Merge changes from topics "nnapi-canonical-burst", "nnapi-updatable-drivers"

* changes:
  Relocate NN burst utility to ExecutionBurstUtils
  Relocate ExecutionBurst* classes to NN util code
  Implement partial canonical Burst in NN util code
  Introduce canonical IBurst object in NNAPI -- hal
  Add isUpdatable to NNAPI canonical IDevice -- hal
This commit is contained in:
Treehugger Robot
2021-01-19 22:45:07 +00:00
committed by Gerrit Code Review
37 changed files with 2506 additions and 10 deletions

View File

@@ -0,0 +1,55 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_0_UTILS_BURST_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_0_UTILS_BURST_H
#include <nnapi/IBurst.h>
#include <nnapi/IPreparedModel.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <memory>
#include <optional>
#include <utility>
// See hardware/interfaces/neuralnetworks/utils/README.md for more information on HIDL interface
// lifetimes across processes and for protecting asynchronous calls across HIDL.
namespace android::hardware::neuralnetworks::V1_0::utils {
// Class that adapts nn::IPreparedModel to nn::IBurst.
class Burst final : public nn::IBurst {
struct PrivateConstructorTag {};
public:
static nn::GeneralResult<std::shared_ptr<const Burst>> create(
nn::SharedPreparedModel preparedModel);
Burst(PrivateConstructorTag tag, nn::SharedPreparedModel preparedModel);
OptionalCacheHold cacheMemory(const nn::Memory& memory) const override;
nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> execute(
const nn::Request& request, nn::MeasureTiming measure) const override;
private:
const nn::SharedPreparedModel kPreparedModel;
};
} // namespace android::hardware::neuralnetworks::V1_0::utils
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_0_UTILS_BURST_H

View File

@@ -52,6 +52,7 @@ class Device final : public nn::IDevice {
const std::string& getVersionString() const override;
nn::Version getFeatureLevel() const override;
nn::DeviceType getType() const override;
bool isUpdatable() const override;
const std::vector<nn::Extension>& getSupportedExtensions() const override;
const nn::Capabilities& getCapabilities() const override;
std::pair<uint32_t, uint32_t> getNumberOfCacheFilesNeeded() const override;

View File

@@ -35,7 +35,8 @@
namespace android::hardware::neuralnetworks::V1_0::utils {
// Class that adapts V1_0::IPreparedModel to nn::IPreparedModel.
class PreparedModel final : public nn::IPreparedModel {
class PreparedModel final : public nn::IPreparedModel,
public std::enable_shared_from_this<PreparedModel> {
struct PrivateConstructorTag {};
public:
@@ -56,6 +57,8 @@ class PreparedModel final : public nn::IPreparedModel {
const nn::OptionalDuration& loopTimeoutDuration,
const nn::OptionalDuration& timeoutDurationAfterFence) const override;
nn::GeneralResult<nn::SharedBurst> configureExecutionBurst() const override;
std::any getUnderlyingResource() const override;
private:

View File

@@ -0,0 +1,55 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Burst.h"
#include <android-base/logging.h>
#include <nnapi/IBurst.h>
#include <nnapi/IPreparedModel.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <memory>
#include <optional>
#include <utility>
namespace android::hardware::neuralnetworks::V1_0::utils {
nn::GeneralResult<std::shared_ptr<const Burst>> Burst::create(
nn::SharedPreparedModel preparedModel) {
if (preparedModel == nullptr) {
return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE)
<< "V1_0::utils::Burst::create must have non-null preparedModel";
}
return std::make_shared<const Burst>(PrivateConstructorTag{}, std::move(preparedModel));
}
Burst::Burst(PrivateConstructorTag /*tag*/, nn::SharedPreparedModel preparedModel)
: kPreparedModel(std::move(preparedModel)) {
CHECK(kPreparedModel != nullptr);
}
Burst::OptionalCacheHold Burst::cacheMemory(const nn::Memory& /*memory*/) const {
return nullptr;
}
nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> Burst::execute(
const nn::Request& request, nn::MeasureTiming measure) const {
return kPreparedModel->execute(request, measure, {}, {});
}
} // namespace android::hardware::neuralnetworks::V1_0::utils

View File

@@ -106,6 +106,10 @@ nn::DeviceType Device::getType() const {
return nn::DeviceType::OTHER;
}
bool Device::isUpdatable() const {
return false;
}
const std::vector<nn::Extension>& Device::getSupportedExtensions() const {
return kExtensions;
}

View File

@@ -16,6 +16,7 @@
#include "PreparedModel.h"
#include "Burst.h"
#include "Callbacks.h"
#include "Conversions.h"
#include "Utils.h"
@@ -90,6 +91,10 @@ PreparedModel::executeFenced(const nn::Request& /*request*/,
<< "IPreparedModel::executeFenced is not supported on 1.0 HAL service";
}
nn::GeneralResult<nn::SharedBurst> PreparedModel::configureExecutionBurst() const {
return Burst::create(shared_from_this());
}
std::any PreparedModel::getUnderlyingResource() const {
sp<V1_0::IPreparedModel> resource = kPreparedModel;
return resource;

View File

@@ -52,6 +52,7 @@ class Device final : public nn::IDevice {
const std::string& getVersionString() const override;
nn::Version getFeatureLevel() const override;
nn::DeviceType getType() const override;
bool isUpdatable() const override;
const std::vector<nn::Extension>& getSupportedExtensions() const override;
const nn::Capabilities& getCapabilities() const override;
std::pair<uint32_t, uint32_t> getNumberOfCacheFilesNeeded() const override;

View File

@@ -106,6 +106,10 @@ nn::DeviceType Device::getType() const {
return nn::DeviceType::UNKNOWN;
}
bool Device::isUpdatable() const {
return false;
}
const std::vector<nn::Extension>& Device::getSupportedExtensions() const {
return kExtensions;
}

View File

@@ -18,6 +18,7 @@ cc_library_static {
name: "neuralnetworks_utils_hal_1_2",
defaults: ["neuralnetworks_utils_defaults"],
srcs: ["src/*"],
exclude_srcs: ["src/ExecutionBurst*"],
local_include_dirs: ["include/nnapi/hal/1.2/"],
export_include_dirs: ["include"],
cflags: ["-Wthread-safety"],

View File

@@ -71,6 +71,7 @@ class Device final : public nn::IDevice {
const std::string& getVersionString() const override;
nn::Version getFeatureLevel() const override;
nn::DeviceType getType() const override;
bool isUpdatable() const override;
const std::vector<nn::Extension>& getSupportedExtensions() const override;
const nn::Capabilities& getCapabilities() const override;
std::pair<uint32_t, uint32_t> getNumberOfCacheFilesNeeded() const override;

View File

@@ -0,0 +1,185 @@
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_CONTROLLER_H
#define ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_CONTROLLER_H
#include "ExecutionBurstUtils.h"
#include <android-base/macros.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hardware/neuralnetworks/1.2/IBurstCallback.h>
#include <android/hardware/neuralnetworks/1.2/IBurstContext.h>
#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <fmq/MessageQueue.h>
#include <hidl/MQDescriptor.h>
#include <atomic>
#include <chrono>
#include <map>
#include <memory>
#include <mutex>
#include <stack>
#include <tuple>
#include <utility>
#include <vector>
namespace android::nn {
/**
* The ExecutionBurstController class manages both the serialization and
* deserialization of data across FMQ, making it appear to the runtime as a
* regular synchronous inference. Additionally, this class manages the burst's
* memory cache.
*/
class ExecutionBurstController {
DISALLOW_IMPLICIT_CONSTRUCTORS(ExecutionBurstController);
public:
/**
* NN runtime burst callback object and memory cache.
*
* ExecutionBurstCallback associates a hidl_memory object with a slot number
* to be passed across FMQ. The ExecutionBurstServer can use this callback
* to retrieve this hidl_memory corresponding to the slot via HIDL.
*
* Whenever a hidl_memory object is copied, it will duplicate the underlying
* file descriptor. Because the NN runtime currently copies the hidl_memory
* on each execution, it is difficult to associate hidl_memory objects with
* previously cached hidl_memory objects. For this reason, callers of this
* class must pair each hidl_memory object with an associated key. For
* efficiency, if two hidl_memory objects represent the same underlying
* buffer, they must use the same key.
*/
class ExecutionBurstCallback : public hardware::neuralnetworks::V1_2::IBurstCallback {
DISALLOW_COPY_AND_ASSIGN(ExecutionBurstCallback);
public:
ExecutionBurstCallback() = default;
hardware::Return<void> getMemories(const hardware::hidl_vec<int32_t>& slots,
getMemories_cb cb) override;
/**
* This function performs one of two different actions:
* 1) If a key corresponding to a memory resource is unrecognized by the
* ExecutionBurstCallback object, the ExecutionBurstCallback object
* will allocate a slot, bind the memory to the slot, and return the
* slot identifier.
* 2) If a key corresponding to a memory resource is recognized by the
* ExecutionBurstCallback object, the ExecutionBurstCallback object
* will return the existing slot identifier.
*
* @param memories Memory resources used in an inference.
* @param keys Unique identifiers where each element corresponds to a
* memory resource element in "memories".
* @return Unique slot identifiers where each returned slot element
* corresponds to a memory resource element in "memories".
*/
std::vector<int32_t> getSlots(const hardware::hidl_vec<hardware::hidl_memory>& memories,
const std::vector<intptr_t>& keys);
/*
* This function performs two different actions:
* 1) Removes an entry from the cache (if present), including the local
* storage of the hidl_memory object. Note that this call does not
* free any corresponding hidl_memory object in ExecutionBurstServer,
* which is separately freed via IBurstContext::freeMemory.
* 2) Return whether a cache entry was removed and which slot was removed if
* found. If the key did not to correspond to any entry in the cache, a
* slot number of 0 is returned. The slot number and whether the entry
* existed is useful so the same slot can be freed in the
* ExecutionBurstServer's cache via IBurstContext::freeMemory.
*/
std::pair<bool, int32_t> freeMemory(intptr_t key);
private:
int32_t getSlotLocked(const hardware::hidl_memory& memory, intptr_t key);
int32_t allocateSlotLocked();
std::mutex mMutex;
std::stack<int32_t, std::vector<int32_t>> mFreeSlots;
std::map<intptr_t, int32_t> mMemoryIdToSlot;
std::vector<hardware::hidl_memory> mMemoryCache;
};
/**
* Creates a burst controller on a prepared model.
*
* Prefer this over ExecutionBurstController's constructor.
*
* @param preparedModel Model prepared for execution to execute on.
* @param pollingTimeWindow How much time (in microseconds) the
* ExecutionBurstController is allowed to poll the FMQ before waiting on
* the blocking futex. Polling may result in lower latencies at the
* potential cost of more power usage.
* @return ExecutionBurstController Execution burst controller object.
*/
static std::unique_ptr<ExecutionBurstController> create(
const sp<hardware::neuralnetworks::V1_2::IPreparedModel>& preparedModel,
std::chrono::microseconds pollingTimeWindow);
// prefer calling ExecutionBurstController::create
ExecutionBurstController(const std::shared_ptr<RequestChannelSender>& requestChannelSender,
const std::shared_ptr<ResultChannelReceiver>& resultChannelReceiver,
const sp<hardware::neuralnetworks::V1_2::IBurstContext>& burstContext,
const sp<ExecutionBurstCallback>& callback,
const sp<hardware::hidl_death_recipient>& deathHandler = nullptr);
// explicit destructor to unregister the death recipient
~ExecutionBurstController();
/**
* Execute a request on a model.
*
* @param request Arguments to be executed on a model.
* @param measure Whether to collect timing measurements, either YES or NO
* @param memoryIds Identifiers corresponding to each memory object in the
* request's pools.
* @return A tuple of:
* - result code of the execution
* - dynamic output shapes from the execution
* - any execution time measurements of the execution
* - whether or not a failed burst execution should be re-run using a
* different path (e.g., IPreparedModel::executeSynchronously)
*/
std::tuple<int, std::vector<hardware::neuralnetworks::V1_2::OutputShape>,
hardware::neuralnetworks::V1_2::Timing, bool>
compute(const hardware::neuralnetworks::V1_0::Request& request,
hardware::neuralnetworks::V1_2::MeasureTiming measure,
const std::vector<intptr_t>& memoryIds);
/**
* Propagate a user's freeing of memory to the service.
*
* @param key Key corresponding to the memory object.
*/
void freeMemory(intptr_t key);
private:
std::mutex mMutex;
const std::shared_ptr<RequestChannelSender> mRequestChannelSender;
const std::shared_ptr<ResultChannelReceiver> mResultChannelReceiver;
const sp<hardware::neuralnetworks::V1_2::IBurstContext> mBurstContext;
const sp<ExecutionBurstCallback> mMemoryCache;
const sp<hardware::hidl_death_recipient> mDeathHandler;
};
} // namespace android::nn
#endif // ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_CONTROLLER_H

View File

@@ -0,0 +1,208 @@
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_SERVER_H
#define ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_SERVER_H
#include "ExecutionBurstUtils.h"
#include <android-base/macros.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hardware/neuralnetworks/1.2/IBurstCallback.h>
#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <fmq/MessageQueue.h>
#include <hidl/MQDescriptor.h>
#include <atomic>
#include <chrono>
#include <memory>
#include <optional>
#include <thread>
#include <tuple>
#include <vector>
namespace android::nn {
/**
* The ExecutionBurstServer class is responsible for waiting for and
* deserializing a request object from a FMQ, performing the inference, and
* serializing the result back across another FMQ.
*/
class ExecutionBurstServer : public hardware::neuralnetworks::V1_2::IBurstContext {
DISALLOW_IMPLICIT_CONSTRUCTORS(ExecutionBurstServer);
public:
/**
* IBurstExecutorWithCache is a callback object passed to
* ExecutionBurstServer's factory function that is used to perform an
* execution. Because some memory resources are needed across multiple
* executions, this object also contains a local cache that can directly be
* used in the execution.
*
* ExecutionBurstServer will never access its IBurstExecutorWithCache object
* with concurrent calls.
*/
class IBurstExecutorWithCache {
DISALLOW_COPY_AND_ASSIGN(IBurstExecutorWithCache);
public:
IBurstExecutorWithCache() = default;
virtual ~IBurstExecutorWithCache() = default;
/**
* Checks if a cache entry specified by a slot is present in the cache.
*
* @param slot Identifier of the cache entry.
* @return 'true' if the cache entry is present in the cache, 'false'
* otherwise.
*/
virtual bool isCacheEntryPresent(int32_t slot) const = 0;
/**
* Adds an entry specified by a slot to the cache.
*
* The caller of this function must ensure that the cache entry that is
* being added is not already present in the cache. This can be checked
* via isCacheEntryPresent.
*
* @param memory Memory resource to be cached.
* @param slot Slot identifier corresponding to the memory resource.
*/
virtual void addCacheEntry(const hardware::hidl_memory& memory, int32_t slot) = 0;
/**
* Removes an entry specified by a slot from the cache.
*
* If the cache entry corresponding to the slot number does not exist,
* the call does nothing.
*
* @param slot Slot identifier corresponding to the memory resource.
*/
virtual void removeCacheEntry(int32_t slot) = 0;
/**
* Perform an execution.
*
* @param request Request object with inputs and outputs specified.
* Request::pools is empty, and DataLocation::poolIndex instead
* refers to the 'slots' argument as if it were Request::pools.
* @param slots Slots corresponding to the cached memory entries to be
* used.
* @param measure Whether timing information is requested for the
* execution.
* @return Result of the execution, including the status of the
* execution, dynamic output shapes, and any timing information.
*/
virtual std::tuple<hardware::neuralnetworks::V1_0::ErrorStatus,
hardware::hidl_vec<hardware::neuralnetworks::V1_2::OutputShape>,
hardware::neuralnetworks::V1_2::Timing>
execute(const hardware::neuralnetworks::V1_0::Request& request,
const std::vector<int32_t>& slots,
hardware::neuralnetworks::V1_2::MeasureTiming measure) = 0;
};
/**
* Create automated context to manage FMQ-based executions.
*
* This function is intended to be used by a service to automatically:
* 1) Receive data from a provided FMQ
* 2) Execute a model with the given information
* 3) Send the result to the created FMQ
*
* @param callback Callback used to retrieve memories corresponding to
* unrecognized slots.
* @param requestChannel Input FMQ channel through which the client passes the
* request to the service.
* @param resultChannel Output FMQ channel from which the client can retrieve
* the result of the execution.
* @param executorWithCache Object which maintains a local cache of the
* memory pools and executes using the cached memory pools.
* @param pollingTimeWindow How much time (in microseconds) the
* ExecutionBurstServer is allowed to poll the FMQ before waiting on
* the blocking futex. Polling may result in lower latencies at the
* potential cost of more power usage.
* @result IBurstContext Handle to the burst context.
*/
static sp<ExecutionBurstServer> create(
const sp<hardware::neuralnetworks::V1_2::IBurstCallback>& callback,
const FmqRequestDescriptor& requestChannel, const FmqResultDescriptor& resultChannel,
std::shared_ptr<IBurstExecutorWithCache> executorWithCache,
std::chrono::microseconds pollingTimeWindow = std::chrono::microseconds{0});
/**
* Create automated context to manage FMQ-based executions.
*
* This function is intended to be used by a service to automatically:
* 1) Receive data from a provided FMQ
* 2) Execute a model with the given information
* 3) Send the result to the created FMQ
*
* @param callback Callback used to retrieve memories corresponding to
* unrecognized slots.
* @param requestChannel Input FMQ channel through which the client passes the
* request to the service.
* @param resultChannel Output FMQ channel from which the client can retrieve
* the result of the execution.
* @param preparedModel PreparedModel that the burst object was created from.
* IPreparedModel::executeSynchronously will be used to perform the
* execution.
* @param pollingTimeWindow How much time (in microseconds) the
* ExecutionBurstServer is allowed to poll the FMQ before waiting on
* the blocking futex. Polling may result in lower latencies at the
* potential cost of more power usage.
* @result IBurstContext Handle to the burst context.
*/
static sp<ExecutionBurstServer> create(
const sp<hardware::neuralnetworks::V1_2::IBurstCallback>& callback,
const FmqRequestDescriptor& requestChannel, const FmqResultDescriptor& resultChannel,
hardware::neuralnetworks::V1_2::IPreparedModel* preparedModel,
std::chrono::microseconds pollingTimeWindow = std::chrono::microseconds{0});
ExecutionBurstServer(const sp<hardware::neuralnetworks::V1_2::IBurstCallback>& callback,
std::unique_ptr<RequestChannelReceiver> requestChannel,
std::unique_ptr<ResultChannelSender> resultChannel,
std::shared_ptr<IBurstExecutorWithCache> cachedExecutor);
~ExecutionBurstServer();
// Used by the NN runtime to preemptively remove any stored memory.
hardware::Return<void> freeMemory(int32_t slot) override;
private:
// Ensures all cache entries contained in mExecutorWithCache are present in
// the cache. If they are not present, they are retrieved (via
// IBurstCallback::getMemories) and added to mExecutorWithCache.
//
// This method is locked via mMutex when it is called.
void ensureCacheEntriesArePresentLocked(const std::vector<int32_t>& slots);
// Work loop that will continue processing execution requests until the
// ExecutionBurstServer object is freed.
void task();
std::thread mWorker;
std::mutex mMutex;
std::atomic<bool> mTeardown{false};
const sp<hardware::neuralnetworks::V1_2::IBurstCallback> mCallback;
const std::unique_ptr<RequestChannelReceiver> mRequestChannelReceiver;
const std::unique_ptr<ResultChannelSender> mResultChannelSender;
const std::shared_ptr<IBurstExecutorWithCache> mExecutorWithCache;
};
} // namespace android::nn
#endif // ANDROID_FRAMEWORKS_ML_NN_COMMON_EXECUTION_BURST_SERVER_H

View File

@@ -0,0 +1,335 @@
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_UTILS_EXECUTION_BURST_UTILS_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_UTILS_EXECUTION_BURST_UTILS_H
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <fmq/MessageQueue.h>
#include <hidl/MQDescriptor.h>
#include <atomic>
#include <chrono>
#include <memory>
#include <optional>
#include <tuple>
#include <utility>
#include <vector>
namespace android::hardware::neuralnetworks::V1_2::utils {
/**
* Number of elements in the FMQ.
*/
constexpr const size_t kExecutionBurstChannelLength = 1024;
using FmqRequestDescriptor = MQDescriptorSync<FmqRequestDatum>;
using FmqResultDescriptor = MQDescriptorSync<FmqResultDatum>;
/**
* Function to serialize a request.
*
* Prefer calling RequestChannelSender::send.
*
* @param request Request object without the pool information.
* @param measure Whether to collect timing information for the execution.
* @param memoryIds Slot identifiers corresponding to memory resources for the
* request.
* @return Serialized FMQ request data.
*/
std::vector<hardware::neuralnetworks::V1_2::FmqRequestDatum> serialize(
const hardware::neuralnetworks::V1_0::Request& request,
hardware::neuralnetworks::V1_2::MeasureTiming measure, const std::vector<int32_t>& slots);
/**
* Deserialize the FMQ request data.
*
* The three resulting fields are the Request object (where Request::pools is
* empty), slot identifiers (which are stand-ins for Request::pools), and
* whether timing information must be collected for the run.
*
* @param data Serialized FMQ request data.
* @return Request object if successfully deserialized, std::nullopt otherwise.
*/
std::optional<std::tuple<hardware::neuralnetworks::V1_0::Request, std::vector<int32_t>,
hardware::neuralnetworks::V1_2::MeasureTiming>>
deserialize(const std::vector<hardware::neuralnetworks::V1_2::FmqRequestDatum>& data);
/**
* Function to serialize results.
*
* Prefer calling ResultChannelSender::send.
*
* @param errorStatus Status of the execution.
* @param outputShapes Dynamic shapes of the output tensors.
* @param timing Timing information of the execution.
* @return Serialized FMQ result data.
*/
std::vector<hardware::neuralnetworks::V1_2::FmqResultDatum> serialize(
hardware::neuralnetworks::V1_0::ErrorStatus errorStatus,
const std::vector<hardware::neuralnetworks::V1_2::OutputShape>& outputShapes,
hardware::neuralnetworks::V1_2::Timing timing);
/**
* Deserialize the FMQ result data.
*
* The three resulting fields are the status of the execution, the dynamic
* shapes of the output tensors, and the timing information of the execution.
*
* @param data Serialized FMQ result data.
* @return Result object if successfully deserialized, std::nullopt otherwise.
*/
std::optional<std::tuple<hardware::neuralnetworks::V1_0::ErrorStatus,
std::vector<hardware::neuralnetworks::V1_2::OutputShape>,
hardware::neuralnetworks::V1_2::Timing>>
deserialize(const std::vector<hardware::neuralnetworks::V1_2::FmqResultDatum>& data);
/**
* Convert result code to error status.
*
* @param resultCode Result code to be converted.
* @return ErrorStatus Resultant error status.
*/
hardware::neuralnetworks::V1_0::ErrorStatus legacyConvertResultCodeToErrorStatus(int resultCode);
/**
* RequestChannelSender is responsible for serializing the result packet of
* information, sending it on the result channel, and signaling that the data is
* available.
*/
class RequestChannelSender {
using FmqRequestDescriptor =
hardware::MQDescriptorSync<hardware::neuralnetworks::V1_2::FmqRequestDatum>;
using FmqRequestChannel =
hardware::MessageQueue<hardware::neuralnetworks::V1_2::FmqRequestDatum,
hardware::kSynchronizedReadWrite>;
public:
/**
* Create the sending end of a request channel.
*
* Prefer this call over the constructor.
*
* @param channelLength Number of elements in the FMQ.
* @return A pair of ResultChannelReceiver and the FMQ descriptor on
* successful creation, both nullptr otherwise.
*/
static std::pair<std::unique_ptr<RequestChannelSender>, const FmqRequestDescriptor*> create(
size_t channelLength);
/**
* Send the request to the channel.
*
* @param request Request object without the pool information.
* @param measure Whether to collect timing information for the execution.
* @param memoryIds Slot identifiers corresponding to memory resources for
* the request.
* @return 'true' on successful send, 'false' otherwise.
*/
bool send(const hardware::neuralnetworks::V1_0::Request& request,
hardware::neuralnetworks::V1_2::MeasureTiming measure,
const std::vector<int32_t>& slots);
/**
* Method to mark the channel as invalid, causing all future calls to
* RequestChannelSender::send to immediately return false without attempting
* to send a message across the FMQ.
*/
void invalidate();
// prefer calling RequestChannelSender::send
bool sendPacket(const std::vector<hardware::neuralnetworks::V1_2::FmqRequestDatum>& packet);
RequestChannelSender(std::unique_ptr<FmqRequestChannel> fmqRequestChannel);
private:
const std::unique_ptr<FmqRequestChannel> mFmqRequestChannel;
std::atomic<bool> mValid{true};
};
/**
* RequestChannelReceiver is responsible for waiting on the channel until the
* packet is available, extracting the packet from the channel, and
* deserializing the packet.
*
* Because the receiver can wait on a packet that may never come (e.g., because
* the sending side of the packet has been closed), this object can be
* invalidated, unblocking the receiver.
*/
class RequestChannelReceiver {
using FmqRequestChannel =
hardware::MessageQueue<hardware::neuralnetworks::V1_2::FmqRequestDatum,
hardware::kSynchronizedReadWrite>;
public:
/**
* Create the receiving end of a request channel.
*
* Prefer this call over the constructor.
*
* @param requestChannel Descriptor for the request channel.
* @param pollingTimeWindow How much time (in microseconds) the
* RequestChannelReceiver is allowed to poll the FMQ before waiting on
* the blocking futex. Polling may result in lower latencies at the
* potential cost of more power usage.
* @return RequestChannelReceiver on successful creation, nullptr otherwise.
*/
static std::unique_ptr<RequestChannelReceiver> create(
const FmqRequestDescriptor& requestChannel,
std::chrono::microseconds pollingTimeWindow);
/**
* Get the request from the channel.
*
* This method will block until either:
* 1) The packet has been retrieved, or
* 2) The receiver has been invalidated
*
* @return Request object if successfully received, std::nullopt if error or
* if the receiver object was invalidated.
*/
std::optional<std::tuple<hardware::neuralnetworks::V1_0::Request, std::vector<int32_t>,
hardware::neuralnetworks::V1_2::MeasureTiming>>
getBlocking();
/**
* Method to mark the channel as invalid, unblocking any current or future
* calls to RequestChannelReceiver::getBlocking.
*/
void invalidate();
RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel,
std::chrono::microseconds pollingTimeWindow);
private:
std::optional<std::vector<hardware::neuralnetworks::V1_2::FmqRequestDatum>> getPacketBlocking();
const std::unique_ptr<FmqRequestChannel> mFmqRequestChannel;
std::atomic<bool> mTeardown{false};
const std::chrono::microseconds kPollingTimeWindow;
};
/**
* ResultChannelSender is responsible for serializing the result packet of
* information, sending it on the result channel, and signaling that the data is
* available.
*/
class ResultChannelSender {
using FmqResultChannel = hardware::MessageQueue<hardware::neuralnetworks::V1_2::FmqResultDatum,
hardware::kSynchronizedReadWrite>;
public:
/**
* Create the sending end of a result channel.
*
* Prefer this call over the constructor.
*
* @param resultChannel Descriptor for the result channel.
* @return ResultChannelSender on successful creation, nullptr otherwise.
*/
static std::unique_ptr<ResultChannelSender> create(const FmqResultDescriptor& resultChannel);
/**
* Send the result to the channel.
*
* @param errorStatus Status of the execution.
* @param outputShapes Dynamic shapes of the output tensors.
* @param timing Timing information of the execution.
* @return 'true' on successful send, 'false' otherwise.
*/
bool send(hardware::neuralnetworks::V1_0::ErrorStatus errorStatus,
const std::vector<hardware::neuralnetworks::V1_2::OutputShape>& outputShapes,
hardware::neuralnetworks::V1_2::Timing timing);
// prefer calling ResultChannelSender::send
bool sendPacket(const std::vector<hardware::neuralnetworks::V1_2::FmqResultDatum>& packet);
ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel);
private:
const std::unique_ptr<FmqResultChannel> mFmqResultChannel;
};
/**
* ResultChannelReceiver is responsible for waiting on the channel until the
* packet is available, extracting the packet from the channel, and
* deserializing the packet.
*
* Because the receiver can wait on a packet that may never come (e.g., because
* the sending side of the packet has been closed), this object can be
* invalidated, unblocking the receiver.
*/
class ResultChannelReceiver {
using FmqResultDescriptor =
hardware::MQDescriptorSync<hardware::neuralnetworks::V1_2::FmqResultDatum>;
using FmqResultChannel = hardware::MessageQueue<hardware::neuralnetworks::V1_2::FmqResultDatum,
hardware::kSynchronizedReadWrite>;
public:
/**
* Create the receiving end of a result channel.
*
* Prefer this call over the constructor.
*
* @param channelLength Number of elements in the FMQ.
* @param pollingTimeWindow How much time (in microseconds) the
* ResultChannelReceiver is allowed to poll the FMQ before waiting on
* the blocking futex. Polling may result in lower latencies at the
* potential cost of more power usage.
* @return A pair of ResultChannelReceiver and the FMQ descriptor on
* successful creation, both nullptr otherwise.
*/
static std::pair<std::unique_ptr<ResultChannelReceiver>, const FmqResultDescriptor*> create(
size_t channelLength, std::chrono::microseconds pollingTimeWindow);
/**
* Get the result from the channel.
*
* This method will block until either:
* 1) The packet has been retrieved, or
* 2) The receiver has been invalidated
*
* @return Result object if successfully received, std::nullopt if error or
* if the receiver object was invalidated.
*/
std::optional<std::tuple<hardware::neuralnetworks::V1_0::ErrorStatus,
std::vector<hardware::neuralnetworks::V1_2::OutputShape>,
hardware::neuralnetworks::V1_2::Timing>>
getBlocking();
/**
* Method to mark the channel as invalid, unblocking any current or future
* calls to ResultChannelReceiver::getBlocking.
*/
void invalidate();
// prefer calling ResultChannelReceiver::getBlocking
std::optional<std::vector<hardware::neuralnetworks::V1_2::FmqResultDatum>> getPacketBlocking();
ResultChannelReceiver(std::unique_ptr<FmqResultChannel> fmqResultChannel,
std::chrono::microseconds pollingTimeWindow);
private:
const std::unique_ptr<FmqResultChannel> mFmqResultChannel;
std::atomic<bool> mValid{true};
const std::chrono::microseconds kPollingTimeWindow;
};
} // namespace android::hardware::neuralnetworks::V1_2::utils
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_1_2_UTILS_EXECUTION_BURST_UTILS_H

View File

@@ -36,7 +36,8 @@
namespace android::hardware::neuralnetworks::V1_2::utils {
// Class that adapts V1_2::IPreparedModel to nn::IPreparedModel.
class PreparedModel final : public nn::IPreparedModel {
class PreparedModel final : public nn::IPreparedModel,
public std::enable_shared_from_this<PreparedModel> {
struct PrivateConstructorTag {};
public:
@@ -57,6 +58,8 @@ class PreparedModel final : public nn::IPreparedModel {
const nn::OptionalDuration& loopTimeoutDuration,
const nn::OptionalDuration& timeoutDurationAfterFence) const override;
nn::GeneralResult<nn::SharedBurst> configureExecutionBurst() const override;
std::any getUnderlyingResource() const override;
private:

View File

@@ -199,6 +199,10 @@ nn::DeviceType Device::getType() const {
return kDeviceType;
}
bool Device::isUpdatable() const {
return false;
}
const std::vector<nn::Extension>& Device::getSupportedExtensions() const {
return kExtensions;
}

View File

@@ -0,0 +1,299 @@
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ExecutionBurstController"
#include "ExecutionBurstController.h"
#include <android-base/logging.h>
#include <algorithm>
#include <cstring>
#include <limits>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "ExecutionBurstUtils.h"
#include "HalInterfaces.h"
#include "Tracing.h"
#include "Utils.h"
namespace android::nn {
namespace {
class BurstContextDeathHandler : public hardware::hidl_death_recipient {
public:
using Callback = std::function<void()>;
BurstContextDeathHandler(const Callback& onDeathCallback) : mOnDeathCallback(onDeathCallback) {
CHECK(onDeathCallback != nullptr);
}
void serviceDied(uint64_t /*cookie*/, const wp<hidl::base::V1_0::IBase>& /*who*/) override {
LOG(ERROR) << "BurstContextDeathHandler::serviceDied -- service unexpectedly died!";
mOnDeathCallback();
}
private:
const Callback mOnDeathCallback;
};
} // anonymous namespace
hardware::Return<void> ExecutionBurstController::ExecutionBurstCallback::getMemories(
const hardware::hidl_vec<int32_t>& slots, getMemories_cb cb) {
std::lock_guard<std::mutex> guard(mMutex);
// get all memories
hardware::hidl_vec<hardware::hidl_memory> memories(slots.size());
std::transform(slots.begin(), slots.end(), memories.begin(), [this](int32_t slot) {
return slot < mMemoryCache.size() ? mMemoryCache[slot] : hardware::hidl_memory{};
});
// ensure all memories are valid
if (!std::all_of(memories.begin(), memories.end(),
[](const hardware::hidl_memory& memory) { return memory.valid(); })) {
cb(V1_0::ErrorStatus::INVALID_ARGUMENT, {});
return hardware::Void();
}
// return successful
cb(V1_0::ErrorStatus::NONE, std::move(memories));
return hardware::Void();
}
std::vector<int32_t> ExecutionBurstController::ExecutionBurstCallback::getSlots(
const hardware::hidl_vec<hardware::hidl_memory>& memories,
const std::vector<intptr_t>& keys) {
std::lock_guard<std::mutex> guard(mMutex);
// retrieve (or bind) all slots corresponding to memories
std::vector<int32_t> slots;
slots.reserve(memories.size());
for (size_t i = 0; i < memories.size(); ++i) {
slots.push_back(getSlotLocked(memories[i], keys[i]));
}
return slots;
}
std::pair<bool, int32_t> ExecutionBurstController::ExecutionBurstCallback::freeMemory(
intptr_t key) {
std::lock_guard<std::mutex> guard(mMutex);
auto iter = mMemoryIdToSlot.find(key);
if (iter == mMemoryIdToSlot.end()) {
return {false, 0};
}
const int32_t slot = iter->second;
mMemoryIdToSlot.erase(key);
mMemoryCache[slot] = {};
mFreeSlots.push(slot);
return {true, slot};
}
int32_t ExecutionBurstController::ExecutionBurstCallback::getSlotLocked(
const hardware::hidl_memory& memory, intptr_t key) {
auto iter = mMemoryIdToSlot.find(key);
if (iter == mMemoryIdToSlot.end()) {
const int32_t slot = allocateSlotLocked();
mMemoryIdToSlot[key] = slot;
mMemoryCache[slot] = memory;
return slot;
} else {
const int32_t slot = iter->second;
return slot;
}
}
int32_t ExecutionBurstController::ExecutionBurstCallback::allocateSlotLocked() {
constexpr size_t kMaxNumberOfSlots = std::numeric_limits<int32_t>::max();
// if there is a free slot, use it
if (mFreeSlots.size() > 0) {
const int32_t slot = mFreeSlots.top();
mFreeSlots.pop();
return slot;
}
// otherwise use a slot for the first time
CHECK(mMemoryCache.size() < kMaxNumberOfSlots) << "Exceeded maximum number of slots!";
const int32_t slot = static_cast<int32_t>(mMemoryCache.size());
mMemoryCache.emplace_back();
return slot;
}
std::unique_ptr<ExecutionBurstController> ExecutionBurstController::create(
const sp<V1_2::IPreparedModel>& preparedModel,
std::chrono::microseconds pollingTimeWindow) {
// check inputs
if (preparedModel == nullptr) {
LOG(ERROR) << "ExecutionBurstController::create passed a nullptr";
return nullptr;
}
// create callback object
sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback();
// create FMQ objects
auto [requestChannelSenderTemp, requestChannelDescriptor] =
RequestChannelSender::create(kExecutionBurstChannelLength);
auto [resultChannelReceiverTemp, resultChannelDescriptor] =
ResultChannelReceiver::create(kExecutionBurstChannelLength, pollingTimeWindow);
std::shared_ptr<RequestChannelSender> requestChannelSender =
std::move(requestChannelSenderTemp);
std::shared_ptr<ResultChannelReceiver> resultChannelReceiver =
std::move(resultChannelReceiverTemp);
// check FMQ objects
if (!requestChannelSender || !resultChannelReceiver || !requestChannelDescriptor ||
!resultChannelDescriptor) {
LOG(ERROR) << "ExecutionBurstController::create failed to create FastMessageQueue";
return nullptr;
}
// configure burst
V1_0::ErrorStatus errorStatus;
sp<IBurstContext> burstContext;
const hardware::Return<void> ret = preparedModel->configureExecutionBurst(
callback, *requestChannelDescriptor, *resultChannelDescriptor,
[&errorStatus, &burstContext](V1_0::ErrorStatus status,
const sp<IBurstContext>& context) {
errorStatus = status;
burstContext = context;
});
// check burst
if (!ret.isOk()) {
LOG(ERROR) << "IPreparedModel::configureExecutionBurst failed with description "
<< ret.description();
return nullptr;
}
if (errorStatus != V1_0::ErrorStatus::NONE) {
LOG(ERROR) << "IPreparedModel::configureExecutionBurst failed with status "
<< toString(errorStatus);
return nullptr;
}
if (burstContext == nullptr) {
LOG(ERROR) << "IPreparedModel::configureExecutionBurst returned nullptr for burst";
return nullptr;
}
// create death handler object
BurstContextDeathHandler::Callback onDeathCallback = [requestChannelSender,
resultChannelReceiver] {
requestChannelSender->invalidate();
resultChannelReceiver->invalidate();
};
const sp<BurstContextDeathHandler> deathHandler = new BurstContextDeathHandler(onDeathCallback);
// linkToDeath registers a callback that will be invoked on service death to
// proactively handle service crashes. If the linkToDeath call fails,
// asynchronous calls are susceptible to hangs if the service crashes before
// providing the response.
const hardware::Return<bool> deathHandlerRet = burstContext->linkToDeath(deathHandler, 0);
if (!deathHandlerRet.isOk() || deathHandlerRet != true) {
LOG(ERROR) << "ExecutionBurstController::create -- Failed to register a death recipient "
"for the IBurstContext object.";
return nullptr;
}
// make and return controller
return std::make_unique<ExecutionBurstController>(requestChannelSender, resultChannelReceiver,
burstContext, callback, deathHandler);
}
ExecutionBurstController::ExecutionBurstController(
const std::shared_ptr<RequestChannelSender>& requestChannelSender,
const std::shared_ptr<ResultChannelReceiver>& resultChannelReceiver,
const sp<IBurstContext>& burstContext, const sp<ExecutionBurstCallback>& callback,
const sp<hardware::hidl_death_recipient>& deathHandler)
: mRequestChannelSender(requestChannelSender),
mResultChannelReceiver(resultChannelReceiver),
mBurstContext(burstContext),
mMemoryCache(callback),
mDeathHandler(deathHandler) {}
ExecutionBurstController::~ExecutionBurstController() {
// It is safe to ignore any errors resulting from this unlinkToDeath call
// because the ExecutionBurstController object is already being destroyed
// and its underlying IBurstContext object is no longer being used by the NN
// runtime.
if (mDeathHandler) {
mBurstContext->unlinkToDeath(mDeathHandler).isOk();
}
}
static std::tuple<int, std::vector<V1_2::OutputShape>, V1_2::Timing, bool> getExecutionResult(
V1_0::ErrorStatus status, std::vector<V1_2::OutputShape> outputShapes, V1_2::Timing timing,
bool fallback) {
auto [n, checkedOutputShapes, checkedTiming] =
getExecutionResult(convertToV1_3(status), std::move(outputShapes), timing);
return {n, convertToV1_2(checkedOutputShapes), convertToV1_2(checkedTiming), fallback};
}
std::tuple<int, std::vector<V1_2::OutputShape>, V1_2::Timing, bool>
ExecutionBurstController::compute(const V1_0::Request& request, V1_2::MeasureTiming measure,
const std::vector<intptr_t>& memoryIds) {
// This is the first point when we know an execution is occurring, so begin
// to collect systraces. Note that the first point we can begin collecting
// systraces in ExecutionBurstServer is when the RequestChannelReceiver
// realizes there is data in the FMQ, so ExecutionBurstServer collects
// systraces at different points in the code.
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstController::compute");
std::lock_guard<std::mutex> guard(mMutex);
// send request packet
const std::vector<int32_t> slots = mMemoryCache->getSlots(request.pools, memoryIds);
const bool success = mRequestChannelSender->send(request, measure, slots);
if (!success) {
LOG(ERROR) << "Error sending FMQ packet";
// only use fallback execution path if the packet could not be sent
return getExecutionResult(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming12,
/*fallback=*/true);
}
// get result packet
const auto result = mResultChannelReceiver->getBlocking();
if (!result) {
LOG(ERROR) << "Error retrieving FMQ packet";
// only use fallback execution path if the packet could not be sent
return getExecutionResult(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming12,
/*fallback=*/false);
}
// unpack results and return (only use fallback execution path if the
// packet could not be sent)
auto [status, outputShapes, timing] = std::move(*result);
return getExecutionResult(status, std::move(outputShapes), timing, /*fallback=*/false);
}
void ExecutionBurstController::freeMemory(intptr_t key) {
std::lock_guard<std::mutex> guard(mMutex);
bool valid;
int32_t slot;
std::tie(valid, slot) = mMemoryCache->freeMemory(key);
if (valid) {
mBurstContext->freeMemory(slot).isOk();
}
}
} // namespace android::nn

View File

@@ -0,0 +1,260 @@
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ExecutionBurstServer"
#include "ExecutionBurstServer.h"
#include <android-base/logging.h>
#include <algorithm>
#include <cstring>
#include <limits>
#include <map>
#include <memory>
#include <tuple>
#include <utility>
#include <vector>
#include "ExecutionBurstUtils.h"
#include "HalInterfaces.h"
#include "Tracing.h"
namespace android::nn {
namespace {
// DefaultBurstExecutorWithCache adapts an IPreparedModel so that it can be
// used as an IBurstExecutorWithCache. Specifically, the cache simply stores the
// hidl_memory object, and the execution forwards calls to the provided
// IPreparedModel's "executeSynchronously" method. With this class, hidl_memory
// must be mapped and unmapped for each execution.
class DefaultBurstExecutorWithCache : public ExecutionBurstServer::IBurstExecutorWithCache {
public:
DefaultBurstExecutorWithCache(V1_2::IPreparedModel* preparedModel)
: mpPreparedModel(preparedModel) {}
bool isCacheEntryPresent(int32_t slot) const override {
const auto it = mMemoryCache.find(slot);
return (it != mMemoryCache.end()) && it->second.valid();
}
void addCacheEntry(const hardware::hidl_memory& memory, int32_t slot) override {
mMemoryCache[slot] = memory;
}
void removeCacheEntry(int32_t slot) override { mMemoryCache.erase(slot); }
std::tuple<V1_0::ErrorStatus, hardware::hidl_vec<V1_2::OutputShape>, V1_2::Timing> execute(
const V1_0::Request& request, const std::vector<int32_t>& slots,
V1_2::MeasureTiming measure) override {
// convert slots to pools
hardware::hidl_vec<hardware::hidl_memory> pools(slots.size());
std::transform(slots.begin(), slots.end(), pools.begin(),
[this](int32_t slot) { return mMemoryCache[slot]; });
// create full request
V1_0::Request fullRequest = request;
fullRequest.pools = std::move(pools);
// setup execution
V1_0::ErrorStatus returnedStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
hardware::hidl_vec<V1_2::OutputShape> returnedOutputShapes;
V1_2::Timing returnedTiming;
auto cb = [&returnedStatus, &returnedOutputShapes, &returnedTiming](
V1_0::ErrorStatus status,
const hardware::hidl_vec<V1_2::OutputShape>& outputShapes,
const V1_2::Timing& timing) {
returnedStatus = status;
returnedOutputShapes = outputShapes;
returnedTiming = timing;
};
// execute
const hardware::Return<void> ret =
mpPreparedModel->executeSynchronously(fullRequest, measure, cb);
if (!ret.isOk() || returnedStatus != V1_0::ErrorStatus::NONE) {
LOG(ERROR) << "IPreparedModelAdapter::execute -- Error executing";
return {returnedStatus, std::move(returnedOutputShapes), kNoTiming};
}
return std::make_tuple(returnedStatus, std::move(returnedOutputShapes), returnedTiming);
}
private:
V1_2::IPreparedModel* const mpPreparedModel;
std::map<int32_t, hardware::hidl_memory> mMemoryCache;
};
} // anonymous namespace
// ExecutionBurstServer methods
sp<ExecutionBurstServer> ExecutionBurstServer::create(
const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
const MQDescriptorSync<FmqResultDatum>& resultChannel,
std::shared_ptr<IBurstExecutorWithCache> executorWithCache,
std::chrono::microseconds pollingTimeWindow) {
// check inputs
if (callback == nullptr || executorWithCache == nullptr) {
LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
return nullptr;
}
// create FMQ objects
std::unique_ptr<RequestChannelReceiver> requestChannelReceiver =
RequestChannelReceiver::create(requestChannel, pollingTimeWindow);
std::unique_ptr<ResultChannelSender> resultChannelSender =
ResultChannelSender::create(resultChannel);
// check FMQ objects
if (!requestChannelReceiver || !resultChannelSender) {
LOG(ERROR) << "ExecutionBurstServer::create failed to create FastMessageQueue";
return nullptr;
}
// make and return context
return new ExecutionBurstServer(callback, std::move(requestChannelReceiver),
std::move(resultChannelSender), std::move(executorWithCache));
}
sp<ExecutionBurstServer> ExecutionBurstServer::create(
const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
const MQDescriptorSync<FmqResultDatum>& resultChannel, V1_2::IPreparedModel* preparedModel,
std::chrono::microseconds pollingTimeWindow) {
// check relevant input
if (preparedModel == nullptr) {
LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
return nullptr;
}
// adapt IPreparedModel to have caching
const std::shared_ptr<DefaultBurstExecutorWithCache> preparedModelAdapter =
std::make_shared<DefaultBurstExecutorWithCache>(preparedModel);
// make and return context
return ExecutionBurstServer::create(callback, requestChannel, resultChannel,
preparedModelAdapter, pollingTimeWindow);
}
ExecutionBurstServer::ExecutionBurstServer(
const sp<IBurstCallback>& callback, std::unique_ptr<RequestChannelReceiver> requestChannel,
std::unique_ptr<ResultChannelSender> resultChannel,
std::shared_ptr<IBurstExecutorWithCache> executorWithCache)
: mCallback(callback),
mRequestChannelReceiver(std::move(requestChannel)),
mResultChannelSender(std::move(resultChannel)),
mExecutorWithCache(std::move(executorWithCache)) {
// TODO: highly document the threading behavior of this class
mWorker = std::thread([this] { task(); });
}
ExecutionBurstServer::~ExecutionBurstServer() {
// set teardown flag
mTeardown = true;
mRequestChannelReceiver->invalidate();
// wait for task thread to end
mWorker.join();
}
hardware::Return<void> ExecutionBurstServer::freeMemory(int32_t slot) {
std::lock_guard<std::mutex> hold(mMutex);
mExecutorWithCache->removeCacheEntry(slot);
return hardware::Void();
}
void ExecutionBurstServer::ensureCacheEntriesArePresentLocked(const std::vector<int32_t>& slots) {
const auto slotIsKnown = [this](int32_t slot) {
return mExecutorWithCache->isCacheEntryPresent(slot);
};
// find unique unknown slots
std::vector<int32_t> unknownSlots = slots;
auto unknownSlotsEnd = unknownSlots.end();
std::sort(unknownSlots.begin(), unknownSlotsEnd);
unknownSlotsEnd = std::unique(unknownSlots.begin(), unknownSlotsEnd);
unknownSlotsEnd = std::remove_if(unknownSlots.begin(), unknownSlotsEnd, slotIsKnown);
unknownSlots.erase(unknownSlotsEnd, unknownSlots.end());
// quick-exit if all slots are known
if (unknownSlots.empty()) {
return;
}
V1_0::ErrorStatus errorStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
std::vector<hardware::hidl_memory> returnedMemories;
auto cb = [&errorStatus, &returnedMemories](
V1_0::ErrorStatus status,
const hardware::hidl_vec<hardware::hidl_memory>& memories) {
errorStatus = status;
returnedMemories = memories;
};
const hardware::Return<void> ret = mCallback->getMemories(unknownSlots, cb);
if (!ret.isOk() || errorStatus != V1_0::ErrorStatus::NONE ||
returnedMemories.size() != unknownSlots.size()) {
LOG(ERROR) << "Error retrieving memories";
return;
}
// add memories to unknown slots
for (size_t i = 0; i < unknownSlots.size(); ++i) {
mExecutorWithCache->addCacheEntry(returnedMemories[i], unknownSlots[i]);
}
}
void ExecutionBurstServer::task() {
// loop until the burst object is being destroyed
while (!mTeardown) {
// receive request
auto arguments = mRequestChannelReceiver->getBlocking();
// if the request packet was not properly received, return a generic
// error and skip the execution
//
// if the burst is being torn down, skip the execution so the "task"
// function can end
if (!arguments) {
if (!mTeardown) {
mResultChannelSender->send(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
}
continue;
}
// otherwise begin tracing execution
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
"ExecutionBurstServer getting memory, executing, and returning results");
// unpack the arguments; types are Request, std::vector<int32_t>, and
// MeasureTiming, respectively
const auto [requestWithoutPools, slotsOfPools, measure] = std::move(*arguments);
// ensure executor with cache has required memory
std::lock_guard<std::mutex> hold(mMutex);
ensureCacheEntriesArePresentLocked(slotsOfPools);
// perform computation; types are ErrorStatus, hidl_vec<OutputShape>,
// and Timing, respectively
const auto [errorStatus, outputShapes, returnedTiming] =
mExecutorWithCache->execute(requestWithoutPools, slotsOfPools, measure);
// return result
mResultChannelSender->send(errorStatus, outputShapes, returnedTiming);
}
}
} // namespace android::nn

View File

@@ -0,0 +1,749 @@
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ExecutionBurstUtils"
#include "ExecutionBurstUtils.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hardware/neuralnetworks/1.2/types.h>
#include <fmq/MessageQueue.h>
#include <hidl/MQDescriptor.h>
#include <atomic>
#include <chrono>
#include <memory>
#include <thread>
#include <tuple>
#include <utility>
#include <vector>
namespace android::hardware::neuralnetworks::V1_2::utils {
namespace {
constexpr V1_2::Timing kNoTiming = {std::numeric_limits<uint64_t>::max(),
std::numeric_limits<uint64_t>::max()};
}
// serialize a request into a packet
std::vector<FmqRequestDatum> serialize(const V1_0::Request& request, V1_2::MeasureTiming measure,
const std::vector<int32_t>& slots) {
// count how many elements need to be sent for a request
size_t count = 2 + request.inputs.size() + request.outputs.size() + request.pools.size();
for (const auto& input : request.inputs) {
count += input.dimensions.size();
}
for (const auto& output : request.outputs) {
count += output.dimensions.size();
}
// create buffer to temporarily store elements
std::vector<FmqRequestDatum> data;
data.reserve(count);
// package packetInfo
{
FmqRequestDatum datum;
datum.packetInformation(
{/*.packetSize=*/static_cast<uint32_t>(count),
/*.numberOfInputOperands=*/static_cast<uint32_t>(request.inputs.size()),
/*.numberOfOutputOperands=*/static_cast<uint32_t>(request.outputs.size()),
/*.numberOfPools=*/static_cast<uint32_t>(request.pools.size())});
data.push_back(datum);
}
// package input data
for (const auto& input : request.inputs) {
// package operand information
FmqRequestDatum datum;
datum.inputOperandInformation(
{/*.hasNoValue=*/input.hasNoValue,
/*.location=*/input.location,
/*.numberOfDimensions=*/static_cast<uint32_t>(input.dimensions.size())});
data.push_back(datum);
// package operand dimensions
for (uint32_t dimension : input.dimensions) {
FmqRequestDatum datum;
datum.inputOperandDimensionValue(dimension);
data.push_back(datum);
}
}
// package output data
for (const auto& output : request.outputs) {
// package operand information
FmqRequestDatum datum;
datum.outputOperandInformation(
{/*.hasNoValue=*/output.hasNoValue,
/*.location=*/output.location,
/*.numberOfDimensions=*/static_cast<uint32_t>(output.dimensions.size())});
data.push_back(datum);
// package operand dimensions
for (uint32_t dimension : output.dimensions) {
FmqRequestDatum datum;
datum.outputOperandDimensionValue(dimension);
data.push_back(datum);
}
}
// package pool identifier
for (int32_t slot : slots) {
FmqRequestDatum datum;
datum.poolIdentifier(slot);
data.push_back(datum);
}
// package measureTiming
{
FmqRequestDatum datum;
datum.measureTiming(measure);
data.push_back(datum);
}
// return packet
return data;
}
// serialize result
std::vector<FmqResultDatum> serialize(V1_0::ErrorStatus errorStatus,
const std::vector<V1_2::OutputShape>& outputShapes,
V1_2::Timing timing) {
// count how many elements need to be sent for a request
size_t count = 2 + outputShapes.size();
for (const auto& outputShape : outputShapes) {
count += outputShape.dimensions.size();
}
// create buffer to temporarily store elements
std::vector<FmqResultDatum> data;
data.reserve(count);
// package packetInfo
{
FmqResultDatum datum;
datum.packetInformation({/*.packetSize=*/static_cast<uint32_t>(count),
/*.errorStatus=*/errorStatus,
/*.numberOfOperands=*/static_cast<uint32_t>(outputShapes.size())});
data.push_back(datum);
}
// package output shape data
for (const auto& operand : outputShapes) {
// package operand information
FmqResultDatum::OperandInformation info{};
info.isSufficient = operand.isSufficient;
info.numberOfDimensions = static_cast<uint32_t>(operand.dimensions.size());
FmqResultDatum datum;
datum.operandInformation(info);
data.push_back(datum);
// package operand dimensions
for (uint32_t dimension : operand.dimensions) {
FmqResultDatum datum;
datum.operandDimensionValue(dimension);
data.push_back(datum);
}
}
// package executionTiming
{
FmqResultDatum datum;
datum.executionTiming(timing);
data.push_back(datum);
}
// return result
return data;
}
// deserialize request
std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>> deserialize(
const std::vector<FmqRequestDatum>& data) {
using discriminator = FmqRequestDatum::hidl_discriminator;
size_t index = 0;
// validate packet information
if (data.size() == 0 || data[index].getDiscriminator() != discriminator::packetInformation) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage packet information
const FmqRequestDatum::PacketInformation& packetInfo = data[index].packetInformation();
index++;
const uint32_t packetSize = packetInfo.packetSize;
const uint32_t numberOfInputOperands = packetInfo.numberOfInputOperands;
const uint32_t numberOfOutputOperands = packetInfo.numberOfOutputOperands;
const uint32_t numberOfPools = packetInfo.numberOfPools;
// verify packet size
if (data.size() != packetSize) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage input operands
std::vector<V1_0::RequestArgument> inputs;
inputs.reserve(numberOfInputOperands);
for (size_t operand = 0; operand < numberOfInputOperands; ++operand) {
// validate input operand information
if (data[index].getDiscriminator() != discriminator::inputOperandInformation) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage operand information
const FmqRequestDatum::OperandInformation& operandInfo =
data[index].inputOperandInformation();
index++;
const bool hasNoValue = operandInfo.hasNoValue;
const V1_0::DataLocation location = operandInfo.location;
const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
// unpackage operand dimensions
std::vector<uint32_t> dimensions;
dimensions.reserve(numberOfDimensions);
for (size_t i = 0; i < numberOfDimensions; ++i) {
// validate dimension
if (data[index].getDiscriminator() != discriminator::inputOperandDimensionValue) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage dimension
const uint32_t dimension = data[index].inputOperandDimensionValue();
index++;
// store result
dimensions.push_back(dimension);
}
// store result
inputs.push_back(
{/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
}
// unpackage output operands
std::vector<V1_0::RequestArgument> outputs;
outputs.reserve(numberOfOutputOperands);
for (size_t operand = 0; operand < numberOfOutputOperands; ++operand) {
// validate output operand information
if (data[index].getDiscriminator() != discriminator::outputOperandInformation) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage operand information
const FmqRequestDatum::OperandInformation& operandInfo =
data[index].outputOperandInformation();
index++;
const bool hasNoValue = operandInfo.hasNoValue;
const V1_0::DataLocation location = operandInfo.location;
const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
// unpackage operand dimensions
std::vector<uint32_t> dimensions;
dimensions.reserve(numberOfDimensions);
for (size_t i = 0; i < numberOfDimensions; ++i) {
// validate dimension
if (data[index].getDiscriminator() != discriminator::outputOperandDimensionValue) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage dimension
const uint32_t dimension = data[index].outputOperandDimensionValue();
index++;
// store result
dimensions.push_back(dimension);
}
// store result
outputs.push_back(
{/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
}
// unpackage pools
std::vector<int32_t> slots;
slots.reserve(numberOfPools);
for (size_t pool = 0; pool < numberOfPools; ++pool) {
// validate input operand information
if (data[index].getDiscriminator() != discriminator::poolIdentifier) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage operand information
const int32_t poolId = data[index].poolIdentifier();
index++;
// store result
slots.push_back(poolId);
}
// validate measureTiming
if (data[index].getDiscriminator() != discriminator::measureTiming) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage measureTiming
const V1_2::MeasureTiming measure = data[index].measureTiming();
index++;
// validate packet information
if (index != packetSize) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
}
// return request
V1_0::Request request = {/*.inputs=*/inputs, /*.outputs=*/outputs, /*.pools=*/{}};
return std::make_tuple(std::move(request), std::move(slots), measure);
}
// deserialize a packet into the result
std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>>
deserialize(const std::vector<FmqResultDatum>& data) {
using discriminator = FmqResultDatum::hidl_discriminator;
std::vector<V1_2::OutputShape> outputShapes;
size_t index = 0;
// validate packet information
if (data.size() == 0 || data[index].getDiscriminator() != discriminator::packetInformation) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
}
// unpackage packet information
const FmqResultDatum::PacketInformation& packetInfo = data[index].packetInformation();
index++;
const uint32_t packetSize = packetInfo.packetSize;
const V1_0::ErrorStatus errorStatus = packetInfo.errorStatus;
const uint32_t numberOfOperands = packetInfo.numberOfOperands;
// verify packet size
if (data.size() != packetSize) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
}
// unpackage operands
for (size_t operand = 0; operand < numberOfOperands; ++operand) {
// validate operand information
if (data[index].getDiscriminator() != discriminator::operandInformation) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
}
// unpackage operand information
const FmqResultDatum::OperandInformation& operandInfo = data[index].operandInformation();
index++;
const bool isSufficient = operandInfo.isSufficient;
const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
// unpackage operand dimensions
std::vector<uint32_t> dimensions;
dimensions.reserve(numberOfDimensions);
for (size_t i = 0; i < numberOfDimensions; ++i) {
// validate dimension
if (data[index].getDiscriminator() != discriminator::operandDimensionValue) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
}
// unpackage dimension
const uint32_t dimension = data[index].operandDimensionValue();
index++;
// store result
dimensions.push_back(dimension);
}
// store result
outputShapes.push_back({/*.dimensions=*/dimensions, /*.isSufficient=*/isSufficient});
}
// validate execution timing
if (data[index].getDiscriminator() != discriminator::executionTiming) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
}
// unpackage execution timing
const V1_2::Timing timing = data[index].executionTiming();
index++;
// validate packet information
if (index != packetSize) {
LOG(ERROR) << "FMQ Result packet ill-formed";
return std::nullopt;
}
// return result
return std::make_tuple(errorStatus, std::move(outputShapes), timing);
}
V1_0::ErrorStatus legacyConvertResultCodeToErrorStatus(int resultCode) {
return convertToV1_0(convertResultCodeToErrorStatus(resultCode));
}
// RequestChannelSender methods
std::pair<std::unique_ptr<RequestChannelSender>, const FmqRequestDescriptor*>
RequestChannelSender::create(size_t channelLength) {
std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
std::make_unique<FmqRequestChannel>(channelLength, /*confEventFlag=*/true);
if (!fmqRequestChannel->isValid()) {
LOG(ERROR) << "Unable to create RequestChannelSender";
return {nullptr, nullptr};
}
const FmqRequestDescriptor* descriptor = fmqRequestChannel->getDesc();
return std::make_pair(std::make_unique<RequestChannelSender>(std::move(fmqRequestChannel)),
descriptor);
}
RequestChannelSender::RequestChannelSender(std::unique_ptr<FmqRequestChannel> fmqRequestChannel)
: mFmqRequestChannel(std::move(fmqRequestChannel)) {}
bool RequestChannelSender::send(const V1_0::Request& request, V1_2::MeasureTiming measure,
const std::vector<int32_t>& slots) {
const std::vector<FmqRequestDatum> serialized = serialize(request, measure, slots);
return sendPacket(serialized);
}
bool RequestChannelSender::sendPacket(const std::vector<FmqRequestDatum>& packet) {
if (!mValid) {
return false;
}
if (packet.size() > mFmqRequestChannel->availableToWrite()) {
LOG(ERROR)
<< "RequestChannelSender::sendPacket -- packet size exceeds size available in FMQ";
return false;
}
// Always send the packet with "blocking" because this signals the futex and
// unblocks the consumer if it is waiting on the futex.
return mFmqRequestChannel->writeBlocking(packet.data(), packet.size());
}
void RequestChannelSender::invalidate() {
mValid = false;
}
// RequestChannelReceiver methods
std::unique_ptr<RequestChannelReceiver> RequestChannelReceiver::create(
const FmqRequestDescriptor& requestChannel, std::chrono::microseconds pollingTimeWindow) {
std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
std::make_unique<FmqRequestChannel>(requestChannel);
if (!fmqRequestChannel->isValid()) {
LOG(ERROR) << "Unable to create RequestChannelReceiver";
return nullptr;
}
if (fmqRequestChannel->getEventFlagWord() == nullptr) {
LOG(ERROR)
<< "RequestChannelReceiver::create was passed an MQDescriptor without an EventFlag";
return nullptr;
}
return std::make_unique<RequestChannelReceiver>(std::move(fmqRequestChannel),
pollingTimeWindow);
}
RequestChannelReceiver::RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel,
std::chrono::microseconds pollingTimeWindow)
: mFmqRequestChannel(std::move(fmqRequestChannel)), kPollingTimeWindow(pollingTimeWindow) {}
std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>>
RequestChannelReceiver::getBlocking() {
const auto packet = getPacketBlocking();
if (!packet) {
return std::nullopt;
}
return deserialize(*packet);
}
void RequestChannelReceiver::invalidate() {
mTeardown = true;
// force unblock
// ExecutionBurstServer is by default waiting on a request packet. If the
// client process destroys its burst object, the server may still be waiting
// on the futex. This force unblock wakes up any thread waiting on the
// futex.
// TODO: look for a different/better way to signal/notify the futex to wake
// up any thread waiting on it
FmqRequestDatum datum;
datum.packetInformation({/*.packetSize=*/0, /*.numberOfInputOperands=*/0,
/*.numberOfOutputOperands=*/0, /*.numberOfPools=*/0});
mFmqRequestChannel->writeBlocking(&datum, 1);
}
std::optional<std::vector<FmqRequestDatum>> RequestChannelReceiver::getPacketBlocking() {
if (mTeardown) {
return std::nullopt;
}
// First spend time polling if results are available in FMQ instead of
// waiting on the futex. Polling is more responsive (yielding lower
// latencies), but can take up more power, so only poll for a limited period
// of time.
auto& getCurrentTime = std::chrono::high_resolution_clock::now;
const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow;
while (getCurrentTime() < timeToStopPolling) {
// if class is being torn down, immediately return
if (mTeardown.load(std::memory_order_relaxed)) {
return std::nullopt;
}
// Check if data is available. If it is, immediately retrieve it and
// return.
const size_t available = mFmqRequestChannel->availableToRead();
if (available > 0) {
// This is the first point when we know an execution is occurring,
// so begin to collect systraces. Note that a similar systrace does
// not exist at the corresponding point in
// ResultChannelReceiver::getPacketBlocking because the execution is
// already in flight.
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
"ExecutionBurstServer getting packet");
std::vector<FmqRequestDatum> packet(available);
const bool success = mFmqRequestChannel->read(packet.data(), available);
if (!success) {
LOG(ERROR) << "Error receiving packet";
return std::nullopt;
}
return std::make_optional(std::move(packet));
}
}
// If we get to this point, we either stopped polling because it was taking
// too long or polling was not allowed. Instead, perform a blocking call
// which uses a futex to save power.
// wait for request packet and read first element of request packet
FmqRequestDatum datum;
bool success = mFmqRequestChannel->readBlocking(&datum, 1);
// This is the first point when we know an execution is occurring, so begin
// to collect systraces. Note that a similar systrace does not exist at the
// corresponding point in ResultChannelReceiver::getPacketBlocking because
// the execution is already in flight.
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstServer getting packet");
// retrieve remaining elements
// NOTE: all of the data is already available at this point, so there's no
// need to do a blocking wait to wait for more data. This is known because
// in FMQ, all writes are published (made available) atomically. Currently,
// the producer always publishes the entire packet in one function call, so
// if the first element of the packet is available, the remaining elements
// are also available.
const size_t count = mFmqRequestChannel->availableToRead();
std::vector<FmqRequestDatum> packet(count + 1);
std::memcpy(&packet.front(), &datum, sizeof(datum));
success &= mFmqRequestChannel->read(packet.data() + 1, count);
// terminate loop
if (mTeardown) {
return std::nullopt;
}
// ensure packet was successfully received
if (!success) {
LOG(ERROR) << "Error receiving packet";
return std::nullopt;
}
return std::make_optional(std::move(packet));
}
// ResultChannelSender methods
std::unique_ptr<ResultChannelSender> ResultChannelSender::create(
const FmqResultDescriptor& resultChannel) {
std::unique_ptr<FmqResultChannel> fmqResultChannel =
std::make_unique<FmqResultChannel>(resultChannel);
if (!fmqResultChannel->isValid()) {
LOG(ERROR) << "Unable to create RequestChannelSender";
return nullptr;
}
if (fmqResultChannel->getEventFlagWord() == nullptr) {
LOG(ERROR) << "ResultChannelSender::create was passed an MQDescriptor without an EventFlag";
return nullptr;
}
return std::make_unique<ResultChannelSender>(std::move(fmqResultChannel));
}
ResultChannelSender::ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel)
: mFmqResultChannel(std::move(fmqResultChannel)) {}
bool ResultChannelSender::send(V1_0::ErrorStatus errorStatus,
const std::vector<V1_2::OutputShape>& outputShapes,
V1_2::Timing timing) {
const std::vector<FmqResultDatum> serialized = serialize(errorStatus, outputShapes, timing);
return sendPacket(serialized);
}
bool ResultChannelSender::sendPacket(const std::vector<FmqResultDatum>& packet) {
if (packet.size() > mFmqResultChannel->availableToWrite()) {
LOG(ERROR)
<< "ResultChannelSender::sendPacket -- packet size exceeds size available in FMQ";
const std::vector<FmqResultDatum> errorPacket =
serialize(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
// Always send the packet with "blocking" because this signals the futex
// and unblocks the consumer if it is waiting on the futex.
return mFmqResultChannel->writeBlocking(errorPacket.data(), errorPacket.size());
}
// Always send the packet with "blocking" because this signals the futex and
// unblocks the consumer if it is waiting on the futex.
return mFmqResultChannel->writeBlocking(packet.data(), packet.size());
}
// ResultChannelReceiver methods
std::pair<std::unique_ptr<ResultChannelReceiver>, const FmqResultDescriptor*>
ResultChannelReceiver::create(size_t channelLength, std::chrono::microseconds pollingTimeWindow) {
std::unique_ptr<FmqResultChannel> fmqResultChannel =
std::make_unique<FmqResultChannel>(channelLength, /*confEventFlag=*/true);
if (!fmqResultChannel->isValid()) {
LOG(ERROR) << "Unable to create ResultChannelReceiver";
return {nullptr, nullptr};
}
const FmqResultDescriptor* descriptor = fmqResultChannel->getDesc();
return std::make_pair(
std::make_unique<ResultChannelReceiver>(std::move(fmqResultChannel), pollingTimeWindow),
descriptor);
}
ResultChannelReceiver::ResultChannelReceiver(std::unique_ptr<FmqResultChannel> fmqResultChannel,
std::chrono::microseconds pollingTimeWindow)
: mFmqResultChannel(std::move(fmqResultChannel)), kPollingTimeWindow(pollingTimeWindow) {}
std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>>
ResultChannelReceiver::getBlocking() {
const auto packet = getPacketBlocking();
if (!packet) {
return std::nullopt;
}
return deserialize(*packet);
}
void ResultChannelReceiver::invalidate() {
mValid = false;
// force unblock
// ExecutionBurstController waits on a result packet after sending a
// request. If the driver containing ExecutionBurstServer crashes, the
// controller may be waiting on the futex. This force unblock wakes up any
// thread waiting on the futex.
// TODO: look for a different/better way to signal/notify the futex to
// wake up any thread waiting on it
FmqResultDatum datum;
datum.packetInformation({/*.packetSize=*/0,
/*.errorStatus=*/V1_0::ErrorStatus::GENERAL_FAILURE,
/*.numberOfOperands=*/0});
mFmqResultChannel->writeBlocking(&datum, 1);
}
std::optional<std::vector<FmqResultDatum>> ResultChannelReceiver::getPacketBlocking() {
if (!mValid) {
return std::nullopt;
}
// First spend time polling if results are available in FMQ instead of
// waiting on the futex. Polling is more responsive (yielding lower
// latencies), but can take up more power, so only poll for a limited period
// of time.
auto& getCurrentTime = std::chrono::high_resolution_clock::now;
const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow;
while (getCurrentTime() < timeToStopPolling) {
// if class is being torn down, immediately return
if (!mValid.load(std::memory_order_relaxed)) {
return std::nullopt;
}
// Check if data is available. If it is, immediately retrieve it and
// return.
const size_t available = mFmqResultChannel->availableToRead();
if (available > 0) {
std::vector<FmqResultDatum> packet(available);
const bool success = mFmqResultChannel->read(packet.data(), available);
if (!success) {
LOG(ERROR) << "Error receiving packet";
return std::nullopt;
}
return std::make_optional(std::move(packet));
}
}
// If we get to this point, we either stopped polling because it was taking
// too long or polling was not allowed. Instead, perform a blocking call
// which uses a futex to save power.
// wait for result packet and read first element of result packet
FmqResultDatum datum;
bool success = mFmqResultChannel->readBlocking(&datum, 1);
// retrieve remaining elements
// NOTE: all of the data is already available at this point, so there's no
// need to do a blocking wait to wait for more data. This is known because
// in FMQ, all writes are published (made available) atomically. Currently,
// the producer always publishes the entire packet in one function call, so
// if the first element of the packet is available, the remaining elements
// are also available.
const size_t count = mFmqResultChannel->availableToRead();
std::vector<FmqResultDatum> packet(count + 1);
std::memcpy(&packet.front(), &datum, sizeof(datum));
success &= mFmqResultChannel->read(packet.data() + 1, count);
if (!mValid) {
return std::nullopt;
}
// ensure packet was successfully received
if (!success) {
LOG(ERROR) << "Error receiving packet";
return std::nullopt;
}
return std::make_optional(std::move(packet));
}
} // namespace android::hardware::neuralnetworks::V1_2::utils

View File

@@ -27,6 +27,7 @@
#include <nnapi/IPreparedModel.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <nnapi/hal/1.0/Burst.h>
#include <nnapi/hal/1.0/Conversions.h>
#include <nnapi/hal/CommonUtils.h>
#include <nnapi/hal/HandleError.h>
@@ -117,6 +118,10 @@ PreparedModel::executeFenced(const nn::Request& /*request*/,
<< "IPreparedModel::executeFenced is not supported on 1.2 HAL service";
}
nn::GeneralResult<nn::SharedBurst> PreparedModel::configureExecutionBurst() const {
return V1_0::utils::Burst::create(shared_from_this());
}
std::any PreparedModel::getUnderlyingResource() const {
sp<V1_2::IPreparedModel> resource = kPreparedModel;
return resource;

View File

@@ -54,6 +54,7 @@ class Device final : public nn::IDevice {
const std::string& getVersionString() const override;
nn::Version getFeatureLevel() const override;
nn::DeviceType getType() const override;
bool isUpdatable() const override;
const std::vector<nn::Extension>& getSupportedExtensions() const override;
const nn::Capabilities& getCapabilities() const override;
std::pair<uint32_t, uint32_t> getNumberOfCacheFilesNeeded() const override;

View File

@@ -35,7 +35,8 @@
namespace android::hardware::neuralnetworks::V1_3::utils {
// Class that adapts V1_3::IPreparedModel to nn::IPreparedModel.
class PreparedModel final : public nn::IPreparedModel {
class PreparedModel final : public nn::IPreparedModel,
public std::enable_shared_from_this<PreparedModel> {
struct PrivateConstructorTag {};
public:
@@ -56,6 +57,8 @@ class PreparedModel final : public nn::IPreparedModel {
const nn::OptionalDuration& loopTimeoutDuration,
const nn::OptionalDuration& timeoutDurationAfterFence) const override;
nn::GeneralResult<nn::SharedBurst> configureExecutionBurst() const override;
std::any getUnderlyingResource() const override;
private:

View File

@@ -150,6 +150,10 @@ nn::DeviceType Device::getType() const {
return kDeviceType;
}
bool Device::isUpdatable() const {
return false;
}
const std::vector<nn::Extension>& Device::getSupportedExtensions() const {
return kExtensions;
}

View File

@@ -29,6 +29,7 @@
#include <nnapi/Result.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/hal/1.0/Burst.h>
#include <nnapi/hal/1.2/Conversions.h>
#include <nnapi/hal/CommonUtils.h>
#include <nnapi/hal/HandleError.h>
@@ -197,6 +198,10 @@ PreparedModel::executeFenced(const nn::Request& request, const std::vector<nn::S
return std::make_pair(std::move(syncFence), std::move(callback));
}
nn::GeneralResult<nn::SharedBurst> PreparedModel::configureExecutionBurst() const {
return V1_0::utils::Burst::create(shared_from_this());
}
std::any PreparedModel::getUnderlyingResource() const {
sp<V1_3::IPreparedModel> resource = kPreparedModel;
return resource;

View File

@@ -0,0 +1,40 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_UTILS_COMMON_INVALID_BURST_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_UTILS_COMMON_INVALID_BURST_H
#include <nnapi/IBurst.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <memory>
#include <optional>
#include <utility>
namespace android::hardware::neuralnetworks::utils {
class InvalidBurst final : public nn::IBurst {
public:
OptionalCacheHold cacheMemory(const nn::Memory& memory) const override;
nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> execute(
const nn::Request& request, nn::MeasureTiming measure) const override;
};
} // namespace android::hardware::neuralnetworks::utils
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_UTILS_COMMON_INVALID_BURST_H

View File

@@ -32,7 +32,7 @@ namespace android::hardware::neuralnetworks::utils {
class InvalidDevice final : public nn::IDevice {
public:
InvalidDevice(std::string name, std::string versionString, nn::Version featureLevel,
nn::DeviceType type, std::vector<nn::Extension> extensions,
nn::DeviceType type, bool isUpdatable, std::vector<nn::Extension> extensions,
nn::Capabilities capabilities,
std::pair<uint32_t, uint32_t> numberOfCacheFilesNeeded);
@@ -40,6 +40,7 @@ class InvalidDevice final : public nn::IDevice {
const std::string& getVersionString() const override;
nn::Version getFeatureLevel() const override;
nn::DeviceType getType() const override;
bool isUpdatable() const override;
const std::vector<nn::Extension>& getSupportedExtensions() const override;
const nn::Capabilities& getCapabilities() const override;
std::pair<uint32_t, uint32_t> getNumberOfCacheFilesNeeded() const override;
@@ -70,6 +71,7 @@ class InvalidDevice final : public nn::IDevice {
const std::string kVersionString;
const nn::Version kFeatureLevel;
const nn::DeviceType kType;
const bool kIsUpdatable;
const std::vector<nn::Extension> kExtensions;
const nn::Capabilities kCapabilities;
const std::pair<uint32_t, uint32_t> kNumberOfCacheFilesNeeded;

View File

@@ -40,6 +40,8 @@ class InvalidPreparedModel final : public nn::IPreparedModel {
const nn::OptionalDuration& loopTimeoutDuration,
const nn::OptionalDuration& timeoutDurationAfterFence) const override;
nn::GeneralResult<nn::SharedBurst> configureExecutionBurst() const override;
std::any getUnderlyingResource() const override;
};

View File

@@ -0,0 +1,60 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_UTILS_COMMON_RESILIENT_BURST_H
#define ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_UTILS_COMMON_RESILIENT_BURST_H
#include <android-base/thread_annotations.h>
#include <nnapi/IBurst.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <functional>
#include <memory>
#include <mutex>
#include <optional>
#include <utility>
namespace android::hardware::neuralnetworks::utils {
class ResilientBurst final : public nn::IBurst,
public std::enable_shared_from_this<ResilientBurst> {
struct PrivateConstructorTag {};
public:
using Factory = std::function<nn::GeneralResult<nn::SharedBurst>()>;
static nn::GeneralResult<std::shared_ptr<const ResilientBurst>> create(Factory makeBurst);
ResilientBurst(PrivateConstructorTag tag, Factory makeBurst, nn::SharedBurst burst);
nn::SharedBurst getBurst() const;
nn::GeneralResult<nn::SharedBurst> recover(const nn::IBurst* failingBurst) const;
OptionalCacheHold cacheMemory(const nn::Memory& memory) const override;
nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> execute(
const nn::Request& request, nn::MeasureTiming measure) const override;
private:
const Factory kMakeBurst;
mutable std::mutex mMutex;
mutable nn::SharedBurst mBurst GUARDED_BY(mMutex);
};
} // namespace android::hardware::neuralnetworks::utils
#endif // ANDROID_HARDWARE_INTERFACES_NEURALNETWORKS_UTILS_COMMON_RESILIENT_BURST_H

View File

@@ -53,6 +53,7 @@ class ResilientDevice final : public nn::IDevice,
const std::string& getVersionString() const override;
nn::Version getFeatureLevel() const override;
nn::DeviceType getType() const override;
bool isUpdatable() const override;
const std::vector<nn::Extension>& getSupportedExtensions() const override;
const nn::Capabilities& getCapabilities() const override;
std::pair<uint32_t, uint32_t> getNumberOfCacheFilesNeeded() const override;

View File

@@ -30,7 +30,8 @@
namespace android::hardware::neuralnetworks::utils {
class ResilientPreparedModel final : public nn::IPreparedModel {
class ResilientPreparedModel final : public nn::IPreparedModel,
public std::enable_shared_from_this<ResilientPreparedModel> {
struct PrivateConstructorTag {};
public:
@@ -57,9 +58,14 @@ class ResilientPreparedModel final : public nn::IPreparedModel {
const nn::OptionalDuration& loopTimeoutDuration,
const nn::OptionalDuration& timeoutDurationAfterFence) const override;
nn::GeneralResult<nn::SharedBurst> configureExecutionBurst() const override;
std::any getUnderlyingResource() const override;
private:
bool isValidInternal() const EXCLUDES(mMutex);
nn::GeneralResult<nn::SharedBurst> configureExecutionBurstInternal() const;
const Factory kMakePreparedModel;
mutable std::mutex mMutex;
mutable nn::SharedPreparedModel mPreparedModel GUARDED_BY(mMutex);

View File

@@ -0,0 +1,38 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "InvalidBurst.h"
#include <nnapi/IBurst.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <memory>
#include <optional>
#include <utility>
namespace android::hardware::neuralnetworks::utils {
InvalidBurst::OptionalCacheHold InvalidBurst::cacheMemory(const nn::Memory& /*memory*/) const {
return nullptr;
}
nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> InvalidBurst::execute(
const nn::Request& /*request*/, nn::MeasureTiming /*measure*/) const {
return NN_ERROR() << "InvalidBurst";
}
} // namespace android::hardware::neuralnetworks::utils

View File

@@ -32,13 +32,14 @@
namespace android::hardware::neuralnetworks::utils {
InvalidDevice::InvalidDevice(std::string name, std::string versionString, nn::Version featureLevel,
nn::DeviceType type, std::vector<nn::Extension> extensions,
nn::Capabilities capabilities,
nn::DeviceType type, bool isUpdatable,
std::vector<nn::Extension> extensions, nn::Capabilities capabilities,
std::pair<uint32_t, uint32_t> numberOfCacheFilesNeeded)
: kName(std::move(name)),
kVersionString(std::move(versionString)),
kFeatureLevel(featureLevel),
kType(type),
kIsUpdatable(isUpdatable),
kExtensions(std::move(extensions)),
kCapabilities(std::move(capabilities)),
kNumberOfCacheFilesNeeded(numberOfCacheFilesNeeded) {}
@@ -59,6 +60,10 @@ nn::DeviceType InvalidDevice::getType() const {
return kType;
}
bool InvalidDevice::isUpdatable() const {
return kIsUpdatable;
}
const std::vector<nn::Extension>& InvalidDevice::getSupportedExtensions() const {
return kExtensions;
}

View File

@@ -42,6 +42,10 @@ InvalidPreparedModel::executeFenced(
return NN_ERROR() << "InvalidPreparedModel";
}
nn::GeneralResult<nn::SharedBurst> InvalidPreparedModel::configureExecutionBurst() const {
return NN_ERROR() << "InvalidPreparedModel";
}
std::any InvalidPreparedModel::getUnderlyingResource() const {
return {};
}

View File

@@ -0,0 +1,109 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ResilientBurst.h"
#include <android-base/logging.h>
#include <android-base/thread_annotations.h>
#include <nnapi/IBurst.h>
#include <nnapi/Result.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <functional>
#include <memory>
#include <mutex>
#include <optional>
#include <utility>
namespace android::hardware::neuralnetworks::utils {
namespace {
template <typename FnType>
auto protect(const ResilientBurst& resilientBurst, const FnType& fn)
-> decltype(fn(*resilientBurst.getBurst())) {
auto burst = resilientBurst.getBurst();
auto result = fn(*burst);
// Immediately return if burst is not dead.
if (result.has_value() || result.error().code != nn::ErrorStatus::DEAD_OBJECT) {
return result;
}
// Attempt recovery and return if it fails.
auto maybeBurst = resilientBurst.recover(burst.get());
if (!maybeBurst.has_value()) {
auto [resultErrorMessage, resultErrorCode, resultOutputShapes] = std::move(result).error();
const auto& [recoveryErrorMessage, recoveryErrorCode] = maybeBurst.error();
return nn::error(resultErrorCode, std::move(resultOutputShapes))
<< resultErrorMessage << ", and failed to recover dead burst object with error "
<< recoveryErrorCode << ": " << recoveryErrorMessage;
}
burst = std::move(maybeBurst).value();
return fn(*burst);
}
} // namespace
nn::GeneralResult<std::shared_ptr<const ResilientBurst>> ResilientBurst::create(Factory makeBurst) {
if (makeBurst == nullptr) {
return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT)
<< "utils::ResilientBurst::create must have non-empty makeBurst";
}
auto burst = NN_TRY(makeBurst());
CHECK(burst != nullptr);
return std::make_shared<ResilientBurst>(PrivateConstructorTag{}, std::move(makeBurst),
std::move(burst));
}
ResilientBurst::ResilientBurst(PrivateConstructorTag /*tag*/, Factory makeBurst,
nn::SharedBurst burst)
: kMakeBurst(std::move(makeBurst)), mBurst(std::move(burst)) {
CHECK(kMakeBurst != nullptr);
CHECK(mBurst != nullptr);
}
nn::SharedBurst ResilientBurst::getBurst() const {
std::lock_guard guard(mMutex);
return mBurst;
}
nn::GeneralResult<nn::SharedBurst> ResilientBurst::recover(const nn::IBurst* failingBurst) const {
std::lock_guard guard(mMutex);
// Another caller updated the failing burst.
if (mBurst.get() != failingBurst) {
return mBurst;
}
mBurst = NN_TRY(kMakeBurst());
return mBurst;
}
ResilientBurst::OptionalCacheHold ResilientBurst::cacheMemory(const nn::Memory& memory) const {
return getBurst()->cacheMemory(memory);
}
nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> ResilientBurst::execute(
const nn::Request& request, nn::MeasureTiming measure) const {
const auto fn = [&request, measure](const nn::IBurst& burst) {
return burst.execute(request, measure);
};
return protect(*this, fn);
}
} // namespace android::hardware::neuralnetworks::utils

View File

@@ -122,12 +122,14 @@ nn::GeneralResult<nn::SharedDevice> ResilientDevice::recover(const nn::IDevice*
};
if (compare(&IDevice::getName) || compare(&IDevice::getVersionString) ||
compare(&IDevice::getFeatureLevel) || compare(&IDevice::getType) ||
compare(&IDevice::getSupportedExtensions) || compare(&IDevice::getCapabilities)) {
compare(&IDevice::isUpdatable) || compare(&IDevice::getSupportedExtensions) ||
compare(&IDevice::getCapabilities)) {
LOG(ERROR) << "Recovered device has different metadata than what is cached. Marking "
"IDevice object as invalid.";
device = std::make_shared<const InvalidDevice>(
kName, kVersionString, mDevice->getFeatureLevel(), mDevice->getType(), kExtensions,
kCapabilities, mDevice->getNumberOfCacheFilesNeeded());
kName, kVersionString, mDevice->getFeatureLevel(), mDevice->getType(),
mDevice->isUpdatable(), kExtensions, kCapabilities,
mDevice->getNumberOfCacheFilesNeeded());
mIsValid = false;
}
@@ -151,6 +153,10 @@ nn::DeviceType ResilientDevice::getType() const {
return getDevice()->getType();
}
bool ResilientDevice::isUpdatable() const {
return getDevice()->isUpdatable();
}
const std::vector<nn::Extension>& ResilientDevice::getSupportedExtensions() const {
return kExtensions;
}

View File

@@ -16,6 +16,9 @@
#include "ResilientPreparedModel.h"
#include "InvalidBurst.h"
#include "ResilientBurst.h"
#include <android-base/logging.h>
#include <android-base/thread_annotations.h>
#include <nnapi/IPreparedModel.h>
@@ -124,8 +127,35 @@ ResilientPreparedModel::executeFenced(const nn::Request& request,
return protect(*this, fn);
}
nn::GeneralResult<nn::SharedBurst> ResilientPreparedModel::configureExecutionBurst() const {
#if 0
auto self = shared_from_this();
ResilientBurst::Factory makeBurst =
[preparedModel = std::move(self)]() -> nn::GeneralResult<nn::SharedBurst> {
return preparedModel->configureExecutionBurst();
};
return ResilientBurst::create(std::move(makeBurst));
#else
return configureExecutionBurstInternal();
#endif
}
std::any ResilientPreparedModel::getUnderlyingResource() const {
return getPreparedModel()->getUnderlyingResource();
}
bool ResilientPreparedModel::isValidInternal() const {
return true;
}
nn::GeneralResult<nn::SharedBurst> ResilientPreparedModel::configureExecutionBurstInternal() const {
if (!isValidInternal()) {
return std::make_shared<const InvalidBurst>();
}
const auto fn = [](const nn::IPreparedModel& preparedModel) {
return preparedModel.configureExecutionBurst();
};
return protect(*this, fn);
}
} // namespace android::hardware::neuralnetworks::utils

View File

@@ -29,6 +29,7 @@ class MockDevice final : public IDevice {
MOCK_METHOD(const std::string&, getVersionString, (), (const, override));
MOCK_METHOD(Version, getFeatureLevel, (), (const, override));
MOCK_METHOD(DeviceType, getType, (), (const, override));
MOCK_METHOD(bool, isUpdatable, (), (const, override));
MOCK_METHOD(const std::vector<Extension>&, getSupportedExtensions, (), (const, override));
MOCK_METHOD(const Capabilities&, getCapabilities, (), (const, override));
MOCK_METHOD((std::pair<uint32_t, uint32_t>), getNumberOfCacheFilesNeeded, (),

View File

@@ -35,6 +35,7 @@ class MockPreparedModel final : public IPreparedModel {
const OptionalDuration& loopTimeoutDuration,
const OptionalDuration& timeoutDurationAfterFence),
(const, override));
MOCK_METHOD(GeneralResult<SharedBurst>, configureExecutionBurst, (), (const, override));
MOCK_METHOD(std::any, getUnderlyingResource, (), (const, override));
};