Refactor NN API VTS tests and add v1.1 tests

- Create VtsHalNeuralnetworksTest_utils module to be shared between
    v1.x tests.
  - Split the existing tests into two categories: basic, and generated.
  - Created v1.1 VTS tests ensuring no regression in existing ML models.

Bug: 63911257
Test: mm
Test: NNAPI VTS tests pass on v1.0 and v1.1 sample drivers

Change-Id: Ic77c90a3a5bbd96b0ce2acd03764dde4b3034cc9
This commit is contained in:
Miao Wang
2018-02-05 17:26:54 -08:00
parent fe1192ecfc
commit a2d04c828e
14 changed files with 929 additions and 187 deletions

View File

@@ -14,22 +14,49 @@
// limitations under the License.
//
cc_test {
name: "VtsHalNeuralnetworksV1_0TargetTest",
cc_library_static {
name: "VtsHalNeuralnetworksTest_utils",
srcs: [
"Callbacks.cpp",
"GeneratedTestHarness.cpp",
"Models.cpp",
"VtsHalNeuralnetworksV1_0TargetTest.cpp",
"GeneratedTestHarness.cpp",
],
defaults: ["VtsHalTargetTestDefaults"],
export_include_dirs: ["."],
static_libs: [
"android.hardware.neuralnetworks@1.0",
"android.hardware.neuralnetworks@1.1",
"android.hidl.allocator@1.0",
"android.hidl.memory@1.0",
"libhidlmemory",
"libneuralnetworks_utils",
],
header_libs: [
"libneuralnetworks_headers",
"libneuralnetworks_generated_test_harness_headers",
"libneuralnetworks_generated_tests",
],
}
cc_test {
name: "VtsHalNeuralnetworksV1_0TargetTest",
srcs: [
"VtsHalNeuralnetworksV1_0.cpp",
"VtsHalNeuralnetworksV1_0BasicTest.cpp",
"VtsHalNeuralnetworksV1_0GeneratedTest.cpp",
],
defaults: ["VtsHalTargetTestDefaults"],
static_libs: [
"android.hardware.neuralnetworks@1.0",
"android.hardware.neuralnetworks@1.1",
"android.hidl.allocator@1.0",
"android.hidl.memory@1.0",
"libhidlmemory",
"libneuralnetworks_utils",
"VtsHalNeuralnetworksTest_utils",
],
header_libs: [
"libneuralnetworks_headers",
"libneuralnetworks_generated_test_harness_headers",
"libneuralnetworks_generated_tests",
],

View File

@@ -16,9 +16,15 @@
#include "Callbacks.h"
#include "TestHarness.h"
#include "VtsHalNeuralnetworksV1_0TargetTest.h"
#include "Utils.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.0/IDevice.h>
#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hidl/allocator/1.0/IAllocator.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
#include <iostream>
@@ -26,11 +32,6 @@
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_0 {
namespace vts {
namespace functional {
// allocator helper
hidl_memory allocateSharedMemory(int64_t size, const std::string& type = "ashmem");
namespace generated_tests {
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
@@ -64,54 +65,10 @@ void copy_back(MixedTyped* dst, const std::vector<RequestArgument>& ra, char* sr
// Top level driver for models and examples generated by test_generator.py
// Test driver for those generated from ml/nn/runtime/test/spec
void Execute(const sp<IDevice>& device, std::function<Model(void)> create_model,
std::function<bool(int)> is_ignored,
const std::vector<MixedTypedExampleType>& examples) {
void EvaluatePreparedModel(sp<IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
const std::vector<MixedTypedExampleType>& examples) {
const uint32_t INPUT = 0;
const uint32_t OUTPUT = 1;
Model model = create_model();
// see if service can handle model
ErrorStatus supportedStatus;
bool fullySupportsModel = false;
Return<void> supportedCall = device->getSupportedOperations(
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
supportedStatus = status;
ASSERT_NE(0ul, supported.size());
fullySupportsModel =
std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
});
ASSERT_TRUE(supportedCall.isOk());
ASSERT_EQ(ErrorStatus::NONE, supportedStatus);
// launch prepare model
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
// retrieve prepared model
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
if (fullySupportsModel) {
EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
} else {
EXPECT_TRUE(prepareReturnStatus == ErrorStatus::NONE ||
prepareReturnStatus == ErrorStatus::GENERAL_FAILURE);
}
// early termination if vendor service cannot fully prepare model
if (!fullySupportsModel && prepareReturnStatus == ErrorStatus::GENERAL_FAILURE) {
ASSERT_EQ(nullptr, preparedModel.get());
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"prepare model that it does not support.";
std::cout << "[ ] Early termination of test because vendor service cannot "
"prepare model that it does not support."
<< std::endl;
return;
}
ASSERT_NE(nullptr, preparedModel.get());
int example_no = 1;
for (auto& example : examples) {
@@ -167,8 +124,8 @@ void Execute(const sp<IDevice>& device, std::function<Model(void)> create_model,
offset += i.location.length;
}
}
std::vector<hidl_memory> pools = {allocateSharedMemory(inputSize),
allocateSharedMemory(outputSize)};
std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
nn::allocateSharedMemory(outputSize)};
ASSERT_NE(0ull, pools[INPUT].size());
ASSERT_NE(0ull, pools[OUTPUT].size());
@@ -221,11 +178,107 @@ void Execute(const sp<IDevice>& device, std::function<Model(void)> create_model,
}
}
void Execute(sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> create_model,
std::function<bool(int)> is_ignored,
const std::vector<MixedTypedExampleType>& examples) {
V1_0::Model model = create_model();
// see if service can handle model
bool fullySupportsModel = false;
ErrorStatus supportedStatus;
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<void> supportedCall = device->getSupportedOperations(
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
supportedStatus = status;
ASSERT_NE(0ul, supported.size());
fullySupportsModel =
std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
});
ASSERT_TRUE(supportedCall.isOk());
ASSERT_EQ(ErrorStatus::NONE, supportedStatus);
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
// retrieve prepared model
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
if (fullySupportsModel) {
EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
} else {
EXPECT_TRUE(prepareReturnStatus == ErrorStatus::NONE ||
prepareReturnStatus == ErrorStatus::GENERAL_FAILURE);
}
// early termination if vendor service cannot fully prepare model
if (!fullySupportsModel && prepareReturnStatus == ErrorStatus::GENERAL_FAILURE) {
ASSERT_EQ(nullptr, preparedModel.get());
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"prepare model that it does not support.";
std::cout << "[ ] Early termination of test because vendor service cannot "
"prepare model that it does not support."
<< std::endl;
return;
}
ASSERT_NE(nullptr, preparedModel.get());
EvaluatePreparedModel(preparedModel, is_ignored, examples);
}
void Execute(sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> create_model,
std::function<bool(int)> is_ignored,
const std::vector<MixedTypedExampleType>& examples) {
V1_1::Model model = create_model();
// see if service can handle model
bool fullySupportsModel = false;
ErrorStatus supportedStatus;
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<void> supportedCall = device->getSupportedOperations_1_1(
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
supportedStatus = status;
ASSERT_NE(0ul, supported.size());
fullySupportsModel =
std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
});
ASSERT_TRUE(supportedCall.isOk());
ASSERT_EQ(ErrorStatus::NONE, supportedStatus);
Return<ErrorStatus> prepareLaunchStatus =
device->prepareModel_1_1(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
// retrieve prepared model
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
if (fullySupportsModel) {
EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
} else {
EXPECT_TRUE(prepareReturnStatus == ErrorStatus::NONE ||
prepareReturnStatus == ErrorStatus::GENERAL_FAILURE);
}
// early termination if vendor service cannot fully prepare model
if (!fullySupportsModel && prepareReturnStatus == ErrorStatus::GENERAL_FAILURE) {
ASSERT_EQ(nullptr, preparedModel.get());
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"prepare model that it does not support.";
std::cout << "[ ] Early termination of test because vendor service cannot "
"prepare model that it does not support."
<< std::endl;
return;
}
ASSERT_NE(nullptr, preparedModel.get());
EvaluatePreparedModel(preparedModel, is_ignored, examples);
}
} // namespace generated_tests
} // namespace functional
} // namespace vts
} // namespace V1_0
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View File

@@ -17,19 +17,22 @@
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "Models.h"
#include "Utils.h"
#include <android-base/logging.h>
#include <android/hidl/allocator/1.0/IAllocator.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
#include <vector>
using ::android::sp;
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_0 {
namespace vts {
namespace functional {
// create a valid model
Model createValidTestModel() {
V1_1::Model createValidTestModel_1_1() {
const std::vector<float> operand2Data = {5.0f, 6.0f, 7.0f, 8.0f};
const uint32_t size = operand2Data.size() * sizeof(float);
@@ -103,39 +106,34 @@ Model createValidTestModel() {
}
// create first invalid model
Model createInvalidTestModel1() {
Model model = createValidTestModel();
V1_1::Model createInvalidTestModel1_1_1() {
Model model = createValidTestModel_1_1();
model.operations[0].type = static_cast<OperationType>(0xDEADBEEF); /* INVALID */
return model;
}
// create second invalid model
Model createInvalidTestModel2() {
Model model = createValidTestModel();
V1_1::Model createInvalidTestModel2_1_1() {
Model model = createValidTestModel_1_1();
const uint32_t operand1 = 0;
const uint32_t operand5 = 4; // INVALID OPERAND
model.inputIndexes = std::vector<uint32_t>({operand1, operand5 /* INVALID OPERAND */});
return model;
}
// allocator helper
hidl_memory allocateSharedMemory(int64_t size, const std::string& type = "ashmem") {
hidl_memory memory;
V1_0::Model createValidTestModel_1_0() {
V1_1::Model model = createValidTestModel_1_1();
return nn::convertToV1_0(model);
}
sp<IAllocator> allocator = IAllocator::getService(type);
if (!allocator.get()) {
return {};
}
V1_0::Model createInvalidTestModel1_1_0() {
V1_1::Model model = createInvalidTestModel1_1_1();
return nn::convertToV1_0(model);
}
Return<void> ret = allocator->allocate(size, [&](bool success, const hidl_memory& mem) {
ASSERT_TRUE(success);
memory = mem;
});
if (!ret.isOk()) {
return {};
}
return memory;
V1_0::Model createInvalidTestModel2_1_0() {
V1_1::Model model = createInvalidTestModel2_1_1();
return nn::convertToV1_0(model);
}
// create a valid request
@@ -154,8 +152,8 @@ Request createValidTestRequest() {
std::vector<RequestArgument> outputs = {{
.location = {.poolIndex = OUTPUT, .offset = 0, .length = outputSize}, .dimensions = {},
}};
std::vector<hidl_memory> pools = {allocateSharedMemory(inputSize),
allocateSharedMemory(outputSize)};
std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
nn::allocateSharedMemory(outputSize)};
if (pools[INPUT].size() == 0 || pools[OUTPUT].size() == 0) {
return {};
}
@@ -199,9 +197,6 @@ Request createInvalidTestRequest2() {
return request;
}
} // namespace functional
} // namespace vts
} // namespace V1_0
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View File

@@ -16,28 +16,27 @@
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworksV1_0TargetTest.h"
#include <android/hardware/neuralnetworks/1.1/types.h>
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_0 {
namespace vts {
namespace functional {
// create the model
Model createValidTestModel();
Model createInvalidTestModel1();
Model createInvalidTestModel2();
// create V1_1 model
V1_1::Model createValidTestModel_1_1();
V1_1::Model createInvalidTestModel1_1_1();
V1_1::Model createInvalidTestModel2_1_1();
// create V1_0 model
V1_0::Model createValidTestModel_1_0();
V1_0::Model createInvalidTestModel1_1_0();
V1_0::Model createInvalidTestModel2_1_0();
// create the request
Request createValidTestRequest();
Request createInvalidTestRequest1();
Request createInvalidTestRequest2();
V1_0::Request createValidTestRequest();
V1_0::Request createInvalidTestRequest1();
V1_0::Request createInvalidTestRequest2();
} // namespace functional
} // namespace vts
} // namespace V1_0
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View File

@@ -0,0 +1,73 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworksV1_0.h"
#include "Utils.h"
#include <android-base/logging.h>
using ::android::hardware::hidl_memory;
using ::android::hidl::allocator::V1_0::IAllocator;
using ::android::hidl::memory::V1_0::IMemory;
using ::android::sp;
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_0 {
namespace vts {
namespace functional {
// allocator helper
hidl_memory allocateSharedMemory(int64_t size) {
return nn::allocateSharedMemory(size);
}
// A class for test environment setup
NeuralnetworksHidlEnvironment::NeuralnetworksHidlEnvironment() {}
NeuralnetworksHidlEnvironment::~NeuralnetworksHidlEnvironment() {}
NeuralnetworksHidlEnvironment* NeuralnetworksHidlEnvironment::getInstance() {
// This has to return a "new" object because it is freed inside
// ::testing::AddGlobalTestEnvironment when the gtest is being torn down
static NeuralnetworksHidlEnvironment* instance = new NeuralnetworksHidlEnvironment();
return instance;
}
void NeuralnetworksHidlEnvironment::registerTestServices() {
registerTestService<V1_0::IDevice>();
}
// The main test class for NEURALNETWORK HIDL HAL.
NeuralnetworksHidlTest::~NeuralnetworksHidlTest() {}
void NeuralnetworksHidlTest::SetUp() {
device = ::testing::VtsHalHidlTargetTestBase::getService<V1_0::IDevice>(
NeuralnetworksHidlEnvironment::getInstance());
ASSERT_NE(nullptr, device.get());
}
void NeuralnetworksHidlTest::TearDown() {}
} // namespace functional
} // namespace vts
} // namespace V1_0
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View File

@@ -1,5 +1,5 @@
/*
* Copyright (C) 2017 The Android Open Source Project
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -29,23 +29,6 @@
#include <gtest/gtest.h>
#include <string>
using ::android::hardware::neuralnetworks::V1_0::IDevice;
using ::android::hardware::neuralnetworks::V1_0::IPreparedModel;
using ::android::hardware::neuralnetworks::V1_0::Capabilities;
using ::android::hardware::neuralnetworks::V1_0::DeviceStatus;
using ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc;
using ::android::hardware::neuralnetworks::V1_0::Model;
using ::android::hardware::neuralnetworks::V1_0::OperationType;
using ::android::hardware::neuralnetworks::V1_0::PerformanceInfo;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::hardware::hidl_memory;
using ::android::hardware::hidl_string;
using ::android::hardware::hidl_vec;
using ::android::hidl::allocator::V1_0::IAllocator;
using ::android::hidl::memory::V1_0::IMemory;
using ::android::sp;
namespace android {
namespace hardware {
namespace neuralnetworks {
@@ -53,6 +36,8 @@ namespace V1_0 {
namespace vts {
namespace functional {
hidl_memory allocateSharedMemory(int64_t size);
// A class for test environment setup
class NeuralnetworksHidlEnvironment : public ::testing::VtsHalHidlTargetTestEnvBase {
NeuralnetworksHidlEnvironment();
@@ -74,25 +59,22 @@ class NeuralnetworksHidlTest : public ::testing::VtsHalHidlTargetTestBase {
void SetUp() override;
void TearDown() override;
sp<IPreparedModel> doPrepareModelShortcut();
sp<IDevice> device;
sp<V1_0::IDevice> device;
};
} // namespace functional
} // namespace vts
// pretty-print values for error messages
template<typename CharT, typename Traits>
template <typename CharT, typename Traits>
::std::basic_ostream<CharT, Traits>& operator<<(::std::basic_ostream<CharT, Traits>& os,
ErrorStatus errorStatus) {
V1_0::ErrorStatus errorStatus) {
return os << toString(errorStatus);
}
template<typename CharT, typename Traits>
template <typename CharT, typename Traits>
::std::basic_ostream<CharT, Traits>& operator<<(::std::basic_ostream<CharT, Traits>& os,
DeviceStatus deviceStatus) {
V1_0::DeviceStatus deviceStatus) {
return os << toString(deviceStatus);
}

View File

@@ -1,5 +1,5 @@
/*
* Copyright (C) 2017 The Android Open Source Project
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -16,7 +16,7 @@
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworksV1_0TargetTest.h"
#include "VtsHalNeuralnetworksV1_0.h"
#include "Callbacks.h"
#include "Models.h"
@@ -26,51 +26,34 @@
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
using ::android::hardware::neuralnetworks::V1_0::IDevice;
using ::android::hardware::neuralnetworks::V1_0::IPreparedModel;
using ::android::hardware::neuralnetworks::V1_0::Capabilities;
using ::android::hardware::neuralnetworks::V1_0::DeviceStatus;
using ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc;
using ::android::hardware::neuralnetworks::V1_0::Model;
using ::android::hardware::neuralnetworks::V1_0::OperationType;
using ::android::hardware::neuralnetworks::V1_0::PerformanceInfo;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::hardware::hidl_memory;
using ::android::hardware::hidl_string;
using ::android::hardware::hidl_vec;
using ::android::hidl::allocator::V1_0::IAllocator;
using ::android::hidl::memory::V1_0::IMemory;
using ::android::sp;
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_0 {
namespace vts {
namespace functional {
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
using ::generated_tests::MixedTypedExampleType;
namespace generated_tests {
extern void Execute(const sp<IDevice>&, std::function<Model(void)>, std::function<bool(int)>,
const std::vector<MixedTypedExampleType>&);
}
// A class for test environment setup
NeuralnetworksHidlEnvironment::NeuralnetworksHidlEnvironment() {}
NeuralnetworksHidlEnvironment::~NeuralnetworksHidlEnvironment() {}
NeuralnetworksHidlEnvironment* NeuralnetworksHidlEnvironment::getInstance() {
// This has to return a "new" object because it is freed inside
// ::testing::AddGlobalTestEnvironment when the gtest is being torn down
static NeuralnetworksHidlEnvironment* instance = new NeuralnetworksHidlEnvironment();
return instance;
}
void NeuralnetworksHidlEnvironment::registerTestServices() {
registerTestService<IDevice>();
}
// The main test class for NEURALNETWORK HIDL HAL.
NeuralnetworksHidlTest::~NeuralnetworksHidlTest() {}
void NeuralnetworksHidlTest::SetUp() {
device = ::testing::VtsHalHidlTargetTestBase::getService<IDevice>(
NeuralnetworksHidlEnvironment::getInstance());
ASSERT_NE(nullptr, device.get());
}
void NeuralnetworksHidlTest::TearDown() {}
sp<IPreparedModel> NeuralnetworksHidlTest::doPrepareModelShortcut() {
Model model = createValidTestModel();
inline sp<IPreparedModel> doPrepareModelShortcut(sp<IDevice>& device) {
Model model = createValidTestModel_1_0();
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
if (preparedModelCallback == nullptr) {
@@ -116,7 +99,7 @@ TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) {
// supported operations positive test
TEST_F(NeuralnetworksHidlTest, SupportedOperationsPositiveTest) {
Model model = createValidTestModel();
Model model = createValidTestModel_1_0();
Return<void> ret = device->getSupportedOperations(
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
EXPECT_EQ(ErrorStatus::NONE, status);
@@ -127,7 +110,7 @@ TEST_F(NeuralnetworksHidlTest, SupportedOperationsPositiveTest) {
// supported operations negative test 1
TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest1) {
Model model = createInvalidTestModel1();
Model model = createInvalidTestModel1_1_0();
Return<void> ret = device->getSupportedOperations(
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
@@ -138,7 +121,7 @@ TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest1) {
// supported operations negative test 2
TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest2) {
Model model = createInvalidTestModel2();
Model model = createInvalidTestModel2_1_0();
Return<void> ret = device->getSupportedOperations(
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
@@ -149,7 +132,7 @@ TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest2) {
// prepare simple model positive test
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelPositiveTest) {
Model model = createValidTestModel();
Model model = createValidTestModel_1_0();
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
@@ -165,7 +148,7 @@ TEST_F(NeuralnetworksHidlTest, SimplePrepareModelPositiveTest) {
// prepare simple model negative test 1
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest1) {
Model model = createInvalidTestModel1();
Model model = createInvalidTestModel1_1_0();
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
@@ -181,7 +164,7 @@ TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest1) {
// prepare simple model negative test 2
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest2) {
Model model = createInvalidTestModel2();
Model model = createInvalidTestModel2_1_0();
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
@@ -201,7 +184,7 @@ TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphPositiveTest) {
std::vector<float> expectedData = {6.0f, 8.0f, 10.0f, 12.0f};
const uint32_t OUTPUT = 1;
sp<IPreparedModel> preparedModel = doPrepareModelShortcut();
sp<IPreparedModel> preparedModel = doPrepareModelShortcut(device);
ASSERT_NE(nullptr, preparedModel.get());
Request request = createValidTestRequest();
@@ -235,7 +218,7 @@ TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphPositiveTest) {
// execute simple graph negative test 1
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest1) {
sp<IPreparedModel> preparedModel = doPrepareModelShortcut();
sp<IPreparedModel> preparedModel = doPrepareModelShortcut(device);
ASSERT_NE(nullptr, preparedModel.get());
Request request = createInvalidTestRequest1();
@@ -252,7 +235,7 @@ TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest1) {
// execute simple graph negative test 2
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest2) {
sp<IPreparedModel> preparedModel = doPrepareModelShortcut();
sp<IPreparedModel> preparedModel = doPrepareModelShortcut(device);
ASSERT_NE(nullptr, preparedModel.get());
Request request = createInvalidTestRequest2();
@@ -267,16 +250,6 @@ TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest2) {
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
}
// Mixed-typed examples
typedef MixedTypedExampleType MixedTypedExample;
// in frameworks/ml/nn/runtime/tests/generated/
#include "all_generated_vts_tests.cpp"
// TODO: Add tests for execution failure, or wait_for/wait_until timeout.
// Discussion:
// https://googleplex-android-review.git.corp.google.com/#/c/platform/hardware/interfaces/+/2654636/5/neuralnetworks/1.0/vts/functional/VtsHalNeuralnetworksV1_0TargetTest.cpp@222
} // namespace functional
} // namespace vts
} // namespace V1_0

View File

@@ -0,0 +1,72 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworksV1_0.h"
#include "Callbacks.h"
#include "TestHarness.h"
#include <android-base/logging.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
using ::android::hardware::neuralnetworks::V1_0::IDevice;
using ::android::hardware::neuralnetworks::V1_0::IPreparedModel;
using ::android::hardware::neuralnetworks::V1_0::Capabilities;
using ::android::hardware::neuralnetworks::V1_0::DeviceStatus;
using ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc;
using ::android::hardware::neuralnetworks::V1_0::Model;
using ::android::hardware::neuralnetworks::V1_0::OperationType;
using ::android::hardware::neuralnetworks::V1_0::PerformanceInfo;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::hardware::hidl_memory;
using ::android::hardware::hidl_string;
using ::android::hardware::hidl_vec;
using ::android::hidl::allocator::V1_0::IAllocator;
using ::android::hidl::memory::V1_0::IMemory;
using ::android::sp;
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace generated_tests {
using ::generated_tests::MixedTypedExampleType;
extern void Execute(sp<IDevice>&, std::function<Model(void)>, std::function<bool(int)>,
const std::vector<MixedTypedExampleType>&);
} // namespace generated_tests
namespace V1_0 {
namespace vts {
namespace functional {
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
// Mixed-typed examples
typedef generated_tests::MixedTypedExampleType MixedTypedExample;
// in frameworks/ml/nn/runtime/tests/generated/
#include "all_generated_V1_0_vts_tests.cpp"
} // namespace functional
} // namespace vts
} // namespace V1_0
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View File

@@ -0,0 +1,10 @@
# Neuralnetworks team
butlermichael@google.com
dgross@google.com
jeanluc@google.com
miaowang@google.com
yangni@google.com
# VTS team
yim@google.com
yuexima@google.com

View File

@@ -0,0 +1,39 @@
//
// Copyright (C) 2018 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
cc_test {
name: "VtsHalNeuralnetworksV1_1TargetTest",
srcs: [
"VtsHalNeuralnetworksV1_1.cpp",
"VtsHalNeuralnetworksV1_1BasicTest.cpp",
"VtsHalNeuralnetworksV1_1GeneratedTest.cpp",
],
defaults: ["VtsHalTargetTestDefaults"],
static_libs: [
"android.hardware.neuralnetworks@1.0",
"android.hardware.neuralnetworks@1.1",
"android.hidl.allocator@1.0",
"android.hidl.memory@1.0",
"libhidlmemory",
"libneuralnetworks_utils",
"VtsHalNeuralnetworksTest_utils",
],
header_libs: [
"libneuralnetworks_headers",
"libneuralnetworks_generated_test_harness_headers",
"libneuralnetworks_generated_tests",
],
}

View File

@@ -0,0 +1,74 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworksV1_1.h"
#include "Utils.h"
#include <android-base/logging.h>
#include <hidlmemory/mapping.h>
using ::android::hardware::hidl_memory;
using ::android::hidl::allocator::V1_0::IAllocator;
using ::android::hidl::memory::V1_0::IMemory;
using ::android::sp;
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_1 {
namespace vts {
namespace functional {
// allocator helper
hidl_memory allocateSharedMemory(int64_t size) {
return nn::allocateSharedMemory(size);
}
// A class for test environment setup
NeuralnetworksHidlEnvironment::NeuralnetworksHidlEnvironment() {}
NeuralnetworksHidlEnvironment::~NeuralnetworksHidlEnvironment() {}
NeuralnetworksHidlEnvironment* NeuralnetworksHidlEnvironment::getInstance() {
// This has to return a "new" object because it is freed inside
// ::testing::AddGlobalTestEnvironment when the gtest is being torn down
static NeuralnetworksHidlEnvironment* instance = new NeuralnetworksHidlEnvironment();
return instance;
}
void NeuralnetworksHidlEnvironment::registerTestServices() {
registerTestService<V1_1::IDevice>();
}
// The main test class for NEURALNETWORK HIDL HAL.
NeuralnetworksHidlTest::~NeuralnetworksHidlTest() {}
void NeuralnetworksHidlTest::SetUp() {
device = ::testing::VtsHalHidlTargetTestBase::getService<V1_1::IDevice>(
NeuralnetworksHidlEnvironment::getInstance());
ASSERT_NE(nullptr, device.get());
}
void NeuralnetworksHidlTest::TearDown() {}
} // namespace functional
} // namespace vts
} // namespace V1_1
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View File

@@ -0,0 +1,85 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef VTS_HAL_NEURALNETWORKS_V1_1_H
#define VTS_HAL_NEURALNETWORKS_V1_1_H
#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
#include <android/hardware/neuralnetworks/1.1/IDevice.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hidl/allocator/1.0/IAllocator.h>
#include <VtsHalHidlTargetTestBase.h>
#include <VtsHalHidlTargetTestEnvBase.h>
#include <gtest/gtest.h>
#include <string>
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_1 {
namespace vts {
namespace functional {
hidl_memory allocateSharedMemory(int64_t size);
// A class for test environment setup
class NeuralnetworksHidlEnvironment : public ::testing::VtsHalHidlTargetTestEnvBase {
NeuralnetworksHidlEnvironment();
NeuralnetworksHidlEnvironment(const NeuralnetworksHidlEnvironment&) = delete;
NeuralnetworksHidlEnvironment(NeuralnetworksHidlEnvironment&&) = delete;
NeuralnetworksHidlEnvironment& operator=(const NeuralnetworksHidlEnvironment&) = delete;
NeuralnetworksHidlEnvironment& operator=(NeuralnetworksHidlEnvironment&&) = delete;
public:
~NeuralnetworksHidlEnvironment() override;
static NeuralnetworksHidlEnvironment* getInstance();
void registerTestServices() override;
};
// The main test class for NEURALNETWORKS HIDL HAL.
class NeuralnetworksHidlTest : public ::testing::VtsHalHidlTargetTestBase {
public:
~NeuralnetworksHidlTest() override;
void SetUp() override;
void TearDown() override;
sp<V1_1::IDevice> device;
};
} // namespace functional
} // namespace vts
// pretty-print values for error messages
template <typename CharT, typename Traits>
::std::basic_ostream<CharT, Traits>& operator<<(::std::basic_ostream<CharT, Traits>& os,
V1_0::ErrorStatus errorStatus) {
return os << toString(errorStatus);
}
template <typename CharT, typename Traits>
::std::basic_ostream<CharT, Traits>& operator<<(::std::basic_ostream<CharT, Traits>& os,
V1_0::DeviceStatus deviceStatus) {
return os << toString(deviceStatus);
}
} // namespace V1_1
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
#endif // VTS_HAL_NEURALNETWORKS_V1_1_H

View File

@@ -0,0 +1,280 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworksV1_1.h"
#include "Callbacks.h"
#include "Models.h"
#include "TestHarness.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.1/IDevice.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
using ::android::hardware::neuralnetworks::V1_0::IPreparedModel;
using ::android::hardware::neuralnetworks::V1_0::Capabilities;
using ::android::hardware::neuralnetworks::V1_0::DeviceStatus;
using ::android::hardware::neuralnetworks::V1_0::ErrorStatus;
using ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc;
using ::android::hardware::neuralnetworks::V1_0::Operand;
using ::android::hardware::neuralnetworks::V1_0::OperandLifeTime;
using ::android::hardware::neuralnetworks::V1_0::OperandType;
using ::android::hardware::neuralnetworks::V1_0::Request;
using ::android::hardware::neuralnetworks::V1_1::IDevice;
using ::android::hardware::neuralnetworks::V1_1::Model;
using ::android::hardware::neuralnetworks::V1_1::Operation;
using ::android::hardware::neuralnetworks::V1_1::OperationType;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::hardware::hidl_memory;
using ::android::hardware::hidl_string;
using ::android::hardware::hidl_vec;
using ::android::hidl::allocator::V1_0::IAllocator;
using ::android::hidl::memory::V1_0::IMemory;
using ::android::sp;
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_1 {
namespace vts {
namespace functional {
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
inline sp<IPreparedModel> doPrepareModelShortcut(sp<IDevice>& device) {
Model model = createValidTestModel_1_1();
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
if (preparedModelCallback == nullptr) {
return nullptr;
}
Return<ErrorStatus> prepareLaunchStatus =
device->prepareModel_1_1(model, preparedModelCallback);
if (!prepareLaunchStatus.isOk() || prepareLaunchStatus != ErrorStatus::NONE) {
return nullptr;
}
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
if (prepareReturnStatus != ErrorStatus::NONE || preparedModel == nullptr) {
return nullptr;
}
return preparedModel;
}
// create device test
TEST_F(NeuralnetworksHidlTest, CreateDevice) {}
// status test
TEST_F(NeuralnetworksHidlTest, StatusTest) {
Return<DeviceStatus> status = device->getStatus();
ASSERT_TRUE(status.isOk());
EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
}
// initialization
TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) {
Return<void> ret =
device->getCapabilities([](ErrorStatus status, const Capabilities& capabilities) {
EXPECT_EQ(ErrorStatus::NONE, status);
EXPECT_LT(0.0f, capabilities.float32Performance.execTime);
EXPECT_LT(0.0f, capabilities.float32Performance.powerUsage);
EXPECT_LT(0.0f, capabilities.quantized8Performance.execTime);
EXPECT_LT(0.0f, capabilities.quantized8Performance.powerUsage);
});
EXPECT_TRUE(ret.isOk());
}
// supported operations positive test
TEST_F(NeuralnetworksHidlTest, SupportedOperationsPositiveTest) {
Model model = createValidTestModel_1_1();
Return<void> ret = device->getSupportedOperations_1_1(
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
EXPECT_EQ(ErrorStatus::NONE, status);
EXPECT_EQ(model.operations.size(), supported.size());
});
EXPECT_TRUE(ret.isOk());
}
// supported operations negative test 1
TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest1) {
Model model = createInvalidTestModel1_1_1();
Return<void> ret = device->getSupportedOperations_1_1(
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
(void)supported;
});
EXPECT_TRUE(ret.isOk());
}
// supported operations negative test 2
TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest2) {
Model model = createInvalidTestModel2_1_1();
Return<void> ret = device->getSupportedOperations_1_1(
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
(void)supported;
});
EXPECT_TRUE(ret.isOk());
}
// prepare simple model positive test
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelPositiveTest) {
Model model = createValidTestModel_1_1();
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus =
device->prepareModel_1_1(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
EXPECT_NE(nullptr, preparedModel.get());
}
// prepare simple model negative test 1
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest1) {
Model model = createInvalidTestModel1_1_1();
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus =
device->prepareModel_1_1(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
EXPECT_EQ(nullptr, preparedModel.get());
}
// prepare simple model negative test 2
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest2) {
Model model = createInvalidTestModel2_1_1();
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus =
device->prepareModel_1_1(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
EXPECT_EQ(nullptr, preparedModel.get());
}
// execute simple graph positive test
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphPositiveTest) {
std::vector<float> outputData = {-1.0f, -1.0f, -1.0f, -1.0f};
std::vector<float> expectedData = {6.0f, 8.0f, 10.0f, 12.0f};
const uint32_t OUTPUT = 1;
sp<IPreparedModel> preparedModel = doPrepareModelShortcut(device);
ASSERT_NE(nullptr, preparedModel.get());
Request request = createValidTestRequest();
auto postWork = [&] {
sp<IMemory> outputMemory = mapMemory(request.pools[OUTPUT]);
if (outputMemory == nullptr) {
return false;
}
float* outputPtr = reinterpret_cast<float*>(static_cast<void*>(outputMemory->getPointer()));
if (outputPtr == nullptr) {
return false;
}
outputMemory->read();
std::copy(outputPtr, outputPtr + outputData.size(), outputData.begin());
outputMemory->commit();
return true;
};
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
ASSERT_NE(nullptr, executionCallback.get());
executionCallback->on_finish(postWork);
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
ASSERT_TRUE(executeLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executeLaunchStatus));
executionCallback->wait();
ErrorStatus executionReturnStatus = executionCallback->getStatus();
EXPECT_EQ(ErrorStatus::NONE, executionReturnStatus);
EXPECT_EQ(expectedData, outputData);
}
// execute simple graph negative test 1
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest1) {
sp<IPreparedModel> preparedModel = doPrepareModelShortcut(device);
ASSERT_NE(nullptr, preparedModel.get());
Request request = createInvalidTestRequest1();
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
ASSERT_NE(nullptr, executionCallback.get());
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
ASSERT_TRUE(executeLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
executionCallback->wait();
ErrorStatus executionReturnStatus = executionCallback->getStatus();
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
}
// execute simple graph negative test 2
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest2) {
sp<IPreparedModel> preparedModel = doPrepareModelShortcut(device);
ASSERT_NE(nullptr, preparedModel.get());
Request request = createInvalidTestRequest2();
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
ASSERT_NE(nullptr, executionCallback.get());
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
ASSERT_TRUE(executeLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
executionCallback->wait();
ErrorStatus executionReturnStatus = executionCallback->getStatus();
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
}
} // namespace functional
} // namespace vts
} // namespace V1_1
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
using android::hardware::neuralnetworks::V1_1::vts::functional::NeuralnetworksHidlEnvironment;
int main(int argc, char** argv) {
::testing::AddGlobalTestEnvironment(NeuralnetworksHidlEnvironment::getInstance());
::testing::InitGoogleTest(&argc, argv);
NeuralnetworksHidlEnvironment::getInstance()->init(&argc, argv);
int status = RUN_ALL_TESTS();
return status;
}

View File

@@ -0,0 +1,80 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworksV1_1.h"
#include "Callbacks.h"
#include "TestHarness.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.1/IDevice.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
using ::android::hardware::neuralnetworks::V1_0::IPreparedModel;
using ::android::hardware::neuralnetworks::V1_0::Capabilities;
using ::android::hardware::neuralnetworks::V1_0::DeviceStatus;
using ::android::hardware::neuralnetworks::V1_0::ErrorStatus;
using ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc;
using ::android::hardware::neuralnetworks::V1_0::Operand;
using ::android::hardware::neuralnetworks::V1_0::OperandLifeTime;
using ::android::hardware::neuralnetworks::V1_0::OperandType;
using ::android::hardware::neuralnetworks::V1_0::Request;
using ::android::hardware::neuralnetworks::V1_1::IDevice;
using ::android::hardware::neuralnetworks::V1_1::Model;
using ::android::hardware::neuralnetworks::V1_1::Operation;
using ::android::hardware::neuralnetworks::V1_1::OperationType;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::hardware::hidl_memory;
using ::android::hardware::hidl_string;
using ::android::hardware::hidl_vec;
using ::android::hidl::allocator::V1_0::IAllocator;
using ::android::hidl::memory::V1_0::IMemory;
using ::android::sp;
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace generated_tests {
using ::generated_tests::MixedTypedExampleType;
extern void Execute(sp<V1_1::IDevice>&, std::function<Model(void)>, std::function<bool(int)>,
const std::vector<MixedTypedExampleType>&);
} // namespace generated_tests
namespace V1_1 {
namespace vts {
namespace functional {
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
// Mixed-typed examples
typedef generated_tests::MixedTypedExampleType MixedTypedExample;
// in frameworks/ml/nn/runtime/tests/generated/
#include "all_generated_V1_0_vts_tests.cpp"
#include "all_generated_V1_1_vts_tests.cpp"
} // namespace functional
} // namespace vts
} // namespace V1_1
} // namespace neuralnetworks
} // namespace hardware
} // namespace android