Merge changes Iee37bb97,If7c549b8

* changes:
  Adjust IMapperMetadataTypes.h to match gralloc4 encoding
  Add some more tests & tweak spec around SMPTE2094-40
This commit is contained in:
Treehugger Robot
2022-12-15 21:02:54 +00:00
committed by Gerrit Code Review
6 changed files with 653 additions and 182 deletions

View File

@@ -22,9 +22,9 @@ package android.hardware.graphics.common;
* This is an enum that defines the common types of gralloc 4 buffer metadata. The comments for
* each enum include a description of the metadata that is associated with the type.
*
* IMapper@4.x must support getting the following standard buffer metadata types, with the exception
* of SMPTE 2094-10 metadata. IMapper@4.x may support setting these standard buffer metadata types
* as well.
* IMapper@4.x & later must support getting the following standard buffer metadata types, with the
* exception of SMPTE 2094-10 and SMPTE 2094-40 metadata. IMapper@4.x & later may support setting
* these standard buffer metadata types as well.
*
* When encoding these StandardMetadataTypes into a byte stream, the associated MetadataType is
* is first encoded followed by the StandardMetadataType value. The MetadataType is encoded by

View File

@@ -61,6 +61,10 @@ cc_test {
srcs: [
"implutils/impltests.cpp",
],
shared_libs: [
"libgralloctypes",
"libhidlbase",
],
visibility: [":__subpackages__"],
cpp_std: "experimental",
}

View File

@@ -18,123 +18,29 @@
#include <android/hardware/graphics/mapper/utils/IMapperMetadataTypes.h>
#include <android/hardware/graphics/mapper/utils/IMapperProvider.h>
#include <drm/drm_fourcc.h>
#include <gralloctypes/Gralloc4.h>
#include <span>
#include <vector>
using namespace ::android;
using namespace ::android::hardware::graphics::mapper;
using namespace ::aidl::android::hardware::graphics::common;
namespace gralloc4 = ::android::gralloc4;
using ::android::hardware::hidl_vec;
// These tests are primarily interested in hitting all the different *types* that can be
// serialized/deserialized than in exhaustively testing all the StandardMetadataTypes.
// Exhaustive testing of the actual metadata types is relegated for IMapper's VTS suite
// where meaning & correctness of values are more narrowly defined (eg, read-only values)
TEST(Metadata, setGetBufferId) {
using BufferId = StandardMetadata<StandardMetadataType::BUFFER_ID>::value;
static constexpr auto HeaderSize = 69;
std::vector<char> buffer;
buffer.resize(12, 0);
*reinterpret_cast<int64_t*>(buffer.data()) = 42;
EXPECT_EQ(8, BufferId::encode(18, buffer.data(), 0));
EXPECT_EQ(42, *reinterpret_cast<int64_t*>(buffer.data()));
EXPECT_EQ(8, BufferId::encode(18, buffer.data(), buffer.size()));
EXPECT_EQ(18, *reinterpret_cast<int64_t*>(buffer.data()));
EXPECT_FALSE(BufferId::decode(buffer.data(), 0));
auto read = BufferId::decode(buffer.data(), buffer.size());
EXPECT_TRUE(read.has_value());
EXPECT_EQ(18, read.value_or(0));
static std::span<uint8_t> SkipHeader(std::vector<uint8_t>& buffer) {
return std::span<uint8_t>(buffer).subspan(HeaderSize);
}
TEST(Metadata, setGetDataspace) {
using DataspaceValue = StandardMetadata<StandardMetadataType::DATASPACE>::value;
using intType = std::underlying_type_t<Dataspace>;
std::vector<char> buffer;
buffer.resize(12, 0);
EXPECT_EQ(4, DataspaceValue::encode(Dataspace::BT2020, buffer.data(), 0));
EXPECT_EQ(0, *reinterpret_cast<intType*>(buffer.data()));
EXPECT_EQ(4, DataspaceValue::encode(Dataspace::BT2020, buffer.data(), buffer.size()));
EXPECT_EQ(static_cast<intType>(Dataspace::BT2020), *reinterpret_cast<intType*>(buffer.data()));
EXPECT_FALSE(DataspaceValue::decode(buffer.data(), 0));
auto read = DataspaceValue::decode(buffer.data(), buffer.size());
ASSERT_TRUE(read.has_value());
EXPECT_EQ(Dataspace::BT2020, *read);
}
TEST(Metadata, setGetValidName) {
using NameValue = StandardMetadata<StandardMetadataType::NAME>::value;
std::vector<char> buffer;
buffer.resize(100, 'a');
buffer[buffer.size() - 1] = '\0';
// len("Hello") + sizeof(int64)
constexpr int expectedSize = 5 + sizeof(int64_t);
EXPECT_EQ(expectedSize, NameValue::encode("Hello", buffer.data(), buffer.size()));
EXPECT_EQ(5, *reinterpret_cast<int64_t*>(buffer.data()));
// Verify didn't write past the end of the desired size
EXPECT_EQ('a', buffer[expectedSize]);
auto readValue = NameValue::decode(buffer.data(), buffer.size());
ASSERT_TRUE(readValue.has_value());
EXPECT_EQ(5, readValue->length());
EXPECT_EQ("Hello", *readValue);
}
TEST(Metadata, setGetInvalidName) {
using NameValue = StandardMetadata<StandardMetadataType::NAME>::value;
std::vector<char> buffer;
buffer.resize(12, 'a');
buffer[buffer.size() - 1] = '\0';
// len("This is a long string") + sizeof(int64)
constexpr int expectedSize = 21 + sizeof(int64_t);
EXPECT_EQ(expectedSize,
NameValue::encode("This is a long string", buffer.data(), buffer.size()));
EXPECT_EQ(21, *reinterpret_cast<int64_t*>(buffer.data()));
// Verify didn't write the too-long string
EXPECT_EQ('a', buffer[9]);
EXPECT_EQ('\0', buffer[buffer.size() - 1]);
auto readValue = NameValue::decode(buffer.data(), buffer.size());
EXPECT_FALSE(readValue.has_value());
readValue = NameValue::decode(buffer.data(), 0);
ASSERT_FALSE(readValue.has_value());
}
TEST(Metadata, wouldOverflowName) {
using NameValue = StandardMetadata<StandardMetadataType::NAME>::value;
std::vector<char> buffer(100, 0);
// int_max + sizeof(int64) overflows int32
std::string_view bad_string{"badbeef", std::numeric_limits<int32_t>::max()};
EXPECT_EQ(-AIMAPPER_ERROR_BAD_VALUE,
NameValue::encode(bad_string, buffer.data(), buffer.size()));
// check barely overflows
bad_string = std::string_view{"badbeef", std::numeric_limits<int32_t>::max() - 7};
EXPECT_EQ(-AIMAPPER_ERROR_BAD_VALUE,
NameValue::encode(bad_string, buffer.data(), buffer.size()));
}
TEST(Metadata, setGetCompression) {
using CompressionValue = StandardMetadata<StandardMetadataType::COMPRESSION>::value;
ExtendableType myCompression{"bestest_compression_ever", 42};
std::vector<char> buffer(100, '\0');
const int expectedSize = myCompression.name.length() + sizeof(int64_t) + sizeof(int64_t);
EXPECT_EQ(expectedSize, CompressionValue::encode(myCompression, buffer.data(), 0));
EXPECT_EQ(0, buffer[0]);
EXPECT_EQ(expectedSize, CompressionValue::encode(myCompression, buffer.data(), buffer.size()));
EXPECT_EQ(myCompression.name.length(), *reinterpret_cast<int64_t*>(buffer.data()));
EXPECT_FALSE(CompressionValue::decode(buffer.data(), 0).has_value());
auto read = CompressionValue::decode(buffer.data(), buffer.size());
ASSERT_TRUE(read.has_value());
EXPECT_EQ(myCompression, read.value());
}
TEST(Metadata, setGetPlaneLayout) {
using PlaneLayoutValue = StandardMetadata<StandardMetadataType::PLANE_LAYOUTS>::value;
static std::vector<PlaneLayout> fakePlaneLayouts() {
PlaneLayout myPlaneLayout;
myPlaneLayout.offsetInBytes = 10;
myPlaneLayout.sampleIncrementInBits = 11;
@@ -153,23 +59,147 @@ TEST(Metadata, setGetPlaneLayout) {
it.sizeInBits = 30 + i;
}
std::vector<PlaneLayout> layouts{myPlaneLayout, PlaneLayout{}};
return std::vector<PlaneLayout>{myPlaneLayout, PlaneLayout{}};
}
std::vector<char> buffer(5000, '\0');
TEST(Metadata, setGetBufferId) {
using BufferId = StandardMetadata<StandardMetadataType::BUFFER_ID>::value;
std::vector<uint8_t> buffer(10000, 0);
int64_t* payload = reinterpret_cast<int64_t*>(SkipHeader(buffer).data());
*payload = 42;
EXPECT_EQ(8 + HeaderSize, BufferId::encode(18, buffer.data(), 0));
EXPECT_EQ(42, *payload);
EXPECT_EQ(8 + HeaderSize, BufferId::encode(18, buffer.data(), buffer.size()));
EXPECT_EQ(18, *payload);
EXPECT_FALSE(BufferId::decode(buffer.data(), 0));
auto read = BufferId::decode(buffer.data(), buffer.size());
EXPECT_TRUE(read.has_value());
EXPECT_EQ(18, read.value_or(0));
}
TEST(Metadata, setGetDataspace) {
using DataspaceValue = StandardMetadata<StandardMetadataType::DATASPACE>::value;
using intType = std::underlying_type_t<Dataspace>;
std::vector<uint8_t> buffer(10000, 0);
auto data = SkipHeader(buffer);
EXPECT_EQ(4 + HeaderSize, DataspaceValue::encode(Dataspace::BT2020, buffer.data(), 0));
EXPECT_EQ(0, *reinterpret_cast<intType*>(data.data()));
EXPECT_EQ(4 + HeaderSize,
DataspaceValue::encode(Dataspace::BT2020, buffer.data(), buffer.size()));
EXPECT_EQ(static_cast<intType>(Dataspace::BT2020), *reinterpret_cast<intType*>(data.data()));
EXPECT_FALSE(DataspaceValue::decode(buffer.data(), 0));
auto read = DataspaceValue::decode(buffer.data(), buffer.size());
ASSERT_TRUE(read.has_value());
EXPECT_EQ(Dataspace::BT2020, *read);
}
TEST(Metadata, setGetValidName) {
using NameValue = StandardMetadata<StandardMetadataType::NAME>::value;
std::vector<uint8_t> buffer(10000, 'a');
// len("Hello") + sizeof(int64)
constexpr int expectedSize = 5 + sizeof(int64_t) + HeaderSize;
EXPECT_EQ(expectedSize, NameValue::encode("Hello", buffer.data(), buffer.size()));
EXPECT_EQ(5, *reinterpret_cast<int64_t*>(SkipHeader(buffer).data()));
// Verify didn't write past the end of the desired size
EXPECT_EQ('a', buffer[expectedSize]);
auto readValue = NameValue::decode(buffer.data(), buffer.size());
ASSERT_TRUE(readValue.has_value());
EXPECT_EQ(5, readValue->length());
EXPECT_EQ("Hello", *readValue);
}
TEST(Metadata, setGetInvalidName) {
using NameValue = StandardMetadata<StandardMetadataType::NAME>::value;
std::vector<uint8_t> buffer;
buffer.resize(12 + HeaderSize, 'a');
buffer[buffer.size() - 1] = '\0';
// len("This is a long string") + sizeof(int64)
constexpr int expectedSize = 21 + sizeof(int64_t) + HeaderSize;
EXPECT_EQ(expectedSize,
NameValue::encode("This is a long string", buffer.data(), buffer.size()));
EXPECT_EQ(21, *reinterpret_cast<int64_t*>(SkipHeader(buffer).data()));
auto readValue = NameValue::decode(buffer.data(), buffer.size());
EXPECT_FALSE(readValue.has_value());
readValue = NameValue::decode(buffer.data(), 0);
ASSERT_FALSE(readValue.has_value());
}
TEST(Metadata, wouldOverflowName) {
using NameValue = StandardMetadata<StandardMetadataType::NAME>::value;
std::vector<uint8_t> buffer(10000, 0);
// int_max + sizeof(int64) overflows int32
std::string_view bad_string{"badbeef", std::numeric_limits<int32_t>::max()};
EXPECT_EQ(-AIMAPPER_ERROR_BAD_VALUE,
NameValue::encode(bad_string, buffer.data(), buffer.size()));
// check barely overflows
bad_string = std::string_view{"badbeef", std::numeric_limits<int32_t>::max() - 7};
EXPECT_EQ(-AIMAPPER_ERROR_BAD_VALUE,
NameValue::encode(bad_string, buffer.data(), buffer.size()));
}
TEST(Metadata, setGetMismatchedWidthHight) {
// Validates that the header is properly validated on decode
using WidthValue = StandardMetadata<StandardMetadataType::WIDTH>::value;
using HeightValue = StandardMetadata<StandardMetadataType::HEIGHT>::value;
std::vector<uint8_t> buffer(10000, 0);
EXPECT_EQ(8 + HeaderSize, WidthValue::encode(100, buffer.data(), buffer.size()));
EXPECT_EQ(100, *reinterpret_cast<uint64_t*>(SkipHeader(buffer).data()));
auto read = WidthValue::decode(buffer.data(), buffer.size());
ASSERT_TRUE(read.has_value());
EXPECT_EQ(100, *read);
read = HeightValue::decode(buffer.data(), buffer.size());
EXPECT_FALSE(read.has_value());
}
TEST(Metadata, setGetCompression) {
using CompressionValue = StandardMetadata<StandardMetadataType::COMPRESSION>::value;
ExtendableType myCompression{"bestest_compression_ever", 42};
std::vector<uint8_t> buffer(10000, 0);
const int expectedSize =
myCompression.name.length() + sizeof(int64_t) + sizeof(int64_t) + HeaderSize;
EXPECT_EQ(expectedSize, CompressionValue::encode(myCompression, buffer.data(), 0));
EXPECT_EQ(0, buffer[0]);
EXPECT_EQ(expectedSize, CompressionValue::encode(myCompression, buffer.data(), buffer.size()));
EXPECT_EQ(myCompression.name.length(), *reinterpret_cast<int64_t*>(SkipHeader(buffer).data()));
EXPECT_FALSE(CompressionValue::decode(buffer.data(), 0).has_value());
auto read = CompressionValue::decode(buffer.data(), buffer.size());
ASSERT_TRUE(read.has_value());
EXPECT_EQ(myCompression, read.value());
}
TEST(Metadata, setGetPlaneLayout) {
using PlaneLayoutValue = StandardMetadata<StandardMetadataType::PLANE_LAYOUTS>::value;
std::vector<PlaneLayout> layouts = fakePlaneLayouts();
std::vector<uint8_t> buffer(10000, 0);
constexpr int componentSize = 8 + (4 * sizeof(int64_t));
constexpr int firstLayoutSize = (8 + 1) * sizeof(int64_t) + (3 * componentSize);
constexpr int secondLayoutSize = (8 + 1) * sizeof(int64_t);
constexpr int expectedSize = firstLayoutSize + secondLayoutSize + sizeof(int64_t);
constexpr int expectedSize = firstLayoutSize + secondLayoutSize + sizeof(int64_t) + HeaderSize;
EXPECT_EQ(expectedSize, PlaneLayoutValue::encode(layouts, buffer.data(), 0));
EXPECT_EQ(0, buffer[0]);
EXPECT_EQ(expectedSize, PlaneLayoutValue::encode(layouts, buffer.data(), buffer.size()));
EXPECT_EQ(3, reinterpret_cast<int64_t*>(buffer.data())[1]);
EXPECT_EQ(8, reinterpret_cast<int64_t*>(buffer.data())[2]);
EXPECT_EQ(40, reinterpret_cast<int64_t*>(buffer.data())[4]);
EXPECT_EQ(31, reinterpret_cast<int64_t*>(buffer.data())[11]);
EXPECT_EQ(22, reinterpret_cast<int64_t*>(buffer.data())[15]);
EXPECT_EQ(10, reinterpret_cast<int64_t*>(buffer.data())[17]);
EXPECT_EQ(11, reinterpret_cast<int64_t*>(buffer.data())[18]);
int64_t* payload = reinterpret_cast<int64_t*>(SkipHeader(buffer).data());
EXPECT_EQ(3, payload[1]);
EXPECT_EQ(8, payload[2]);
EXPECT_EQ(40, payload[4]);
EXPECT_EQ(31, payload[11]);
EXPECT_EQ(22, payload[15]);
EXPECT_EQ(10, payload[17]);
EXPECT_EQ(11, payload[18]);
EXPECT_FALSE(PlaneLayoutValue::decode(buffer.data(), 0).has_value());
auto read = PlaneLayoutValue::decode(buffer.data(), buffer.size());
ASSERT_TRUE(read.has_value());
@@ -178,15 +208,15 @@ TEST(Metadata, setGetPlaneLayout) {
TEST(Metadata, setGetRects) {
using RectsValue = StandardMetadata<StandardMetadataType::CROP>::value;
std::vector<uint8_t> buffer(500, 0);
std::vector<uint8_t> buffer(10000, 0);
std::vector<Rect> cropRects{2};
cropRects[0] = Rect{10, 11, 12, 13};
cropRects[1] = Rect{20, 21, 22, 23};
constexpr int expectedSize = sizeof(int64_t) + (8 * sizeof(int32_t));
constexpr int expectedSize = sizeof(int64_t) + (8 * sizeof(int32_t)) + HeaderSize;
EXPECT_EQ(expectedSize, RectsValue::encode(cropRects, buffer.data(), buffer.size()));
EXPECT_EQ(2, reinterpret_cast<int64_t*>(buffer.data())[0]);
EXPECT_EQ(10, reinterpret_cast<int32_t*>(buffer.data())[2]);
EXPECT_EQ(2, reinterpret_cast<int64_t*>(SkipHeader(buffer).data())[0]);
EXPECT_EQ(10, reinterpret_cast<int32_t*>(SkipHeader(buffer).data())[2]);
auto read = RectsValue::decode(buffer.data(), buffer.size());
ASSERT_TRUE(read.has_value());
EXPECT_EQ(cropRects.size(), read->size());
@@ -203,8 +233,8 @@ TEST(Metadata, setGetSmpte2086) {
source.primaryGreen = XyColor{.3f, .4f};
source.primaryBlue = XyColor{.5f, .6f};
constexpr int expectedSize = 10 * sizeof(float);
std::vector<uint8_t> buffer(500, 0);
constexpr int expectedSize = 10 * sizeof(float) + HeaderSize;
std::vector<uint8_t> buffer(10000, 0);
EXPECT_EQ(expectedSize, Smpte2086Value::encode(source, buffer.data(), buffer.size()));
auto read = Smpte2086Value::decode(buffer.data(), buffer.size());
ASSERT_TRUE(read.has_value());
@@ -223,8 +253,8 @@ TEST(Metadata, setGetCta861_3) {
source.maxFrameAverageLightLevel = 244.55f;
source.maxContentLightLevel = 202.202f;
constexpr int expectedSize = 2 * sizeof(float);
std::vector<uint8_t> buffer(500, 0);
constexpr int expectedSize = 2 * sizeof(float) + HeaderSize;
std::vector<uint8_t> buffer(10000, 0);
EXPECT_EQ(expectedSize, Cta861_3Value::encode(source, buffer.data(), buffer.size()));
auto read = Cta861_3Value::decode(buffer.data(), buffer.size());
ASSERT_TRUE(read.has_value());
@@ -240,14 +270,14 @@ TEST(Metadata, setGetCta861_3) {
TEST(Metadata, setGetSmpte2094_10) {
using SMPTE2094_10Value = StandardMetadata<StandardMetadataType::SMPTE2094_10>::value;
std::vector<uint8_t> buffer(500, 0);
std::vector<uint8_t> buffer(10000, 0);
EXPECT_EQ(0, SMPTE2094_10Value::encode(std::nullopt, buffer.data(), buffer.size()));
auto read = SMPTE2094_10Value::decode(buffer.data(), 0);
ASSERT_TRUE(read.has_value());
EXPECT_FALSE(read->has_value());
const std::vector<uint8_t> emptyBuffer;
EXPECT_EQ(sizeof(int64_t),
EXPECT_EQ(sizeof(int64_t) + HeaderSize,
SMPTE2094_10Value::encode(emptyBuffer, buffer.data(), buffer.size()));
read = SMPTE2094_10Value::decode(buffer.data(), buffer.size());
ASSERT_TRUE(read.has_value());
@@ -255,7 +285,7 @@ TEST(Metadata, setGetSmpte2094_10) {
EXPECT_EQ(0, read->value().size());
const std::vector<uint8_t> simpleBuffer{0, 1, 2, 3, 4, 5};
EXPECT_EQ(sizeof(int64_t) + 6,
EXPECT_EQ(sizeof(int64_t) + 6 + HeaderSize,
SMPTE2094_10Value::encode(simpleBuffer, buffer.data(), buffer.size()));
read = SMPTE2094_10Value::decode(buffer.data(), buffer.size());
ASSERT_TRUE(read.has_value());
@@ -266,7 +296,7 @@ TEST(Metadata, setGetSmpte2094_10) {
TEST(MetadataProvider, bufferId) {
using BufferId = StandardMetadata<StandardMetadataType::BUFFER_ID>::value;
std::vector<uint8_t> buffer(500, 0);
std::vector<uint8_t> buffer(10000, 0);
int result = provideStandardMetadata(StandardMetadataType::BUFFER_ID, buffer.data(),
buffer.size(), []<StandardMetadataType T>(auto&& provide) {
if constexpr (T == StandardMetadataType::BUFFER_ID) {
@@ -275,7 +305,7 @@ TEST(MetadataProvider, bufferId) {
return 0;
});
EXPECT_EQ(8, result);
EXPECT_EQ(8 + HeaderSize, result);
auto read = BufferId::decode(buffer.data(), buffer.size());
EXPECT_EQ(42, read.value_or(0));
}
@@ -312,3 +342,193 @@ TEST(MetadataProvider, outOfBounds) {
EXPECT_EQ(-AIMAPPER_ERROR_UNSUPPORTED, result)
<< "100 (out of range) should have resulted in UNSUPPORTED";
}
template <StandardMetadataType T>
std::vector<uint8_t> encode(const typename StandardMetadata<T>::value_type& value) {
using Value = typename StandardMetadata<T>::value;
int desiredSize = Value::encode(value, nullptr, 0);
EXPECT_GE(desiredSize, 0);
std::vector<uint8_t> buffer;
buffer.resize(desiredSize);
EXPECT_EQ(desiredSize, Value::encode(value, buffer.data(), buffer.size()));
return buffer;
}
TEST(MetadataGralloc4Interop, BufferId) {
auto mpbuf = encode<StandardMetadataType::BUFFER_ID>(42);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodeBufferId(42, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, Name) {
auto mpbuf = encode<StandardMetadataType::NAME>("Hello, Interop!");
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodeName("Hello, Interop!", &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, Width) {
auto mpbuf = encode<StandardMetadataType::WIDTH>(128);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodeWidth(128, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, Height) {
auto mpbuf = encode<StandardMetadataType::HEIGHT>(64);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodeHeight(64, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, LayerCount) {
auto mpbuf = encode<StandardMetadataType::LAYER_COUNT>(3);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodeLayerCount(3, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, PixelFormatRequested) {
auto mpbuf = encode<StandardMetadataType::PIXEL_FORMAT_REQUESTED>(PixelFormat::RGBX_8888);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodePixelFormatRequested(
hardware::graphics::common::V1_2::PixelFormat::RGBX_8888, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, PixelFormatFourcc) {
auto mpbuf = encode<StandardMetadataType::PIXEL_FORMAT_FOURCC>(DRM_FORMAT_ABGR8888);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodePixelFormatFourCC(DRM_FORMAT_ABGR8888, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, PixelFormatModifier) {
auto mpbuf = encode<StandardMetadataType::PIXEL_FORMAT_MODIFIER>(123456);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodePixelFormatModifier(123456, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, Usage) {
auto mpbuf = encode<StandardMetadataType::USAGE>(BufferUsage::COMPOSER_OVERLAY);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR,
gralloc4::encodeUsage(
static_cast<uint64_t>(
hardware::graphics::common::V1_2::BufferUsage::COMPOSER_OVERLAY),
&g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, AllocationSize) {
auto mpbuf = encode<StandardMetadataType::ALLOCATION_SIZE>(10200);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodeAllocationSize(10200, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, ProtectedContent) {
auto mpbuf = encode<StandardMetadataType::PROTECTED_CONTENT>(1);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodeProtectedContent(1, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, Compression) {
auto mpbuf = encode<StandardMetadataType::COMPRESSION>(
gralloc4::Compression_DisplayStreamCompression);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR,
gralloc4::encodeCompression(gralloc4::Compression_DisplayStreamCompression, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, Interlaced) {
auto mpbuf = encode<StandardMetadataType::INTERLACED>(gralloc4::Interlaced_TopBottom);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodeInterlaced(gralloc4::Interlaced_TopBottom, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, ChromeSitting) {
auto mpbuf =
encode<StandardMetadataType::CHROMA_SITING>(gralloc4::ChromaSiting_SitedInterstitial);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR,
gralloc4::encodeChromaSiting(gralloc4::ChromaSiting_SitedInterstitial, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, PlaneLayouts) {
auto mpbuf = encode<StandardMetadataType::PLANE_LAYOUTS>(fakePlaneLayouts());
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodePlaneLayouts(fakePlaneLayouts(), &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, Crop) {
std::vector<Rect> cropRects{Rect{10, 11, 12, 13}, Rect{20, 21, 22, 23}};
auto mpbuf = encode<StandardMetadataType::CROP>(cropRects);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodeCrop(cropRects, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, Dataspace) {
auto mpbuf = encode<StandardMetadataType::DATASPACE>(Dataspace::DISPLAY_P3);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodeDataspace(Dataspace::DISPLAY_P3, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, BlendMode) {
auto mpbuf = encode<StandardMetadataType::BLEND_MODE>(BlendMode::PREMULTIPLIED);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodeBlendMode(BlendMode::PREMULTIPLIED, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, Smpte2086) {
Smpte2086 hdrdata{XyColor{.1f, .2f}, XyColor{.3f, .4f}, XyColor{.5f, .6f},
XyColor{.7f, .8f}, 452.889f, 12.335f};
auto mpbuf = encode<StandardMetadataType::SMPTE2086>(hdrdata);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodeSmpte2086(hdrdata, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, Cta861_3) {
Cta861_3 hdrdata{302.202f, 244.55f};
auto mpbuf = encode<StandardMetadataType::CTA861_3>(hdrdata);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodeCta861_3(hdrdata, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, Smpte2094_10) {
auto mpbuf = encode<StandardMetadataType::SMPTE2094_10>(std::nullopt);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodeSmpte2094_10(std::nullopt, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
std::vector<uint8_t> hdrdata{1, 2, 3, 4, 5, 6};
mpbuf = encode<StandardMetadataType::SMPTE2094_10>(hdrdata);
ASSERT_EQ(NO_ERROR, gralloc4::encodeSmpte2094_10(hdrdata, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}
TEST(MetadataGralloc4Interop, Smpte2094_40) {
auto mpbuf = encode<StandardMetadataType::SMPTE2094_40>(std::nullopt);
hidl_vec<uint8_t> g4buf;
ASSERT_EQ(NO_ERROR, gralloc4::encodeSmpte2094_40(std::nullopt, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
std::vector<uint8_t> hdrdata{1, 2, 3, 4, 5, 6};
mpbuf = encode<StandardMetadataType::SMPTE2094_40>(hdrdata);
ASSERT_EQ(NO_ERROR, gralloc4::encodeSmpte2094_40(hdrdata, &g4buf));
EXPECT_EQ(mpbuf, g4buf);
}

View File

@@ -82,7 +82,12 @@ class MetadataWriter {
explicit MetadataWriter(void* _Nullable destBuffer, size_t destBufferSize)
: mDest(reinterpret_cast<uint8_t*>(destBuffer)), mSizeRemaining(destBufferSize) {}
int32_t desiredSize() const { return mDesiredSize; }
[[nodiscard]] int32_t desiredSize() const { return mDesiredSize; }
template <typename HEADER>
MetadataWriter& writeHeader() {
return write(HEADER::name).template write<int64_t>(HEADER::value);
}
template <typename T, typename = std::enable_if_t<std::is_integral_v<T>>>
MetadataWriter& write(T value) {
@@ -150,6 +155,18 @@ class MetadataReader {
[[nodiscard]] size_t remaining() const { return mSizeRemaining; }
[[nodiscard]] bool ok() const { return mOk; }
template <typename HEADER>
MetadataReader& checkHeader() {
if (HEADER::name != readString()) {
mOk = false;
}
auto value = readInt<int64_t>();
if (!value || *value != HEADER::value) {
mOk = false;
}
return *this;
}
template <typename T, typename = std::enable_if_t<std::is_integral_v<T>>>
MetadataReader& read(T& dest) {
if (const void* src = advance(sizeof(T))) {
@@ -228,27 +245,33 @@ class MetadataReader {
}
};
template <typename T, class Enable = void>
template <typename HEADER, typename T, class Enable = void>
struct MetadataValue {};
template <typename T>
struct MetadataValue<T, std::enable_if_t<std::is_integral_v<T>>> {
template <typename HEADER, typename T>
struct MetadataValue<HEADER, T, std::enable_if_t<std::is_integral_v<T>>> {
[[nodiscard]] static int32_t encode(T value, void* _Nullable destBuffer,
size_t destBufferSize) {
return MetadataWriter{destBuffer, destBufferSize}.write(value).desiredSize();
return MetadataWriter{destBuffer, destBufferSize}
.template writeHeader<HEADER>()
.write(value)
.desiredSize();
}
[[nodiscard]] static std::optional<T> decode(const void* _Nonnull metadata,
size_t metadataSize) {
return MetadataReader{metadata, metadataSize}.readInt<T>();
return MetadataReader{metadata, metadataSize}
.template checkHeader<HEADER>()
.template readInt<T>();
}
};
template <typename T>
struct MetadataValue<T, std::enable_if_t<std::is_enum_v<T>>> {
template <typename HEADER, typename T>
struct MetadataValue<HEADER, T, std::enable_if_t<std::is_enum_v<T>>> {
[[nodiscard]] static int32_t encode(T value, void* _Nullable destBuffer,
size_t destBufferSize) {
return MetadataWriter{destBuffer, destBufferSize}
.template writeHeader<HEADER>()
.write(static_cast<std::underlying_type_t<T>>(value))
.desiredSize();
}
@@ -256,47 +279,56 @@ struct MetadataValue<T, std::enable_if_t<std::is_enum_v<T>>> {
[[nodiscard]] static std::optional<T> decode(const void* _Nonnull metadata,
size_t metadataSize) {
std::underlying_type_t<T> temp;
return MetadataReader{metadata, metadataSize}.read(temp).ok()
return MetadataReader{metadata, metadataSize}.template checkHeader<HEADER>().read(temp).ok()
? std::optional<T>(static_cast<T>(temp))
: std::nullopt;
}
};
template <>
struct MetadataValue<std::string> {
template <typename HEADER>
struct MetadataValue<HEADER, std::string> {
[[nodiscard]] static int32_t encode(const std::string_view& value, void* _Nullable destBuffer,
size_t destBufferSize) {
return MetadataWriter{destBuffer, destBufferSize}.write(value).desiredSize();
return MetadataWriter{destBuffer, destBufferSize}
.template writeHeader<HEADER>()
.write(value)
.desiredSize();
}
[[nodiscard]] static std::optional<std::string> decode(const void* _Nonnull metadata,
size_t metadataSize) {
auto reader = MetadataReader{metadata, metadataSize};
auto reader = MetadataReader{metadata, metadataSize}.template checkHeader<HEADER>();
auto result = reader.readString();
return reader.ok() ? std::optional<std::string>{result} : std::nullopt;
}
};
template <>
struct MetadataValue<ExtendableType> {
template <typename HEADER>
struct MetadataValue<HEADER, ExtendableType> {
static_assert(sizeof(int64_t) == sizeof(ExtendableType::value));
[[nodiscard]] static int32_t encode(const ExtendableType& value, void* _Nullable destBuffer,
size_t destBufferSize) {
return MetadataWriter{destBuffer, destBufferSize}.write(value).desiredSize();
return MetadataWriter{destBuffer, destBufferSize}
.template writeHeader<HEADER>()
.write(value)
.desiredSize();
}
[[nodiscard]] static std::optional<ExtendableType> decode(const void* _Nonnull metadata,
size_t metadataSize) {
return MetadataReader{metadata, metadataSize}.readExtendable();
return MetadataReader{metadata, metadataSize}
.template checkHeader<HEADER>()
.readExtendable();
}
};
template <>
struct MetadataValue<std::vector<PlaneLayout>> {
template <typename HEADER>
struct MetadataValue<HEADER, std::vector<PlaneLayout>> {
[[nodiscard]] static int32_t encode(const std::vector<PlaneLayout>& values,
void* _Nullable destBuffer, size_t destBufferSize) {
MetadataWriter writer{destBuffer, destBufferSize};
writer.template writeHeader<HEADER>();
writer.write<int64_t>(values.size());
for (const auto& value : values) {
writer.write<int64_t>(value.components.size());
@@ -321,13 +353,14 @@ struct MetadataValue<std::vector<PlaneLayout>> {
[[nodiscard]] static DecodeResult decode(const void* _Nonnull metadata, size_t metadataSize) {
std::vector<PlaneLayout> values;
MetadataReader reader{metadata, metadataSize};
reader.template checkHeader<HEADER>();
auto numPlanes = reader.readInt<int64_t>().value_or(0);
values.reserve(numPlanes);
for (int i = 0; i < numPlanes && reader.ok(); i++) {
PlaneLayout& value = values.emplace_back();
auto numPlaneComponents = reader.readInt<int64_t>().value_or(0);
value.components.reserve(numPlaneComponents);
for (int i = 0; i < numPlaneComponents && reader.ok(); i++) {
for (int j = 0; j < numPlaneComponents && reader.ok(); j++) {
PlaneLayoutComponent& component = value.components.emplace_back();
reader.read(component.type)
.read<int64_t>(component.offsetInBits)
@@ -346,11 +379,12 @@ struct MetadataValue<std::vector<PlaneLayout>> {
}
};
template <>
struct MetadataValue<std::vector<Rect>> {
template <typename HEADER>
struct MetadataValue<HEADER, std::vector<Rect>> {
[[nodiscard]] static int32_t encode(const std::vector<Rect>& value, void* _Nullable destBuffer,
size_t destBufferSize) {
MetadataWriter writer{destBuffer, destBufferSize};
writer.template writeHeader<HEADER>();
writer.write<int64_t>(value.size());
for (auto& rect : value) {
writer.write<int32_t>(rect.left)
@@ -364,6 +398,7 @@ struct MetadataValue<std::vector<Rect>> {
using DecodeResult = std::optional<std::vector<Rect>>;
[[nodiscard]] static DecodeResult decode(const void* _Nonnull metadata, size_t metadataSize) {
MetadataReader reader{metadata, metadataSize};
reader.template checkHeader<HEADER>();
std::vector<Rect> value;
auto numRects = reader.readInt<int64_t>().value_or(0);
value.reserve(numRects);
@@ -378,13 +413,14 @@ struct MetadataValue<std::vector<Rect>> {
}
};
template <>
struct MetadataValue<std::optional<Smpte2086>> {
template <typename HEADER>
struct MetadataValue<HEADER, std::optional<Smpte2086>> {
[[nodiscard]] static int32_t encode(const std::optional<Smpte2086>& optValue,
void* _Nullable destBuffer, size_t destBufferSize) {
if (optValue.has_value()) {
const auto& value = *optValue;
return MetadataWriter{destBuffer, destBufferSize}
.template writeHeader<HEADER>()
.write(value.primaryRed)
.write(value.primaryGreen)
.write(value.primaryBlue)
@@ -404,6 +440,7 @@ struct MetadataValue<std::optional<Smpte2086>> {
if (metadataSize > 0) {
Smpte2086 value;
MetadataReader reader{metadata, metadataSize};
reader.template checkHeader<HEADER>();
reader.read(value.primaryRed)
.read(value.primaryGreen)
.read(value.primaryBlue)
@@ -420,13 +457,14 @@ struct MetadataValue<std::optional<Smpte2086>> {
}
};
template <>
struct MetadataValue<std::optional<Cta861_3>> {
template <typename HEADER>
struct MetadataValue<HEADER, std::optional<Cta861_3>> {
[[nodiscard]] static int32_t encode(const std::optional<Cta861_3>& optValue,
void* _Nullable destBuffer, size_t destBufferSize) {
if (optValue.has_value()) {
const auto& value = *optValue;
return MetadataWriter{destBuffer, destBufferSize}
.template writeHeader<HEADER>()
.write(value.maxContentLightLevel)
.write(value.maxFrameAverageLightLevel)
.desiredSize();
@@ -441,6 +479,7 @@ struct MetadataValue<std::optional<Cta861_3>> {
std::optional<Cta861_3> optValue{std::nullopt};
if (metadataSize > 0) {
MetadataReader reader{metadata, metadataSize};
reader.template checkHeader<HEADER>();
Cta861_3 value;
reader.read(value.maxContentLightLevel).read(value.maxFrameAverageLightLevel);
if (reader.ok()) {
@@ -453,14 +492,17 @@ struct MetadataValue<std::optional<Cta861_3>> {
}
};
template <>
struct MetadataValue<std::optional<std::vector<uint8_t>>> {
template <typename HEADER>
struct MetadataValue<HEADER, std::optional<std::vector<uint8_t>>> {
[[nodiscard]] static int32_t encode(const std::optional<std::vector<uint8_t>>& value,
void* _Nullable destBuffer, size_t destBufferSize) {
if (!value.has_value()) {
return 0;
}
return MetadataWriter{destBuffer, destBufferSize}.write(*value).desiredSize();
return MetadataWriter{destBuffer, destBufferSize}
.template writeHeader<HEADER>()
.write(*value)
.desiredSize();
}
using DecodeResult = std::optional<std::optional<std::vector<uint8_t>>>;
@@ -468,6 +510,7 @@ struct MetadataValue<std::optional<std::vector<uint8_t>>> {
std::optional<std::vector<uint8_t>> optValue;
if (metadataSize > 0) {
MetadataReader reader{metadata, metadataSize};
reader.template checkHeader<HEADER>();
auto value = reader.readBuffer();
if (reader.ok()) {
optValue = std::move(value);
@@ -482,16 +525,20 @@ struct MetadataValue<std::optional<std::vector<uint8_t>>> {
template <StandardMetadataType>
struct StandardMetadata {};
#define DEFINE_TYPE(name, typeArg) \
template <> \
struct StandardMetadata<StandardMetadataType::name> { \
using value_type = typeArg; \
using value = MetadataValue<value_type>; \
static_assert( \
StandardMetadataType::name == \
ndk::internal::enum_values<StandardMetadataType>[static_cast<size_t>( \
StandardMetadataType::name)], \
"StandardMetadataType must have equivalent value to index"); \
#define DEFINE_TYPE(typeName, typeArg) \
template <> \
struct StandardMetadata<StandardMetadataType::typeName> { \
using value_type = typeArg; \
struct Header { \
static constexpr auto name = "android.hardware.graphics.common.StandardMetadataType"; \
static constexpr auto value = static_cast<int64_t>(StandardMetadataType::typeName); \
}; \
using value = MetadataValue<Header, value_type>; \
static_assert( \
StandardMetadataType::typeName == \
ndk::internal::enum_values<StandardMetadataType>[static_cast<size_t>( \
StandardMetadataType::typeName)], \
"StandardMetadataType must have equivalent value to index"); \
}
DEFINE_TYPE(BUFFER_ID, uint64_t);

View File

@@ -509,11 +509,12 @@ typedef struct AIMapperV5 {
* particular Metadata field.
*
* The framework will attempt to set the following StandardMetadataType
* values: DATASPACE, SMPTE2086, CTA861_3, SMPTE2094_40 and BLEND_MODE.
* We require everyone to support setting those fields. If a device's Composer
* implementation supports a field, it should be supported here. Over time these
* metadata fields will be moved out of Composer/BufferQueue/etc. and into the
* buffer's Metadata fields.
* values: DATASPACE, SMPTE2086, CTA861_3, and BLEND_MODE.
* We require everyone to support setting those fields. Framework will also attempt to set
* SMPTE2094_40 and SMPTE2094_10 if available, and it is required to support setting those
* if it is possible to get them. If a device's Composer implementation supports a field,
* it should be supported here. Over time these metadata fields will be moved out of
* Composer/BufferQueue/etc. and into the buffer's Metadata fields.
*
* @param buffer Buffer receiving desired metadata
* @param metadataType MetadataType for the metadata value being set
@@ -546,11 +547,12 @@ typedef struct AIMapperV5 {
* particular Metadata field.
*
* The framework will attempt to set the following StandardMetadataType
* values: DATASPACE, SMPTE2086, CTA861_3, SMPTE2094_40 and BLEND_MODE.
* We require everyone to support setting those fields. If a device's Composer
* implementation supports a field, it should be supported here. Over time these
* metadata fields will be moved out of Composer/BufferQueue/etc. and into the
* buffer's Metadata fields.
* values: DATASPACE, SMPTE2086, CTA861_3, and BLEND_MODE.
* We require everyone to support setting those fields. Framework will also attempt to set
* SMPTE2094_40 and SMPTE2094_10 if available, and it is required to support setting those
* if it is possible to get them. If a device's Composer implementation supports a field,
* it should be supported here. Over time these metadata fields will be moved out of
* Composer/BufferQueue/etc. and into the buffer's Metadata fields.
*
* @param buffer Buffer receiving desired metadata
* @param standardMetadataType StandardMetadataType for the metadata value being set

View File

@@ -24,6 +24,7 @@
#include <aidl/android/hardware/graphics/common/BufferUsage.h>
#include <aidl/android/hardware/graphics/common/PixelFormat.h>
#include <aidlcommonsupport/NativeHandle.h>
#include <android/binder_enums.h>
#include <android/binder_manager.h>
#include <android/dlext.h>
#include <android/hardware/graphics/mapper/IMapper.h>
@@ -66,6 +67,24 @@ struct YCbCr {
int64_t verticalSubSampling;
};
constexpr const char* STANDARD_METADATA_NAME =
"android.hardware.graphics.common.StandardMetadataType";
static bool isStandardMetadata(AIMapper_MetadataType metadataType) {
return strcmp(STANDARD_METADATA_NAME, metadataType.name) == 0;
}
static std::string toString(const std::vector<StandardMetadataType> types) {
std::stringstream buf;
buf << "[";
for (auto type : types) {
buf << toString(type) << ", ";
}
buf.seekp(-2, buf.cur);
buf << "]";
return buf.str();
}
class BufferHandle {
AIMapper* mIMapper;
buffer_handle_t mHandle = nullptr;
@@ -215,7 +234,7 @@ class GraphicsTestsBase {
sizeRequired = mapper()->v5.getStandardMetadata(bufferHandle, static_cast<int64_t>(T),
buffer.data(), buffer.size());
}
if (sizeRequired < 0 || sizeRequired >= buffer.size()) {
if (sizeRequired < 0 || sizeRequired > buffer.size()) {
ADD_FAILURE() << "getStandardMetadata failed, received " << sizeRequired
<< " with buffer size " << buffer.size();
// Generate a fail type
@@ -1533,8 +1552,187 @@ TEST_P(GraphicsMapperStableCTests, GetSmpte2094_40) {
auto bufferHandle = buffer->import();
ASSERT_TRUE(bufferHandle);
auto value = getStandardMetadata<StandardMetadataType::SMPTE2094_40>(*bufferHandle);
ASSERT_TRUE(value.has_value());
EXPECT_FALSE(value->has_value());
if (value.has_value()) {
EXPECT_FALSE(value->has_value());
}
}
TEST_P(GraphicsMapperStableCTests, SupportsRequiredGettersSetters) {
auto buffer = allocateGeneric();
ASSERT_TRUE(buffer);
auto bufferHandle = buffer->import();
ASSERT_TRUE(bufferHandle);
const AIMapper_MetadataTypeDescription* descriptions = nullptr;
size_t descriptionCount = 0;
ASSERT_EQ(AIMAPPER_ERROR_NONE,
mapper()->v5.listSupportedMetadataTypes(&descriptions, &descriptionCount));
std::vector<StandardMetadataType> requiredGetters = {
StandardMetadataType::BUFFER_ID,
StandardMetadataType::NAME,
StandardMetadataType::WIDTH,
StandardMetadataType::HEIGHT,
StandardMetadataType::LAYER_COUNT,
StandardMetadataType::PIXEL_FORMAT_REQUESTED,
StandardMetadataType::PIXEL_FORMAT_FOURCC,
StandardMetadataType::PIXEL_FORMAT_MODIFIER,
StandardMetadataType::USAGE,
StandardMetadataType::ALLOCATION_SIZE,
StandardMetadataType::PROTECTED_CONTENT,
StandardMetadataType::COMPRESSION,
StandardMetadataType::INTERLACED,
StandardMetadataType::CHROMA_SITING,
StandardMetadataType::PLANE_LAYOUTS,
StandardMetadataType::CROP,
StandardMetadataType::DATASPACE,
StandardMetadataType::BLEND_MODE,
StandardMetadataType::SMPTE2086,
StandardMetadataType::CTA861_3,
};
std::vector<StandardMetadataType> requiredSetters = {
StandardMetadataType::DATASPACE,
StandardMetadataType::BLEND_MODE,
StandardMetadataType::SMPTE2086,
StandardMetadataType::CTA861_3,
};
for (int i = 0; i < descriptionCount; i++) {
const auto& it = descriptions[i];
if (isStandardMetadata(it.metadataType)) {
EXPECT_GT(it.metadataType.value, static_cast<int64_t>(StandardMetadataType::INVALID));
EXPECT_LT(it.metadataType.value,
ndk::internal::enum_values<StandardMetadataType>.size());
if (it.isGettable) {
std::erase(requiredGetters,
static_cast<StandardMetadataType>(it.metadataType.value));
}
if (it.isSettable) {
std::erase(requiredSetters,
static_cast<StandardMetadataType>(it.metadataType.value));
}
} else {
EXPECT_NE(nullptr, it.description) << "Non-standard metadata must have a description";
int len = strlen(it.description);
EXPECT_GE(len, 0) << "Non-standard metadata must have a description";
}
}
EXPECT_EQ(0, requiredGetters.size()) << "Missing required getters" << toString(requiredGetters);
EXPECT_EQ(0, requiredSetters.size()) << "Missing required setters" << toString(requiredSetters);
}
/*
* Test that verifies that if the optional StandardMetadataTypes have getters, they have
* the required setters as well
*/
TEST_P(GraphicsMapperStableCTests, CheckRequiredSettersIfHasGetters) {
auto buffer = allocateGeneric();
ASSERT_TRUE(buffer);
auto bufferHandle = buffer->import();
ASSERT_TRUE(bufferHandle);
const AIMapper_MetadataTypeDescription* descriptions = nullptr;
size_t descriptionCount = 0;
ASSERT_EQ(AIMAPPER_ERROR_NONE,
mapper()->v5.listSupportedMetadataTypes(&descriptions, &descriptionCount));
for (int i = 0; i < descriptionCount; i++) {
const auto& it = descriptions[i];
if (isStandardMetadata(it.metadataType)) {
const auto type = static_cast<StandardMetadataType>(it.metadataType.value);
switch (type) {
case StandardMetadataType::SMPTE2094_10:
case StandardMetadataType::SMPTE2094_40:
if (it.isGettable) {
EXPECT_TRUE(it.isSettable)
<< "Type " << toString(type) << " must be settable if gettable";
}
break;
default:
break;
}
}
}
}
TEST_P(GraphicsMapperStableCTests, ListSupportedWorks) {
auto buffer = allocateGeneric();
ASSERT_TRUE(buffer);
auto bufferHandle = buffer->import();
ASSERT_TRUE(bufferHandle);
const AIMapper_MetadataTypeDescription* descriptions = nullptr;
size_t descriptionCount = 0;
ASSERT_EQ(AIMAPPER_ERROR_NONE,
mapper()->v5.listSupportedMetadataTypes(&descriptions, &descriptionCount));
std::vector<uint8_t> metadataBuffer;
auto get = [&](AIMapper_MetadataType metadataType) -> int32_t {
int32_t size = mapper()->v5.getMetadata(*bufferHandle, metadataType, nullptr, 0);
if (size >= 0) {
metadataBuffer.resize(size);
size = mapper()->v5.getMetadata(*bufferHandle, metadataType, metadataBuffer.data(),
metadataBuffer.size());
EXPECT_EQ(size, metadataBuffer.size());
}
return size;
};
for (int i = 0; i < descriptionCount; i++) {
const auto& it = descriptions[i];
if (!isStandardMetadata(it.metadataType)) {
continue;
}
if (!it.isGettable) {
EXPECT_FALSE(it.isSettable)
<< "StandardMetadata that isn't gettable must not be settable";
continue;
}
EXPECT_GE(get(it.metadataType), 0)
<< "Get failed for claimed supported getter of "
<< toString(static_cast<StandardMetadataType>(it.metadataType.value));
if (it.isSettable) {
EXPECT_EQ(AIMAPPER_ERROR_NONE,
mapper()->v5.setMetadata(*bufferHandle, it.metadataType,
metadataBuffer.data(), metadataBuffer.size()))
<< "Failed to set metadata for "
<< toString(static_cast<StandardMetadataType>(it.metadataType.value));
}
}
}
TEST_P(GraphicsMapperStableCTests, GetMetadataBadValue) {
auto get = [this](StandardMetadataType type) -> AIMapper_Error {
// This is a _Nonnull parameter, but this is enough obfuscation to fool the linter
buffer_handle_t buffer = nullptr;
int32_t ret =
mapper()->v5.getStandardMetadata(buffer, static_cast<int64_t>(type), nullptr, 0);
return (ret < 0) ? (AIMapper_Error)-ret : AIMAPPER_ERROR_NONE;
};
for (auto type : ndk::enum_range<StandardMetadataType>()) {
if (type == StandardMetadataType::INVALID) {
continue;
}
EXPECT_EQ(AIMAPPER_ERROR_BAD_BUFFER, get(type)) << "Wrong error for " << toString(type);
}
}
TEST_P(GraphicsMapperStableCTests, GetUnsupportedMetadata) {
auto buffer = allocateGeneric();
ASSERT_TRUE(buffer);
auto bufferHandle = buffer->import();
ASSERT_TRUE(bufferHandle);
int result = mapper()->v5.getMetadata(*bufferHandle, {"Fake", 1}, nullptr, 0);
EXPECT_EQ(AIMAPPER_ERROR_UNSUPPORTED, -result);
result = mapper()->v5.getStandardMetadata(
*bufferHandle, static_cast<int64_t>(StandardMetadataType::INVALID), nullptr, 0);
EXPECT_EQ(AIMAPPER_ERROR_UNSUPPORTED, -result);
constexpr int64_t unknownStandardType = ndk::internal::enum_values<StandardMetadataType>.size();
result = mapper()->v5.getStandardMetadata(*bufferHandle, unknownStandardType, nullptr, 0);
EXPECT_EQ(AIMAPPER_ERROR_UNSUPPORTED, -result);
}
std::vector<std::tuple<std::string, std::shared_ptr<IAllocator>>> getIAllocatorsAtLeastVersion(