mirror of
https://github.com/Evolution-X/hardware_interfaces
synced 2026-02-01 11:36:00 +00:00
Merge "Merge Android 13 QPR2"
This commit is contained in:
@@ -2,29 +2,10 @@
|
||||
|
||||
Directory structure of the audio HAL related code.
|
||||
|
||||
## Directory Structure for AIDL audio HAL
|
||||
Run `common/all-versions/copyHAL.sh` to create a new version of the audio HAL
|
||||
based on an existing one.
|
||||
|
||||
The AIDL version is located inside `aidl` directory. The tree below explains
|
||||
the role of each subdirectory:
|
||||
|
||||
* `aidl_api` — snapshots of the API created each Android release. Every
|
||||
release, the current version of the API becomes "frozen" and gets assigned
|
||||
the next version number. If the API needs further modifications, they are
|
||||
made on the "current" version. After making modifications, run
|
||||
`m <package name>-update-api` to update the snapshot of the "current"
|
||||
version.
|
||||
* `android/hardware/audio/common` — data structures and interfaces shared
|
||||
between various HALs: BT HAL, core and effects audio HALs.
|
||||
* `android/hardware/audio/core` — data structures and interfaces of the
|
||||
core audio HAL.
|
||||
* `default` — the default, reference implementation of the audio HAL service.
|
||||
* `vts` — VTS tests for the AIDL HAL.
|
||||
|
||||
## Directory Structure for HIDL audio HAL
|
||||
|
||||
Run `common/all-versions/copyHAL.sh` to create a new version of the HIDL audio
|
||||
HAL based on an existing one. Note that this isn't possible since Android T
|
||||
release. Android U and above uses AIDL audio HAL.
|
||||
## Directory Structure
|
||||
|
||||
* `2.0` — version 2.0 of the core HIDL API. Note that `.hal` files
|
||||
can not be moved into the `core` directory because that would change
|
||||
|
||||
@@ -190,6 +190,40 @@ const std::vector<ConfigDeclaration> kVehicleProperties = {
|
||||
},
|
||||
.initialValue = {.int32Values = {toInt(VehicleUnit::KILOWATT_HOUR)}}},
|
||||
|
||||
{.config = {.prop = toInt(VehicleProperty::SEAT_MEMORY_SELECT),
|
||||
.access = VehiclePropertyAccess::WRITE,
|
||||
.changeMode = VehiclePropertyChangeMode::ON_CHANGE,
|
||||
.areaConfigs = {VehicleAreaConfig{.areaId = SEAT_1_LEFT,
|
||||
.minInt32Value = 0,
|
||||
.maxInt32Value = 3},
|
||||
VehicleAreaConfig{.areaId = SEAT_1_RIGHT,
|
||||
.minInt32Value = 0,
|
||||
.maxInt32Value = 3},
|
||||
VehicleAreaConfig{.areaId = SEAT_2_LEFT,
|
||||
.minInt32Value = 0,
|
||||
.maxInt32Value = 3},
|
||||
VehicleAreaConfig{.areaId = SEAT_2_RIGHT,
|
||||
.minInt32Value = 0,
|
||||
.maxInt32Value = 3}}},
|
||||
.initialValue = {.int32Values = {1}}},
|
||||
|
||||
{.config = {.prop = toInt(VehicleProperty::SEAT_MEMORY_SET),
|
||||
.access = VehiclePropertyAccess::WRITE,
|
||||
.changeMode = VehiclePropertyChangeMode::ON_CHANGE,
|
||||
.areaConfigs = {VehicleAreaConfig{.areaId = SEAT_1_LEFT,
|
||||
.minInt32Value = 0,
|
||||
.maxInt32Value = 3},
|
||||
VehicleAreaConfig{.areaId = SEAT_1_RIGHT,
|
||||
.minInt32Value = 0,
|
||||
.maxInt32Value = 3},
|
||||
VehicleAreaConfig{.areaId = SEAT_2_LEFT,
|
||||
.minInt32Value = 0,
|
||||
.maxInt32Value = 3},
|
||||
VehicleAreaConfig{.areaId = SEAT_2_RIGHT,
|
||||
.minInt32Value = 0,
|
||||
.maxInt32Value = 3}}},
|
||||
.initialValue = {.int32Values = {1}}},
|
||||
|
||||
{.config = {.prop = toInt(VehicleProperty::SEAT_BELT_BUCKLED),
|
||||
.access = VehiclePropertyAccess::READ_WRITE,
|
||||
.changeMode = VehiclePropertyChangeMode::ON_CHANGE,
|
||||
|
||||
@@ -83,8 +83,9 @@ class RecurrentTimer final {
|
||||
// each time we might introduce outdated elements to the top. We must make sure the heap is
|
||||
// always valid from the top.
|
||||
void removeInvalidCallbackLocked() REQUIRES(mLock);
|
||||
// Pops the next closest callback (must be valid) from the heap.
|
||||
std::unique_ptr<CallbackInfo> popNextCallbackLocked() REQUIRES(mLock);
|
||||
// Gets the next calblack to run (must be valid) from the heap, update its nextTime and put
|
||||
// it back to the heap.
|
||||
std::shared_ptr<Callback> getNextCallbackLocked(int64_t now) REQUIRES(mLock);
|
||||
};
|
||||
|
||||
} // namespace vehicle
|
||||
|
||||
@@ -101,68 +101,71 @@ void RecurrentTimer::removeInvalidCallbackLocked() {
|
||||
}
|
||||
}
|
||||
|
||||
std::unique_ptr<RecurrentTimer::CallbackInfo> RecurrentTimer::popNextCallbackLocked() {
|
||||
std::shared_ptr<RecurrentTimer::Callback> RecurrentTimer::getNextCallbackLocked(int64_t now) {
|
||||
std::pop_heap(mCallbackQueue.begin(), mCallbackQueue.end(), CallbackInfo::cmp);
|
||||
std::unique_ptr<CallbackInfo> info = std::move(mCallbackQueue[mCallbackQueue.size() - 1]);
|
||||
mCallbackQueue.pop_back();
|
||||
auto& callbackInfo = mCallbackQueue[mCallbackQueue.size() - 1];
|
||||
auto nextCallback = callbackInfo->callback;
|
||||
// intervalCount is the number of interval we have to advance until we pass now.
|
||||
size_t intervalCount = (now - callbackInfo->nextTime) / callbackInfo->interval + 1;
|
||||
callbackInfo->nextTime += intervalCount * callbackInfo->interval;
|
||||
std::push_heap(mCallbackQueue.begin(), mCallbackQueue.end(), CallbackInfo::cmp);
|
||||
|
||||
// Make sure the first element is always valid.
|
||||
removeInvalidCallbackLocked();
|
||||
return info;
|
||||
|
||||
return nextCallback;
|
||||
}
|
||||
|
||||
void RecurrentTimer::loop() {
|
||||
std::unique_lock<std::mutex> uniqueLock(mLock);
|
||||
|
||||
std::vector<std::shared_ptr<Callback>> callbacksToRun;
|
||||
while (true) {
|
||||
// Wait until the timer exits or we have at least one recurrent callback.
|
||||
mCond.wait(uniqueLock, [this] {
|
||||
ScopedLockAssertion lockAssertion(mLock);
|
||||
return mStopRequested || mCallbackQueue.size() != 0;
|
||||
});
|
||||
|
||||
int64_t interval;
|
||||
{
|
||||
std::unique_lock<std::mutex> uniqueLock(mLock);
|
||||
ScopedLockAssertion lockAssertion(mLock);
|
||||
// Wait until the timer exits or we have at least one recurrent callback.
|
||||
mCond.wait(uniqueLock, [this] {
|
||||
ScopedLockAssertion lockAssertion(mLock);
|
||||
return mStopRequested || mCallbackQueue.size() != 0;
|
||||
});
|
||||
|
||||
int64_t interval;
|
||||
if (mStopRequested) {
|
||||
return;
|
||||
}
|
||||
// The first element is the nearest next event.
|
||||
int64_t nextTime = mCallbackQueue[0]->nextTime;
|
||||
int64_t now = uptimeNanos();
|
||||
|
||||
if (nextTime > now) {
|
||||
interval = nextTime - now;
|
||||
} else {
|
||||
interval = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Wait for the next event or the timer exits.
|
||||
if (mCond.wait_for(uniqueLock, std::chrono::nanoseconds(interval), [this] {
|
||||
ScopedLockAssertion lockAssertion(mLock);
|
||||
return mStopRequested;
|
||||
})) {
|
||||
return;
|
||||
}
|
||||
// Wait for the next event or the timer exits.
|
||||
if (mCond.wait_for(uniqueLock, std::chrono::nanoseconds(interval), [this] {
|
||||
ScopedLockAssertion lockAssertion(mLock);
|
||||
return mStopRequested;
|
||||
})) {
|
||||
return;
|
||||
}
|
||||
|
||||
{
|
||||
ScopedLockAssertion lockAssertion(mLock);
|
||||
int64_t now = uptimeNanos();
|
||||
now = uptimeNanos();
|
||||
callbacksToRun.clear();
|
||||
while (mCallbackQueue.size() > 0) {
|
||||
int64_t nextTime = mCallbackQueue[0]->nextTime;
|
||||
if (nextTime > now) {
|
||||
break;
|
||||
}
|
||||
|
||||
std::unique_ptr<CallbackInfo> info = popNextCallbackLocked();
|
||||
info->nextTime += info->interval;
|
||||
|
||||
auto callback = info->callback;
|
||||
mCallbackQueue.push_back(std::move(info));
|
||||
std::push_heap(mCallbackQueue.begin(), mCallbackQueue.end(), CallbackInfo::cmp);
|
||||
|
||||
(*callback)();
|
||||
callbacksToRun.push_back(getNextCallbackLocked(now));
|
||||
}
|
||||
}
|
||||
|
||||
// Do not execute the callback while holding the lock.
|
||||
for (size_t i = 0; i < callbacksToRun.size(); i++) {
|
||||
(*callbacksToRun[i])();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -186,6 +186,33 @@ TEST_F(RecurrentTimerTest, testRegisterSameCallbackMultipleTimes) {
|
||||
ASSERT_EQ(countTimerCallbackQueue(&timer), static_cast<size_t>(0));
|
||||
}
|
||||
|
||||
TEST_F(RecurrentTimerTest, testRegisterCallbackMultipleTimesNoDeadLock) {
|
||||
// We want to avoid the following situation:
|
||||
// Caller holds a lock while calling registerTimerCallback, registerTimerCallback will try
|
||||
// to obtain an internal lock inside timer.
|
||||
// Meanwhile an recurrent action happens with timer holding an internal lock. The action
|
||||
// tries to obtain the lock currently hold by the caller.
|
||||
// The solution is that while calling recurrent actions, timer must not hold the internal lock.
|
||||
|
||||
std::unique_ptr<RecurrentTimer> timer = std::make_unique<RecurrentTimer>();
|
||||
std::mutex lock;
|
||||
for (size_t i = 0; i < 1000; i++) {
|
||||
std::scoped_lock<std::mutex> lockGuard(lock);
|
||||
auto action = std::make_shared<RecurrentTimer::Callback>([&lock] {
|
||||
// While calling this function, the timer must not hold lock in order not to dead
|
||||
// lock.
|
||||
std::scoped_lock<std::mutex> lockGuard(lock);
|
||||
});
|
||||
// 10ms
|
||||
int64_t interval = 10'000'000;
|
||||
timer->registerTimerCallback(interval, action);
|
||||
// Sleep for a little while to let the recurrent actions begin.
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
||||
}
|
||||
// Make sure we stop the timer before we destroy lock.
|
||||
timer.reset();
|
||||
}
|
||||
|
||||
} // namespace vehicle
|
||||
} // namespace automotive
|
||||
} // namespace hardware
|
||||
|
||||
@@ -68,7 +68,7 @@ ScopedAStatus Gnss::setCallback(const std::shared_ptr<IGnssCallback>& callback)
|
||||
|
||||
IGnssCallback::GnssSystemInfo systemInfo = {
|
||||
.yearOfHw = 2022,
|
||||
.name = "Google Mock GNSS Implementation AIDL v2",
|
||||
.name = "Google, Cuttlefish, AIDL v2",
|
||||
};
|
||||
status = sGnssCallback->gnssSetSystemInfoCb(systemInfo);
|
||||
if (!status.isOk()) {
|
||||
|
||||
Reference in New Issue
Block a user