2::Timing, bool> getExecutionResult(
V1_0::ErrorStatus status, std::vector<V1_2::OutputShape> outputShapes, V1_2::Timing timing,
bool fallback) {
auto [n, checkedOutputShapes, checkedTiming] =
getExecutionResult(convertToV1_3(status), std::move(outputShapes), timing);
return {n, convertToV1_2(checkedOutputShapes), convertToV1_2(checkedTiming), fallback};
}
// clear pools field of request, as they will be provided via slots
const auto requestWithoutPools =
nn::Request{.inputs = request.inputs, .outputs = request.outputs, .pools = {}};
auto hidlRequest = NN_TRY(
hal::utils::makeExecutionFailure(V1_0::utils::unvalidatedConvert(requestWithoutPools)));
const auto hidlMeasure = NN_TRY(hal::utils::makeExecutionFailure(convert(measure)));
std::tuple<int, std::vector<V1_2::OutputShape>, V1_2::Timing, bool>
ExecutionBurstController::compute(const V1_0::Request& request, V1_2::MeasureTiming measure,
const std::vector<intptr_t>& memoryIds) {
// This is the first point when we know an execution is occurring, so begin
// to collect systraces. Note that the first point we can begin collecting
// systraces in ExecutionBurstServer is when the RequestChannelReceiver
// realizes there is data in the FMQ, so ExecutionBurstServer collects
// systraces at different points in the code.
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstController::compute");
// Ensure that at most one execution is in flight at any given time.
const bool alreadyInFlight = mExecutionInFlight.test_and_set();
if (alreadyInFlight) {
return NN_ERROR() << "IBurst already has an execution in flight";
}
const auto guard = base::make_scope_guard([this] { mExecutionInFlight.clear(); });
std::lock_guard<std::mutex> guard(mMutex);
std::vector<int32_t> slots;
std::vector<OptionalCacheHold> holds;
slots.reserve(request.pools.size());
holds.reserve(request.pools.size());
for (const auto& memoryPool : request.pools) {
auto [slot, hold] = mMemoryCache->cacheMemory(std::get<nn::SharedMemory>(memoryPool));
slots.push_back(slot);
holds.push_back(std::move(hold));
}
// send request packet
const std::vector<int32_t> slots = mMemoryCache->getSlots(request.pools, memoryIds);
const bool success = mRequestChannelSender->send(request, measure, slots);
if (!success) {
LOG(ERROR) << "Error sending FMQ packet";
// only use fallback execution path if the packet could not be sent
return getExecutionResult(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming12,
/*fallback=*/true);
const auto sendStatus = mRequestChannelSender->send(hidlRequest, hidlMeasure, slots);
if (!sendStatus.ok()) {
// fallback to another execution path if the packet could not be sent
if (kFallback) {
return kFallback(request, measure);
}
return NN_ERROR() << "Error sending FMQ packet: " << sendStatus.error();
}
// get result packet
const auto result = mResultChannelReceiver->getBlocking();
if (!result) {
LOG(ERROR) << "Error retrieving FMQ packet";
// only use fallback execution path if the packet could not be sent
return getExecutionResult(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming12,
/*fallback=*/false);
}
// unpack results and return (only use fallback execution path if the
// packet could not be sent)
auto [status, outputShapes, timing] = std::move(*result);
return getExecutionResult(status, std::move(outputShapes), timing, /*fallback=*/false);
const auto [status, outputShapes, timing] =
NN_TRY(hal::utils::makeExecutionFailure(mResultChannelReceiver->getBlocking()));
return executionCallback(status, outputShapes, timing);
}
void ExecutionBurstController::freeMemory(intptr_t key) {
std::lock_guard<std::mutex> guard(mMutex);
bool valid;
int32_t slot;
std::tie(valid, slot) = mMemoryCache->freeMemory(key);
if (valid) {
mBurstContext->freeMemory(slot).isOk();
}
}
} // namespace android::nn
} // namespace android::hardware::neuralnetworks::V1_2::utils

View File

@@ -17,8 +17,19 @@
#define LOG_TAG "ExecutionBurstServer"
#include "ExecutionBurstServer.h"
#include "Conversions.h"
#include "ExecutionBurstUtils.h"
#include <android-base/logging.h>
#include <nnapi/IBurst.h>
#include <nnapi/Result.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
#include <nnapi/hal/1.0/Conversions.h>
#include <nnapi/hal/HandleError.h>
#include <nnapi/hal/ProtectCallback.h>
#include <nnapi/hal/TransferValue.h>
#include <algorithm>
#include <cstring>
@@ -29,134 +40,146 @@
#include <utility>
#include <vector>
#include "ExecutionBurstUtils.h"
#include "HalInterfaces.h"
#include "Tracing.h"
namespace android::nn {
namespace android::hardware::neuralnetworks::V1_2::utils {
namespace {
// DefaultBurstExecutorWithCache adapts an IPreparedModel so that it can be
// used as an IBurstExecutorWithCache. Specifically, the cache simply stores the
// hidl_memory object, and the execution forwards calls to the provided
// IPreparedModel's "executeSynchronously" method. With this class, hidl_memory
// must be mapped and unmapped for each execution.
class DefaultBurstExecutorWithCache : public ExecutionBurstServer::IBurstExecutorWithCache {
public:
DefaultBurstExecutorWithCache(V1_2::IPreparedModel* preparedModel)
: mpPreparedModel(preparedModel) {}
using neuralnetworks::utils::makeExecutionFailure;
bool isCacheEntryPresent(int32_t slot) const override {
const auto it = mMemoryCache.find(slot);
return (it != mMemoryCache.end()) && it->second.valid();
constexpr V1_2::Timing kNoTiming = {std::numeric_limits<uint64_t>::max(),
std::numeric_limits<uint64_t>::max()};
nn::GeneralResult<std::vector<nn::SharedMemory>> getMemoriesCallback(
V1_0::ErrorStatus status, const hidl_vec<hidl_memory>& memories) {
HANDLE_HAL_STATUS(status) << "getting burst memories failed with " << toString(status);
std::vector<nn::SharedMemory> canonicalMemories;
canonicalMemories.reserve(memories.size());
for (const auto& memory : memories) {
canonicalMemories.push_back(NN_TRY(nn::convert(memory)));
}
void addCacheEntry(const hardware::hidl_memory& memory, int32_t slot) override {
mMemoryCache[slot] = memory;
}
void removeCacheEntry(int32_t slot) override { mMemoryCache.erase(slot); }
std::tuple<V1_0::ErrorStatus, hardware::hidl_vec<V1_2::OutputShape>, V1_2::Timing> execute(
const V1_0::Request& request, const std::vector<int32_t>& slots,
V1_2::MeasureTiming measure) override {
// convert slots to pools
hardware::hidl_vec<hardware::hidl_memory> pools(slots.size());
std::transform(slots.begin(), slots.end(), pools.begin(),
[this](int32_t slot) { return mMemoryCache[slot]; });
// create full request
V1_0::Request fullRequest = request;
fullRequest.pools = std::move(pools);
// setup execution
V1_0::ErrorStatus returnedStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
hardware::hidl_vec<V1_2::OutputShape> returnedOutputShapes;
V1_2::Timing returnedTiming;
auto cb = [&returnedStatus, &returnedOutputShapes, &returnedTiming](
V1_0::ErrorStatus status,
const hardware::hidl_vec<V1_2::OutputShape>& outputShapes,
const V1_2::Timing& timing) {
returnedStatus = status;
returnedOutputShapes = outputShapes;
returnedTiming = timing;
};
// execute
const hardware::Return<void> ret =
mpPreparedModel->executeSynchronously(fullRequest, measure, cb);
if (!ret.isOk() || returnedStatus != V1_0::ErrorStatus::NONE) {
LOG(ERROR) << "IPreparedModelAdapter::execute -- Error executing";
return {returnedStatus, std::move(returnedOutputShapes), kNoTiming};
}
return std::make_tuple(returnedStatus, std::move(returnedOutputShapes), returnedTiming);
}
private:
V1_2::IPreparedModel* const mpPreparedModel;
std::map<int32_t, hardware::hidl_memory> mMemoryCache;
};
return canonicalMemories;
}
} // anonymous namespace
ExecutionBurstServer::MemoryCache::MemoryCache(nn::SharedBurst burstExecutor,
sp<IBurstCallback> burstCallback)
: kBurstExecutor(std::move(burstExecutor)), kBurstCallback(std::move(burstCallback)) {
CHECK(kBurstExecutor != nullptr);
CHECK(kBurstCallback != nullptr);
}
nn::GeneralResult<std::vector<std::pair<nn::SharedMemory, nn::IBurst::OptionalCacheHold>>>
ExecutionBurstServer::MemoryCache::getCacheEntries(const std::vector<int32_t>& slots) {
std::lock_guard guard(mMutex);
NN_TRY(ensureCacheEntriesArePresentLocked(slots));
std::vector<std::pair<nn::SharedMemory, nn::IBurst::OptionalCacheHold>> results;
results.reserve(slots.size());
for (int32_t slot : slots) {
results.push_back(NN_TRY(getCacheEntryLocked(slot)));
}
return results;
}
nn::GeneralResult<void> ExecutionBurstServer::MemoryCache::ensureCacheEntriesArePresentLocked(
const std::vector<int32_t>& slots) {
const auto slotIsKnown = [this](int32_t slot)
REQUIRES(mMutex) { return mCache.count(slot) > 0; };
// find unique unknown slots
std::vector<int32_t> unknownSlots = slots;
std::sort(unknownSlots.begin(), unknownSlots.end());
auto unknownSlotsEnd = std::unique(unknownSlots.begin(), unknownSlots.end());
unknownSlotsEnd = std::remove_if(unknownSlots.begin(), unknownSlotsEnd, slotIsKnown);
unknownSlots.erase(unknownSlotsEnd, unknownSlots.end());
// quick-exit if all slots are known
if (unknownSlots.empty()) {
return {};
}
auto cb = neuralnetworks::utils::CallbackValue(getMemoriesCallback);
const auto ret = kBurstCallback->getMemories(unknownSlots, cb);
HANDLE_TRANSPORT_FAILURE(ret);
auto returnedMemories = NN_TRY(cb.take());
if (returnedMemories.size() != unknownSlots.size()) {
return NN_ERROR()
<< "ExecutionBurstServer::MemoryCache::ensureCacheEntriesArePresentLocked: Error "
"retrieving memories -- count mismatch between requested memories ("
<< unknownSlots.size() << ") and returned memories (" << returnedMemories.size()
<< ")";
}
// add memories to unknown slots
for (size_t i = 0; i < unknownSlots.size(); ++i) {
addCacheEntryLocked(unknownSlots[i], std::move(returnedMemories[i]));
}
return {};
}
nn::GeneralResult<std::pair<nn::SharedMemory, nn::IBurst::OptionalCacheHold>>
ExecutionBurstServer::MemoryCache::getCacheEntryLocked(int32_t slot) {
if (const auto iter = mCache.find(slot); iter != mCache.end()) {
return iter->second;
}
return NN_ERROR()
<< "ExecutionBurstServer::MemoryCache::getCacheEntryLocked failed because slot " << slot
<< " is not present in the cache";
}
void ExecutionBurstServer::MemoryCache::addCacheEntryLocked(int32_t slot, nn::SharedMemory memory) {
auto hold = kBurstExecutor->cacheMemory(memory);
mCache.emplace(slot, std::make_pair(std::move(memory), std::move(hold)));
}
void ExecutionBurstServer::MemoryCache::removeCacheEntry(int32_t slot) {
std::lock_guard guard(mMutex);
mCache.erase(slot);
}
// ExecutionBurstServer methods
sp<ExecutionBurstServer> ExecutionBurstServer::create(
nn::GeneralResult<sp<ExecutionBurstServer>> ExecutionBurstServer::create(
const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
const MQDescriptorSync<FmqResultDatum>& resultChannel,
std::shared_ptr<IBurstExecutorWithCache> executorWithCache,
const MQDescriptorSync<FmqResultDatum>& resultChannel, nn::SharedBurst burstExecutor,
std::chrono::microseconds pollingTimeWindow) {
// check inputs
if (callback == nullptr || executorWithCache == nullptr) {
LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
return nullptr;
if (callback == nullptr || burstExecutor == nullptr) {
return NN_ERROR() << "ExecutionBurstServer::create passed a nullptr";
}
// create FMQ objects
std::unique_ptr<RequestChannelReceiver> requestChannelReceiver =
RequestChannelReceiver::create(requestChannel, pollingTimeWindow);
std::unique_ptr<ResultChannelSender> resultChannelSender =
ResultChannelSender::create(resultChannel);
auto requestChannelReceiver =
NN_TRY(RequestChannelReceiver::create(requestChannel, pollingTimeWindow));
auto resultChannelSender = NN_TRY(ResultChannelSender::create(resultChannel));
// check FMQ objects
if (!requestChannelReceiver || !resultChannelSender) {
LOG(ERROR) << "ExecutionBurstServer::create failed to create FastMessageQueue";
return nullptr;
}
CHECK(requestChannelReceiver != nullptr);
CHECK(resultChannelSender != nullptr);
// make and return context
return new ExecutionBurstServer(callback, std::move(requestChannelReceiver),
std::move(resultChannelSender), std::move(executorWithCache));
return sp<ExecutionBurstServer>::make(PrivateConstructorTag{}, callback,
std::move(requestChannelReceiver),
std::move(resultChannelSender), std::move(burstExecutor));
}
sp<ExecutionBurstServer> ExecutionBurstServer::create(
const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
const MQDescriptorSync<FmqResultDatum>& resultChannel, V1_2::IPreparedModel* preparedModel,
std::chrono::microseconds pollingTimeWindow) {
// check relevant input
if (preparedModel == nullptr) {
LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
return nullptr;
}
// adapt IPreparedModel to have caching
const std::shared_ptr<DefaultBurstExecutorWithCache> preparedModelAdapter =
std::make_shared<DefaultBurstExecutorWithCache>(preparedModel);
// make and return context
return ExecutionBurstServer::create(callback, requestChannel, resultChannel,
preparedModelAdapter, pollingTimeWindow);
}
ExecutionBurstServer::ExecutionBurstServer(
const sp<IBurstCallback>& callback, std::unique_ptr<RequestChannelReceiver> requestChannel,
std::unique_ptr<ResultChannelSender> resultChannel,
std::shared_ptr<IBurstExecutorWithCache> executorWithCache)
ExecutionBurstServer::ExecutionBurstServer(PrivateConstructorTag /*tag*/,
const sp<IBurstCallback>& callback,
std::unique_ptr<RequestChannelReceiver> requestChannel,
std::unique_ptr<ResultChannelSender> resultChannel,
nn::SharedBurst burstExecutor)
: mCallback(callback),
mRequestChannelReceiver(std::move(requestChannel)),
mResultChannelSender(std::move(resultChannel)),
mExecutorWithCache(std::move(executorWithCache)) {
mBurstExecutor(std::move(burstExecutor)),
mMemoryCache(mBurstExecutor, mCallback) {
// TODO: highly document the threading behavior of this class
mWorker = std::thread([this] { task(); });
}
@@ -170,51 +193,9 @@ ExecutionBurstServer::~ExecutionBurstServer() {
mWorker.join();
}
hardware::Return<void> ExecutionBurstServer::freeMemory(int32_t slot) {
std::lock_guard<std::mutex> hold(mMutex);
mExecutorWithCache->removeCacheEntry(slot);
return hardware::Void();
}
void ExecutionBurstServer::ensureCacheEntriesArePresentLocked(const std::vector<int32_t>& slots) {
const auto slotIsKnown = [this](int32_t slot) {
return mExecutorWithCache->isCacheEntryPresent(slot);
};
// find unique unknown slots
std::vector<int32_t> unknownSlots = slots;
auto unknownSlotsEnd = unknownSlots.end();
std::sort(unknownSlots.begin(), unknownSlotsEnd);
unknownSlotsEnd = std::unique(unknownSlots.begin(), unknownSlotsEnd);
unknownSlotsEnd = std::remove_if(unknownSlots.begin(), unknownSlotsEnd, slotIsKnown);
unknownSlots.erase(unknownSlotsEnd, unknownSlots.end());
// quick-exit if all slots are known
if (unknownSlots.empty()) {
return;
}
V1_0::ErrorStatus errorStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
std::vector<hardware::hidl_memory> returnedMemories;
auto cb = [&errorStatus, &returnedMemories](
V1_0::ErrorStatus status,
const hardware::hidl_vec<hardware::hidl_memory>& memories) {
errorStatus = status;
returnedMemories = memories;
};
const hardware::Return<void> ret = mCallback->getMemories(unknownSlots, cb);
if (!ret.isOk() || errorStatus != V1_0::ErrorStatus::NONE ||
returnedMemories.size() != unknownSlots.size()) {
LOG(ERROR) << "Error retrieving memories";
return;
}
// add memories to unknown slots
for (size_t i = 0; i < unknownSlots.size(); ++i) {
mExecutorWithCache->addCacheEntry(returnedMemories[i], unknownSlots[i]);
}
Return<void> ExecutionBurstServer::freeMemory(int32_t slot) {
mMemoryCache.removeCacheEntry(slot);
return Void();
}
void ExecutionBurstServer::task() {
@@ -223,38 +204,65 @@ void ExecutionBurstServer::task() {
// receive request
auto arguments = mRequestChannelReceiver->getBlocking();
// if the request packet was not properly received, return a generic
// error and skip the execution
// if the request packet was not properly received, return a generic error and skip the
// execution
//
// if the burst is being torn down, skip the execution so the "task"
// function can end
if (!arguments) {
// if the burst is being torn down, skip the execution so the "task" function can end
if (!arguments.has_value()) {
if (!mTeardown) {
mResultChannelSender->send(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
}
continue;
}
// otherwise begin tracing execution
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
"ExecutionBurstServer getting memory, executing, and returning results");
// unpack the arguments; types are Request, std::vector<int32_t>, and MeasureTiming,
// respectively
const auto [requestWithoutPools, slotsOfPools, measure] = std::move(arguments).value();
// unpack the arguments; types are Request, std::vector<int32_t>, and
// MeasureTiming, respectively
const auto [requestWithoutPools, slotsOfPools, measure] = std::move(*arguments);
// ensure executor with cache has required memory
std::lock_guard<std::mutex> hold(mMutex);
ensureCacheEntriesArePresentLocked(slotsOfPools);
// perform computation; types are ErrorStatus, hidl_vec<OutputShape>,
// and Timing, respectively
const auto [errorStatus, outputShapes, returnedTiming] =
mExecutorWithCache->execute(requestWithoutPools, slotsOfPools, measure);
auto result = execute(requestWithoutPools, slotsOfPools, measure);
// return result
mResultChannelSender->send(errorStatus, outputShapes, returnedTiming);
if (result.has_value()) {
const auto& [outputShapes, timing] = result.value();
mResultChannelSender->send(V1_0::ErrorStatus::NONE, outputShapes, timing);
} else {
const auto& [message, code, outputShapes] = result.error();
LOG(ERROR) << "IBurst::execute failed with " << code << ": " << message;
mResultChannelSender->send(convert(code).value(), convert(outputShapes).value(),
kNoTiming);
}
}
}
} // namespace android::nn
nn::ExecutionResult<std::pair<hidl_vec<OutputShape>, Timing>> ExecutionBurstServer::execute(
const V1_0::Request& requestWithoutPools, const std::vector<int32_t>& slotsOfPools,
MeasureTiming measure) {
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
"ExecutionBurstServer getting memory, executing, and returning results");
// ensure executor with cache has required memory
const auto cacheEntries =
NN_TRY(makeExecutionFailure(mMemoryCache.getCacheEntries(slotsOfPools)));
// convert request, populating its pools
// This code performs an unvalidated convert because the request object without its pools is
// invalid because it is incomplete. Instead, the validation is performed after the memory pools
// have been added to the request.
auto canonicalRequest =
NN_TRY(makeExecutionFailure(nn::unvalidatedConvert(requestWithoutPools)));
CHECK(canonicalRequest.pools.empty());
std::transform(cacheEntries.begin(), cacheEntries.end(),
std::back_inserter(canonicalRequest.pools),
[](const auto& cacheEntry) { return cacheEntry.first; });
NN_TRY(makeExecutionFailure(validate(canonicalRequest)));
nn::MeasureTiming canonicalMeasure = NN_TRY(makeExecutionFailure(nn::convert(measure)));
const auto [outputShapes, timing] =
NN_TRY(mBurstExecutor->execute(canonicalRequest, canonicalMeasure));
return std::make_pair(NN_TRY(makeExecutionFailure(convert(outputShapes))),
NN_TRY(makeExecutionFailure(convert(timing))));
}
} // namespace android::hardware::neuralnetworks::V1_2::utils

View File

@@ -19,11 +19,15 @@
#include "ExecutionBurstUtils.h"
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <fmq/MessageQueue.h>
#include <hidl/MQDescriptor.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <nnapi/hal/ProtectCallback.h>
#include <atomic>
#include <chrono>
@@ -39,84 +43,97 @@ namespace {
constexpr V1_2::Timing kNoTiming = {std::numeric_limits<uint64_t>::max(),
std::numeric_limits<uint64_t>::max()};
std::chrono::microseconds getPollingTimeWindow(const std::string& property) {
constexpr int32_t kDefaultPollingTimeWindow = 0;
#ifdef NN_DEBUGGABLE
constexpr int32_t kMinPollingTimeWindow = 0;
const int32_t selectedPollingTimeWindow =
base::GetIntProperty(property, kDefaultPollingTimeWindow, kMinPollingTimeWindow);
return std::chrono::microseconds(selectedPollingTimeWindow);
#else
(void)property;
return std::chrono::microseconds(kDefaultPollingTimeWindow);
#endif // NN_DEBUGGABLE
}
} // namespace
std::chrono::microseconds getBurstControllerPollingTimeWindow() {
return getPollingTimeWindow("debug.nn.burst-controller-polling-window");
}
std::chrono::microseconds getBurstServerPollingTimeWindow() {
return getPollingTimeWindow("debug.nn.burst-server-polling-window");
}
// serialize a request into a packet
std::vector<FmqRequestDatum> serialize(const V1_0::Request& request, V1_2::MeasureTiming measure,
const std::vector<int32_t>& slots) {
// count how many elements need to be sent for a request
size_t count = 2 + request.inputs.size() + request.outputs.size() + request.pools.size();
size_t count = 2 + request.inputs.size() + request.outputs.size() + slots.size();
for (const auto& input : request.inputs) {
count += input.dimensions.size();
}
for (const auto& output : request.outputs) {
count += output.dimensions.size();
}
CHECK_LE(count, std::numeric_limits<uint32_t>::max());
// create buffer to temporarily store elements
std::vector<FmqRequestDatum> data;
data.reserve(count);
// package packetInfo
{
FmqRequestDatum datum;
datum.packetInformation(
{/*.packetSize=*/static_cast<uint32_t>(count),
/*.numberOfInputOperands=*/static_cast<uint32_t>(request.inputs.size()),
/*.numberOfOutputOperands=*/static_cast<uint32_t>(request.outputs.size()),
/*.numberOfPools=*/static_cast<uint32_t>(request.pools.size())});
data.push_back(datum);
}
data.emplace_back();
data.back().packetInformation(
{.packetSize = static_cast<uint32_t>(count),
.numberOfInputOperands = static_cast<uint32_t>(request.inputs.size()),
.numberOfOutputOperands = static_cast<uint32_t>(request.outputs.size()),
.numberOfPools = static_cast<uint32_t>(slots.size())});
// package input data
for (const auto& input : request.inputs) {
// package operand information
FmqRequestDatum datum;
datum.inputOperandInformation(
{/*.hasNoValue=*/input.hasNoValue,
/*.location=*/input.location,
/*.numberOfDimensions=*/static_cast<uint32_t>(input.dimensions.size())});
data.push_back(datum);
data.emplace_back();
data.back().inputOperandInformation(
{.hasNoValue = input.hasNoValue,
.location = input.location,
.numberOfDimensions = static_cast<uint32_t>(input.dimensions.size())});
// package operand dimensions
for (uint32_t dimension : input.dimensions) {
FmqRequestDatum datum;
datum.inputOperandDimensionValue(dimension);
data.push_back(datum);
data.emplace_back();
data.back().inputOperandDimensionValue(dimension);
}
}
// package output data
for (const auto& output : request.outputs) {
// package operand information
FmqRequestDatum datum;
datum.outputOperandInformation(
{/*.hasNoValue=*/output.hasNoValue,
/*.location=*/output.location,
/*.numberOfDimensions=*/static_cast<uint32_t>(output.dimensions.size())});
data.push_back(datum);
data.emplace_back();
data.back().outputOperandInformation(
{.hasNoValue = output.hasNoValue,
.location = output.location,
.numberOfDimensions = static_cast<uint32_t>(output.dimensions.size())});
// package operand dimensions
for (uint32_t dimension : output.dimensions) {
FmqRequestDatum datum;
datum.outputOperandDimensionValue(dimension);
data.push_back(datum);
data.emplace_back();
data.back().outputOperandDimensionValue(dimension);
}
}
// package pool identifier
for (int32_t slot : slots) {
FmqRequestDatum datum;
datum.poolIdentifier(slot);
data.push_back(datum);
data.emplace_back();
data.back().poolIdentifier(slot);
}
// package measureTiming
{
FmqRequestDatum datum;
datum.measureTiming(measure);
data.push_back(datum);
}
data.emplace_back();
data.back().measureTiming(measure);
CHECK_EQ(data.size(), count);
// return packet
return data;
@@ -137,46 +154,38 @@ std::vector<FmqResultDatum> serialize(V1_0::ErrorStatus errorStatus,
data.reserve(count);
// package packetInfo
{
FmqResultDatum datum;
datum.packetInformation({/*.packetSize=*/static_cast<uint32_t>(count),
/*.errorStatus=*/errorStatus,
/*.numberOfOperands=*/static_cast<uint32_t>(outputShapes.size())});
data.push_back(datum);
}
data.emplace_back();
data.back().packetInformation({.packetSize = static_cast<uint32_t>(count),
.errorStatus = errorStatus,
.numberOfOperands = static_cast<uint32_t>(outputShapes.size())});
// package output shape data
for (const auto& operand : outputShapes) {
// package operand information
FmqResultDatum::OperandInformation info{};
info.isSufficient = operand.isSufficient;
info.numberOfDimensions = static_cast<uint32_t>(operand.dimensions.size());
FmqResultDatum datum;
datum.operandInformation(info);
data.push_back(datum);
data.emplace_back();
data.back().operandInformation(
{.isSufficient = operand.isSufficient,
.numberOfDimensions = static_cast<uint32_t>(operand.dimensions.size())});
// package operand dimensions
for (uint32_t dimension : operand.dimensions) {
FmqResultDatum datum;
datum.operandDimensionValue(dimension);
data.push_back(datum);
data.emplace_back();
data.back().operandDimensionValue(dimension);
}
}
// package executionTiming
{
FmqResultDatum datum;
datum.executionTiming(timing);
data.push_back(datum);
}
data.emplace_back();
data.back().executionTiming(timing);
CHECK_EQ(data.size(), count);
// return result
return data;
}
// deserialize request
std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>> deserialize(
nn::Result<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>> deserialize(
const std::vector<FmqRequestDatum>& data) {
using discriminator = FmqRequestDatum::hidl_discriminator;
@@ -184,8 +193,7 @@ std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTimin
// validate packet information
if (data.size() == 0 || data[index].getDiscriminator() != discriminator::packetInformation) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
return NN_ERROR() << "FMQ Request packet ill-formed";
}
// unpackage packet information
@@ -198,8 +206,7 @@ std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTimin
// verify packet size
if (data.size() != packetSize) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
return NN_ERROR() << "FMQ Request packet ill-formed";
}
// unpackage input operands
@@ -208,8 +215,7 @@ std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTimin
for (size_t operand = 0; operand < numberOfInputOperands; ++operand) {
// validate input operand information
if (data[index].getDiscriminator() != discriminator::inputOperandInformation) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
return NN_ERROR() << "FMQ Request packet ill-formed";
}
// unpackage operand information
@@ -226,8 +232,7 @@ std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTimin
for (size_t i = 0; i < numberOfDimensions; ++i) {
// validate dimension
if (data[index].getDiscriminator() != discriminator::inputOperandDimensionValue) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
return NN_ERROR() << "FMQ Request packet ill-formed";
}
// unpackage dimension
@@ -240,7 +245,7 @@ std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTimin
// store result
inputs.push_back(
{/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
{.hasNoValue = hasNoValue, .location = location, .dimensions = dimensions});
}
// unpackage output operands
@@ -249,8 +254,7 @@ std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTimin
for (size_t operand = 0; operand < numberOfOutputOperands; ++operand) {
// validate output operand information
if (data[index].getDiscriminator() != discriminator::outputOperandInformation) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
return NN_ERROR() << "FMQ Request packet ill-formed";
}
// unpackage operand information
@@ -267,8 +271,7 @@ std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTimin
for (size_t i = 0; i < numberOfDimensions; ++i) {
// validate dimension
if (data[index].getDiscriminator() != discriminator::outputOperandDimensionValue) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
return NN_ERROR() << "FMQ Request packet ill-formed";
}
// unpackage dimension
@@ -281,7 +284,7 @@ std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTimin
// store result
outputs.push_back(
{/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
{.hasNoValue = hasNoValue, .location = location, .dimensions = dimensions});
}
// unpackage pools
@@ -290,8 +293,7 @@ std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTimin
for (size_t pool = 0; pool < numberOfPools; ++pool) {
// validate input operand information
if (data[index].getDiscriminator() != discriminator::poolIdentifier) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
return NN_ERROR() << "FMQ Request packet ill-formed";
}
// unpackage operand information
@@ -304,8 +306,7 @@ std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTimin
// validate measureTiming
if (data[index].getDiscriminator() != discriminator::measureTiming) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
return NN_ERROR() << "FMQ Request packet ill-formed";
}
// unpackage measureTiming
@@ -314,27 +315,23 @@ std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTimin
// validate packet information
if (index != packetSize) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
return NN_ERROR() << "FMQ Result packet ill-formed";
}
// return request
V1_0::Request request = {/*.inputs=*/inputs, /*.outputs=*/outputs, /*.pools=*/{}};
V1_0::Request request = {.inputs = inputs, .outputs = outputs, .pools = {}};
return std::make_tuple(std::move(request), std::move(slots), measure);
}
// deserialize a packet into the result
std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>>
deserialize(const std::vector<FmqResultDatum>& data) {
nn::Result<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>> deserialize(
const std::vector<FmqResultDatum>& data) {
using discriminator = FmqResultDatum::hidl_discriminator;
std::vector<V1_2::OutputShape> outputShapes;
size_t index = 0;
// validate packet information
if (data.size() == 0 || data[index].getDiscriminator() != discriminator::packetInformation) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
return NN_ERROR() << "FMQ Result packet ill-formed";
}
// unpackage packet information
@@ -346,16 +343,16 @@ deserialize(const std::vector<FmqResultDatum>& data) {
// verify packet size
if (data.size() != packetSize) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
return NN_ERROR() << "FMQ Result packet ill-formed";
}
// unpackage operands
std::vector<V1_2::OutputShape> outputShapes;
outputShapes.reserve(numberOfOperands);
for (size_t operand = 0; operand < numberOfOperands; ++operand) {
// validate operand information
if (data[index].getDiscriminator() != discriminator::operandInformation) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
return NN_ERROR() << "FMQ Result packet ill-formed";
}
// unpackage operand information
@@ -370,8 +367,7 @@ deserialize(const std::vector<FmqResultDatum>& data) {
for (size_t i = 0; i < numberOfDimensions; ++i) {
// validate dimension
if (data[index].getDiscriminator() != discriminator::operandDimensionValue) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
return NN_ERROR() << "FMQ Result packet ill-formed";
}
// unpackage dimension
@@ -383,13 +379,12 @@ deserialize(const std::vector<FmqResultDatum>& data) {
}
// store result
outputShapes.push_back({/*.dimensions=*/dimensions, /*.isSufficient=*/isSufficient});
outputShapes.push_back({.dimensions = dimensions, .isSufficient = isSufficient});
}
// validate execution timing
if (data[index].getDiscriminator() != discriminator::executionTiming) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
return NN_ERROR() << "FMQ Result packet ill-formed";
}
// unpackage execution timing
@@ -398,123 +393,113 @@ deserialize(const std::vector<FmqResultDatum>& data) {
// validate packet information
if (index != packetSize) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
return NN_ERROR() << "FMQ Result packet ill-formed";
}
// return result
return std::make_tuple(errorStatus, std::move(outputShapes), timing);
}
V1_0::ErrorStatus legacyConvertResultCodeToErrorStatus(int resultCode) {
return convertToV1_0(convertResultCodeToErrorStatus(resultCode));
}
// RequestChannelSender methods
std::pair<std::unique_ptr<RequestChannelSender>, const FmqRequestDescriptor*>
nn::GeneralResult<
std::pair<std::unique_ptr<RequestChannelSender>, const MQDescriptorSync<FmqRequestDatum>*>>
RequestChannelSender::create(size_t channelLength) {
std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
std::make_unique<FmqRequestChannel>(channelLength, /*confEventFlag=*/true);
if (!fmqRequestChannel->isValid()) {
LOG(ERROR) << "Unable to create RequestChannelSender";
return {nullptr, nullptr};
auto requestChannelSender =
std::make_unique<RequestChannelSender>(PrivateConstructorTag{}, channelLength);
if (!requestChannelSender->mFmqRequestChannel.isValid()) {
return NN_ERROR() << "Unable to create RequestChannelSender";
}
const FmqRequestDescriptor* descriptor = fmqRequestChannel->getDesc();
return std::make_pair(std::make_unique<RequestChannelSender>(std::move(fmqRequestChannel)),
descriptor);
const MQDescriptorSync<FmqRequestDatum>* descriptor =
requestChannelSender->mFmqRequestChannel.getDesc();
return std::make_pair(std::move(requestChannelSender), descriptor);
}
RequestChannelSender::RequestChannelSender(std::unique_ptr<FmqRequestChannel> fmqRequestChannel)
: mFmqRequestChannel(std::move(fmqRequestChannel)) {}
RequestChannelSender::RequestChannelSender(PrivateConstructorTag /*tag*/, size_t channelLength)
: mFmqRequestChannel(channelLength, /*configureEventFlagWord=*/true) {}
bool RequestChannelSender::send(const V1_0::Request& request, V1_2::MeasureTiming measure,
const std::vector<int32_t>& slots) {
nn::Result<void> RequestChannelSender::send(const V1_0::Request& request,
V1_2::MeasureTiming measure,
const std::vector<int32_t>& slots) {
const std::vector<FmqRequestDatum> serialized = serialize(request, measure, slots);
return sendPacket(serialized);
}
bool RequestChannelSender::sendPacket(const std::vector<FmqRequestDatum>& packet) {
nn::Result<void> RequestChannelSender::sendPacket(const std::vector<FmqRequestDatum>& packet) {
if (!mValid) {
return false;
return NN_ERROR() << "FMQ object is invalid";
}
if (packet.size() > mFmqRequestChannel->availableToWrite()) {
LOG(ERROR)
<< "RequestChannelSender::sendPacket -- packet size exceeds size available in FMQ";
return false;
if (packet.size() > mFmqRequestChannel.availableToWrite()) {
return NN_ERROR()
<< "RequestChannelSender::sendPacket -- packet size exceeds size available in FMQ";
}
// Always send the packet with "blocking" because this signals the futex and
// unblocks the consumer if it is waiting on the futex.
return mFmqRequestChannel->writeBlocking(packet.data(), packet.size());
// Always send the packet with "blocking" because this signals the futex and unblocks the
// consumer if it is waiting on the futex.
const bool success = mFmqRequestChannel.writeBlocking(packet.data(), packet.size());
if (!success) {
return NN_ERROR()
<< "RequestChannelSender::sendPacket -- FMQ's writeBlocking returned an error";
}
return {};
}
void RequestChannelSender::invalidate() {
void RequestChannelSender::notifyAsDeadObject() {
mValid = false;
}
// RequestChannelReceiver methods
std::unique_ptr<RequestChannelReceiver> RequestChannelReceiver::create(
const FmqRequestDescriptor& requestChannel, std::chrono::microseconds pollingTimeWindow) {
std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
std::make_unique<FmqRequestChannel>(requestChannel);
nn::GeneralResult<std::unique_ptr<RequestChannelReceiver>> RequestChannelReceiver::create(
const MQDescriptorSync<FmqRequestDatum>& requestChannel,
std::chrono::microseconds pollingTimeWindow) {
auto requestChannelReceiver = std::make_unique<RequestChannelReceiver>(
PrivateConstructorTag{}, requestChannel, pollingTimeWindow);
if (!fmqRequestChannel->isValid()) {
LOG(ERROR) << "Unable to create RequestChannelReceiver";
return nullptr;
if (!requestChannelReceiver->mFmqRequestChannel.isValid()) {
return NN_ERROR() << "Unable to create RequestChannelReceiver";
}
if (fmqRequestChannel->getEventFlagWord() == nullptr) {
LOG(ERROR)
<< "RequestChannelReceiver::create was passed an MQDescriptor without an EventFlag";
return nullptr;
if (requestChannelReceiver->mFmqRequestChannel.getEventFlagWord() == nullptr) {
return NN_ERROR()
<< "RequestChannelReceiver::create was passed an MQDescriptor without an EventFlag";
}
return std::make_unique<RequestChannelReceiver>(std::move(fmqRequestChannel),
pollingTimeWindow);
return requestChannelReceiver;
}
RequestChannelReceiver::RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel,
std::chrono::microseconds pollingTimeWindow)
: mFmqRequestChannel(std::move(fmqRequestChannel)), kPollingTimeWindow(pollingTimeWindow) {}
RequestChannelReceiver::RequestChannelReceiver(
PrivateConstructorTag /*tag*/, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
std::chrono::microseconds pollingTimeWindow)
: mFmqRequestChannel(requestChannel), kPollingTimeWindow(pollingTimeWindow) {}
std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>>
nn::Result<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>>
RequestChannelReceiver::getBlocking() {
const auto packet = getPacketBlocking();
if (!packet) {
return std::nullopt;
}
return deserialize(*packet);
const auto packet = NN_TRY(getPacketBlocking());
return deserialize(packet);
}
void RequestChannelReceiver::invalidate() {
mTeardown = true;
// force unblock
// ExecutionBurstServer is by default waiting on a request packet. If the
// client process destroys its burst object, the server may still be waiting
// on the futex. This force unblock wakes up any thread waiting on the
// futex.
// TODO: look for a different/better way to signal/notify the futex to wake
// up any thread waiting on it
FmqRequestDatum datum;
datum.packetInformation({/*.packetSize=*/0, /*.numberOfInputOperands=*/0,
/*.numberOfOutputOperands=*/0, /*.numberOfPools=*/0});
mFmqRequestChannel->writeBlocking(&datum, 1);
// ExecutionBurstServer is by default waiting on a request packet. If the client process
// destroys its burst object, the server may still be waiting on the futex. This force unblock
// wakes up any thread waiting on the futex.
const auto data = serialize(V1_0::Request{}, V1_2::MeasureTiming::NO, {});
mFmqRequestChannel.writeBlocking(data.data(), data.size());
}
std::optional<std::vector<FmqRequestDatum>> RequestChannelReceiver::getPacketBlocking() {
nn::Result<std::vector<FmqRequestDatum>> RequestChannelReceiver::getPacketBlocking() {
if (mTeardown) {
return std::nullopt;
return NN_ERROR() << "FMQ object is being torn down";
}
// First spend time polling if results are available in FMQ instead of
// waiting on the futex. Polling is more responsive (yielding lower
// latencies), but can take up more power, so only poll for a limited period
// of time.
// First spend time polling if results are available in FMQ instead of waiting on the futex.
// Polling is more responsive (yielding lower latencies), but can take up more power, so only
// poll for a limited period of time.
auto& getCurrentTime = std::chrono::high_resolution_clock::now;
const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow;
@@ -522,173 +507,144 @@ std::optional<std::vector<FmqRequestDatum>> RequestChannelReceiver::getPacketBlo
while (getCurrentTime() < timeToStopPolling) {
// if class is being torn down, immediately return
if (mTeardown.load(std::memory_order_relaxed)) {
return std::nullopt;
return NN_ERROR() << "FMQ object is being torn down";
}
// Check if data is available. If it is, immediately retrieve it and
// return.
const size_t available = mFmqRequestChannel->availableToRead();
// Check if data is available. If it is, immediately retrieve it and return.
const size_t available = mFmqRequestChannel.availableToRead();
if (available > 0) {
// This is the first point when we know an execution is occurring,
// so begin to collect systraces. Note that a similar systrace does
// not exist at the corresponding point in
// ResultChannelReceiver::getPacketBlocking because the execution is
// already in flight.
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
"ExecutionBurstServer getting packet");
std::vector<FmqRequestDatum> packet(available);
const bool success = mFmqRequestChannel->read(packet.data(), available);
const bool success = mFmqRequestChannel.readBlocking(packet.data(), available);
if (!success) {
LOG(ERROR) << "Error receiving packet";
return std::nullopt;
return NN_ERROR() << "Error receiving packet";
}
return std::make_optional(std::move(packet));
return packet;
}
}
// If we get to this point, we either stopped polling because it was taking
// too long or polling was not allowed. Instead, perform a blocking call
// which uses a futex to save power.
// If we get to this point, we either stopped polling because it was taking too long or polling
// was not allowed. Instead, perform a blocking call which uses a futex to save power.
// wait for request packet and read first element of request packet
FmqRequestDatum datum;
bool success = mFmqRequestChannel->readBlocking(&datum, 1);
// This is the first point when we know an execution is occurring, so begin
// to collect systraces. Note that a similar systrace does not exist at the
// corresponding point in ResultChannelReceiver::getPacketBlocking because
// the execution is already in flight.
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstServer getting packet");
bool success = mFmqRequestChannel.readBlocking(&datum, 1);
// retrieve remaining elements
// NOTE: all of the data is already available at this point, so there's no
// need to do a blocking wait to wait for more data. This is known because
// in FMQ, all writes are published (made available) atomically. Currently,
// the producer always publishes the entire packet in one function call, so
// if the first element of the packet is available, the remaining elements
// are also available.
const size_t count = mFmqRequestChannel->availableToRead();
// NOTE: all of the data is already available at this point, so there's no need to do a blocking
// wait to wait for more data. This is known because in FMQ, all writes are published (made
// available) atomically. Currently, the producer always publishes the entire packet in one
// function call, so if the first element of the packet is available, the remaining elements are
// also available.
const size_t count = mFmqRequestChannel.availableToRead();
std::vector<FmqRequestDatum> packet(count + 1);
std::memcpy(&packet.front(), &datum, sizeof(datum));
success &= mFmqRequestChannel->read(packet.data() + 1, count);
success &= mFmqRequestChannel.read(packet.data() + 1, count);
// terminate loop
if (mTeardown) {
return std::nullopt;
return NN_ERROR() << "FMQ object is being torn down";
}
// ensure packet was successfully received
if (!success) {
LOG(ERROR) << "Error receiving packet";
return std::nullopt;
return NN_ERROR() << "Error receiving packet";
}
return std::make_optional(std::move(packet));
return packet;
}
// ResultChannelSender methods
std::unique_ptr<ResultChannelSender> ResultChannelSender::create(
const FmqResultDescriptor& resultChannel) {
std::unique_ptr<FmqResultChannel> fmqResultChannel =
std::make_unique<FmqResultChannel>(resultChannel);
nn::GeneralResult<std::unique_ptr<ResultChannelSender>> ResultChannelSender::create(
const MQDescriptorSync<FmqResultDatum>& resultChannel) {
auto resultChannelSender =
std::make_unique<ResultChannelSender>(PrivateConstructorTag{}, resultChannel);
if (!fmqResultChannel->isValid()) {
LOG(ERROR) << "Unable to create RequestChannelSender";
return nullptr;
if (!resultChannelSender->mFmqResultChannel.isValid()) {
return NN_ERROR() << "Unable to create RequestChannelSender";
}
if (fmqResultChannel->getEventFlagWord() == nullptr) {
LOG(ERROR) << "ResultChannelSender::create was passed an MQDescriptor without an EventFlag";
return nullptr;
if (resultChannelSender->mFmqResultChannel.getEventFlagWord() == nullptr) {
return NN_ERROR()
<< "ResultChannelSender::create was passed an MQDescriptor without an EventFlag";
}
return std::make_unique<ResultChannelSender>(std::move(fmqResultChannel));
return resultChannelSender;
}
ResultChannelSender::ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel)
: mFmqResultChannel(std::move(fmqResultChannel)) {}
ResultChannelSender::ResultChannelSender(PrivateConstructorTag /*tag*/,
const MQDescriptorSync<FmqResultDatum>& resultChannel)
: mFmqResultChannel(resultChannel) {}
bool ResultChannelSender::send(V1_0::ErrorStatus errorStatus,
void ResultChannelSender::send(V1_0::ErrorStatus errorStatus,
const std::vector<V1_2::OutputShape>& outputShapes,
V1_2::Timing timing) {
const std::vector<FmqResultDatum> serialized = serialize(errorStatus, outputShapes, timing);
return sendPacket(serialized);
sendPacket(serialized);
}
bool ResultChannelSender::sendPacket(const std::vector<FmqResultDatum>& packet) {
if (packet.size() > mFmqResultChannel->availableToWrite()) {
void ResultChannelSender::sendPacket(const std::vector<FmqResultDatum>& packet) {
if (packet.size() > mFmqResultChannel.availableToWrite()) {
LOG(ERROR)
<< "ResultChannelSender::sendPacket -- packet size exceeds size available in FMQ";
const std::vector<FmqResultDatum> errorPacket =
serialize(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
// Always send the packet with "blocking" because this signals the futex
// and unblocks the consumer if it is waiting on the futex.
return mFmqResultChannel->writeBlocking(errorPacket.data(), errorPacket.size());
// Always send the packet with "blocking" because this signals the futex and unblocks the
// consumer if it is waiting on the futex.
mFmqResultChannel.writeBlocking(errorPacket.data(), errorPacket.size());
} else {
// Always send the packet with "blocking" because this signals the futex and unblocks the
// consumer if it is waiting on the futex.
mFmqResultChannel.writeBlocking(packet.data(), packet.size());
}
// Always send the packet with "blocking" because this signals the futex and
// unblocks the consumer if it is waiting on the futex.
return mFmqResultChannel->writeBlocking(packet.data(), packet.size());
}
// ResultChannelReceiver methods
std::pair<std::unique_ptr<ResultChannelReceiver>, const FmqResultDescriptor*>
nn::GeneralResult<
std::pair<std::unique_ptr<ResultChannelReceiver>, const MQDescriptorSync<FmqResultDatum>*>>
ResultChannelReceiver::create(size_t channelLength, std::chrono::microseconds pollingTimeWindow) {
std::unique_ptr<FmqResultChannel> fmqResultChannel =
std::make_unique<FmqResultChannel>(channelLength, /*confEventFlag=*/true);
if (!fmqResultChannel->isValid()) {
LOG(ERROR) << "Unable to create ResultChannelReceiver";
return {nullptr, nullptr};
auto resultChannelReceiver = std::make_unique<ResultChannelReceiver>(
PrivateConstructorTag{}, channelLength, pollingTimeWindow);
if (!resultChannelReceiver->mFmqResultChannel.isValid()) {
return NN_ERROR() << "Unable to create ResultChannelReceiver";
}
const FmqResultDescriptor* descriptor = fmqResultChannel->getDesc();
return std::make_pair(
std::make_unique<ResultChannelReceiver>(std::move(fmqResultChannel), pollingTimeWindow),
descriptor);
const MQDescriptorSync<FmqResultDatum>* descriptor =
resultChannelReceiver->mFmqResultChannel.getDesc();
return std::make_pair(std::move(resultChannelReceiver), descriptor);
}
ResultChannelReceiver::ResultChannelReceiver(std::unique_ptr<FmqResultChannel> fmqResultChannel,
ResultChannelReceiver::ResultChannelReceiver(PrivateConstructorTag /*tag*/, size_t channelLength,
std::chrono::microseconds pollingTimeWindow)
: mFmqResultChannel(std::move(fmqResultChannel)), kPollingTimeWindow(pollingTimeWindow) {}
: mFmqResultChannel(channelLength, /*configureEventFlagWord=*/true),
kPollingTimeWindow(pollingTimeWindow) {}
std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>>
nn::Result<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>>
ResultChannelReceiver::getBlocking() {
const auto packet = getPacketBlocking();
if (!packet) {
return std::nullopt;
}
return deserialize(*packet);
const auto packet = NN_TRY(getPacketBlocking());
return deserialize(packet);
}
void ResultChannelReceiver::invalidate() {
void ResultChannelReceiver::notifyAsDeadObject() {
mValid = false;
// force unblock
// ExecutionBurstController waits on a result packet after sending a
// request. If the driver containing ExecutionBurstServer crashes, the
// controller may be waiting on the futex. This force unblock wakes up any
// thread waiting on the futex.
// TODO: look for a different/better way to signal/notify the futex to
// wake up any thread waiting on it
FmqResultDatum datum;
datum.packetInformation({/*.packetSize=*/0,
/*.errorStatus=*/V1_0::ErrorStatus::GENERAL_FAILURE,
/*.numberOfOperands=*/0});
mFmqResultChannel->writeBlocking(&datum, 1);
// ExecutionBurstController waits on a result packet after sending a request. If the driver
// containing ExecutionBurstServer crashes, the controller may be waiting on the futex. This
// force unblock wakes up any thread waiting on the futex.
const auto data = serialize(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
mFmqResultChannel.writeBlocking(data.data(), data.size());
}
std::optional<std::vector<FmqResultDatum>> ResultChannelReceiver::getPacketBlocking() {
nn::Result<std::vector<FmqResultDatum>> ResultChannelReceiver::getPacketBlocking() {
if (!mValid) {
return std::nullopt;
return NN_ERROR() << "FMQ object is invalid";
}
// First spend time polling if results are available in FMQ instead of
// waiting on the futex. Polling is more responsive (yielding lower
// latencies), but can take up more power, so only poll for a limited period
// of time.
// First spend time polling if results are available in FMQ instead of waiting on the futex.
// Polling is more responsive (yielding lower latencies), but can take up more power, so only
// poll for a limited period of time.
auto& getCurrentTime = std::chrono::high_resolution_clock::now;
const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow;
@@ -696,54 +652,49 @@ std::optional<std::vector<FmqResultDatum>> ResultChannelReceiver::getPacketBlock
while (getCurrentTime() < timeToStopPolling) {
// if class is being torn down, immediately return
if (!mValid.load(std::memory_order_relaxed)) {
return std::nullopt;
return NN_ERROR() << "FMQ object is invalid";
}
// Check if data is available. If it is, immediately retrieve it and
// return.
const size_t available = mFmqResultChannel->availableToRead();
// Check if data is available. If it is, immediately retrieve it and return.
const size_t available = mFmqResultChannel.availableToRead();
if (available > 0) {
std::vector<FmqResultDatum> packet(available);
const bool success = mFmqResultChannel->read(packet.data(), available);
const bool success = mFmqResultChannel.readBlocking(packet.data(), available);
if (!success) {
LOG(ERROR) << "Error receiving packet";
return std::nullopt;
return NN_ERROR() << "Error receiving packet";
}
return std::make_optional(std::move(packet));
return packet;
}
}
// If we get to this point, we either stopped polling because it was taking
// too long or polling was not allowed. Instead, perform a blocking call
// which uses a futex to save power.
// If we get to this point, we either stopped polling because it was taking too long or polling
// was not allowed. Instead, perform a blocking call which uses a futex to save power.
// wait for result packet and read first element of result packet
FmqResultDatum datum;
bool success = mFmqResultChannel->readBlocking(&datum, 1);
bool success = mFmqResultChannel.readBlocking(&datum, 1);
// retrieve remaining elements
// NOTE: all of the data is already available at this point, so there's no
// need to do a blocking wait to wait for more data. This is known because
// in FMQ, all writes are published (made available) atomically. Currently,
// the producer always publishes the entire packet in one function call, so
// if the first element of the packet is available, the remaining elements
// are also available.
const size_t count = mFmqResultChannel->availableToRead();
// NOTE: all of the data is already available at this point, so there's no need to do a blocking
// wait to wait for more data. This is known because in FMQ, all writes are published (made
// available) atomically. Currently, the producer always publishes the entire packet in one
// function call, so if the first element of the packet is available, the remaining elements are
// also available.
const size_t count = mFmqResultChannel.availableToRead();
std::vector<FmqResultDatum> packet(count + 1);
std::memcpy(&packet.front(), &datum, sizeof(datum));
success &= mFmqResultChannel->read(packet.data() + 1, count);
success &= mFmqResultChannel.read(packet.data() + 1, count);
if (!mValid) {
return std::nullopt;
return NN_ERROR() << "FMQ object is invalid";
}
// ensure packet was successfully received
if (!success) {
LOG(ERROR) << "Error receiving packet";
return std::nullopt;
return NN_ERROR() << "Error receiving packet";
}
return std::make_optional(std::move(packet));
return packet;
}
} // namespace android::hardware::neuralnetworks::V1_2::utils

View File

@@ -18,6 +18,8 @@
#include "Callbacks.h"
#include "Conversions.h"
#include "ExecutionBurstController.h"
#include "ExecutionBurstUtils.h"
#include "Utils.h"
#include <android/hardware/neuralnetworks/1.0/types.h>
@@ -27,12 +29,12 @@
#include <nnapi/IPreparedModel.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <nnapi/hal/1.0/Burst.h>
#include <nnapi/hal/1.0/Conversions.h>
#include <nnapi/hal/CommonUtils.h>
#include <nnapi/hal/HandleError.h>
#include <nnapi/hal/ProtectCallback.h>
#include <chrono>
#include <memory>
#include <tuple>
#include <utility>
@@ -119,7 +121,14 @@ PreparedModel::executeFenced(const nn::Request& /*request*/,
}
nn::GeneralResult<nn::SharedBurst> PreparedModel::configureExecutionBurst() const {
return V1_0::utils::Burst::create(shared_from_this());
auto self = shared_from_this();
auto fallback = [preparedModel = std::move(self)](const nn::Request& request,
nn::MeasureTiming measure)
-> nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> {
return preparedModel->execute(request, measure, {}, {});
};
const auto pollingTimeWindow = getBurstControllerPollingTimeWindow();
return ExecutionBurstController::create(kPreparedModel, std::move(fallback), pollingTimeWindow);
}
std::any PreparedModel::getUnderlyingResource() const {

View File

@@ -42,6 +42,7 @@ cc_library_static {
"android.hardware.neuralnetworks@1.1",
"android.hardware.neuralnetworks@1.2",
"android.hardware.neuralnetworks@1.3",
"libfmq",
],
export_static_lib_headers: [
"neuralnetworks_utils_hal_common",

View File

@@ -59,7 +59,6 @@ GeneralResult<OptionalDuration> convert(
GeneralResult<ErrorStatus> convert(const hal::V1_3::ErrorStatus& errorStatus);
GeneralResult<SharedHandle> convert(const hardware::hidl_handle& handle);
GeneralResult<SharedMemory> convert(const hardware::hidl_memory& memory);
GeneralResult<std::vector<BufferRole>> convert(
const hardware::hidl_vec<hal::V1_3::BufferRole>& bufferRoles);

View File

@@ -352,10 +352,6 @@ GeneralResult<SharedHandle> convert(const hardware::hidl_handle& handle) {
return validatedConvert(handle);
}
GeneralResult<SharedMemory> convert(const hardware::hidl_memory& memory) {
return validatedConvert(memory);
}
GeneralResult<std::vector<BufferRole>> convert(
const hardware::hidl_vec<hal::V1_3::BufferRole>& bufferRoles) {
return validatedConvert(bufferRoles);

View File

@@ -29,8 +29,9 @@
#include <nnapi/Result.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/hal/1.0/Burst.h>
#include <nnapi/hal/1.2/Conversions.h>
#include <nnapi/hal/1.2/ExecutionBurstController.h>
#include <nnapi/hal/1.2/ExecutionBurstUtils.h>
#include <nnapi/hal/CommonUtils.h>
#include <nnapi/hal/HandleError.h>
#include <nnapi/hal/ProtectCallback.h>
@@ -199,7 +200,15 @@ PreparedModel::executeFenced(const nn::Request& request, const std::vector<nn::S
}
nn::GeneralResult<nn::SharedBurst> PreparedModel::configureExecutionBurst() const {
return V1_0::utils::Burst::create(shared_from_this());
auto self = shared_from_this();
auto fallback = [preparedModel = std::move(self)](const nn::Request& request,
nn::MeasureTiming measure)
-> nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> {
return preparedModel->execute(request, measure, {}, {});
};
const auto pollingTimeWindow = V1_2::utils::getBurstControllerPollingTimeWindow();
return V1_2::utils::ExecutionBurstController::create(kPreparedModel, std::move(fallback),
pollingTimeWindow);
}
std::any PreparedModel::getUnderlyingResource() const {

View File

@@ -56,7 +56,7 @@ class IProtectedCallback {
// Thread safe class
class DeathRecipient final : public hidl_death_recipient {
public:
void serviceDied(uint64_t /*cookie*/, const wp<hidl::base::V1_0::IBase>& /*who*/) override;
void serviceDied(uint64_t cookie, const wp<hidl::base::V1_0::IBase>& who) override;
// Precondition: `killable` must be non-null.
void add(IProtectedCallback* killable) const;
// Precondition: `killable` must be non-null.
@@ -64,6 +64,7 @@ class DeathRecipient final : public hidl_death_recipient {
private:
mutable std::mutex mMutex;
mutable bool mIsDeadObject GUARDED_BY(mMutex) = false;
mutable std::vector<IProtectedCallback*> mObjects GUARDED_BY(mMutex);
};
@@ -78,14 +79,21 @@ class DeathHandler final {
~DeathHandler();
using Cleanup = std::function<void()>;
using Hold = base::ScopeGuard<Cleanup>;
// Precondition: `killable` must be non-null.
[[nodiscard]] base::ScopeGuard<Cleanup> protectCallback(IProtectedCallback* killable) const;
// `killable` must outlive the return value `Hold`.
[[nodiscard]] Hold protectCallback(IProtectedCallback* killable) const;
// Precondition: `killable` must be non-null.
// `killable` must outlive the `DeathHandler`.
void protectCallbackForLifetimeOfDeathHandler(IProtectedCallback* killable) const;
private:
DeathHandler(sp<hidl::base::V1_0::IBase> object, sp<DeathRecipient> deathRecipient);
sp<hidl::base::V1_0::IBase> kObject;
sp<DeathRecipient> kDeathRecipient;
sp<hidl::base::V1_0::IBase> mObject;
sp<DeathRecipient> mDeathRecipient;
};
} // namespace android::hardware::neuralnetworks::utils

View File

@@ -35,19 +35,25 @@ void DeathRecipient::serviceDied(uint64_t /*cookie*/, const wp<hidl::base::V1_0:
std::lock_guard guard(mMutex);
std::for_each(mObjects.begin(), mObjects.end(),
[](IProtectedCallback* killable) { killable->notifyAsDeadObject(); });
mObjects.clear();
mIsDeadObject = true;
}
void DeathRecipient::add(IProtectedCallback* killable) const {
CHECK(killable != nullptr);
std::lock_guard guard(mMutex);
mObjects.push_back(killable);
if (mIsDeadObject) {
killable->notifyAsDeadObject();
} else {
mObjects.push_back(killable);
}
}
void DeathRecipient::remove(IProtectedCallback* killable) const {
CHECK(killable != nullptr);
std::lock_guard guard(mMutex);
const auto removedIter = std::remove(mObjects.begin(), mObjects.end(), killable);
mObjects.erase(removedIter);
const auto newEnd = std::remove(mObjects.begin(), mObjects.end(), killable);
mObjects.erase(newEnd, mObjects.end());
}
nn::GeneralResult<DeathHandler> DeathHandler::create(sp<hidl::base::V1_0::IBase> object) {
@@ -67,19 +73,16 @@ nn::GeneralResult<DeathHandler> DeathHandler::create(sp<hidl::base::V1_0::IBase>
}
DeathHandler::DeathHandler(sp<hidl::base::V1_0::IBase> object, sp<DeathRecipient> deathRecipient)
: kObject(std::move(object)), kDeathRecipient(std::move(deathRecipient)) {
CHECK(kObject != nullptr);
CHECK(kDeathRecipient != nullptr);
: mObject(std::move(object)), mDeathRecipient(std::move(deathRecipient)) {
CHECK(mObject != nullptr);
CHECK(mDeathRecipient != nullptr);
}
DeathHandler::~DeathHandler() {
if (kObject != nullptr && kDeathRecipient != nullptr) {
const auto ret = kObject->unlinkToDeath(kDeathRecipient);
const auto maybeSuccess = handleTransportError(ret);
if (!maybeSuccess.has_value()) {
LOG(ERROR) << maybeSuccess.error().message;
} else if (!maybeSuccess.value()) {
LOG(ERROR) << "IBase::linkToDeath returned false";
if (mObject != nullptr && mDeathRecipient != nullptr) {
const auto successful = mObject->unlinkToDeath(mDeathRecipient).isOk();
if (!successful) {
LOG(ERROR) << "IBase::linkToDeath failed";
}
}
}
@@ -87,9 +90,14 @@ DeathHandler::~DeathHandler() {
[[nodiscard]] base::ScopeGuard<DeathHandler::Cleanup> DeathHandler::protectCallback(
IProtectedCallback* killable) const {
CHECK(killable != nullptr);
kDeathRecipient->add(killable);
mDeathRecipient->add(killable);
return base::make_scope_guard(
[deathRecipient = kDeathRecipient, killable] { deathRecipient->remove(killable); });
[deathRecipient = mDeathRecipient, killable] { deathRecipient->remove(killable); });
}
void DeathHandler::protectCallbackForLifetimeOfDeathHandler(IProtectedCallback* killable) const {
CHECK(killable != nullptr);
mDeathRecipient->add(killable);
}
} // namespace android::hardware::neuralnetworks::utils