Adds sensors aidl default (cuttlefish) implementation

Bug: 195593357
Test: Verify VTS AIDL sensors tests pass

Change-Id: I12f09adfb0d81c8c15e2c18c836f03cbd9d82daf
This commit is contained in:
Grace Cheng
2021-11-09 14:26:23 +00:00
committed by Arthur Ishiguro
parent c7ac0b2a17
commit bc2a1b7321
5 changed files with 870 additions and 31 deletions

View File

@@ -28,12 +28,15 @@ cc_library_static {
vendor: true,
shared_libs: [
"libbase",
"libfmq",
"libpower",
"libbinder_ndk",
"android.hardware.sensors-V1-ndk",
],
export_include_dirs: ["include"],
srcs: [
"Sensors.cpp",
"Sensor.cpp",
],
visibility: [
":__subpackages__",
@@ -50,6 +53,11 @@ cc_binary {
shared_libs: [
"libbase",
"libbinder_ndk",
"libfmq",
"libpower",
"libcutils",
"liblog",
"libutils",
"android.hardware.sensors-V1-ndk",
],
static_libs: [

View File

@@ -0,0 +1,434 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "sensors-impl/Sensor.h"
#include "utils/SystemClock.h"
#include <cmath>
using ::ndk::ScopedAStatus;
namespace aidl {
namespace android {
namespace hardware {
namespace sensors {
static constexpr int32_t kDefaultMaxDelayUs = 10 * 1000 * 1000;
Sensor::Sensor(ISensorsEventCallback* callback)
: mIsEnabled(false),
mSamplingPeriodNs(0),
mLastSampleTimeNs(0),
mCallback(callback),
mMode(OperationMode::NORMAL) {
mRunThread = std::thread(startThread, this);
}
Sensor::~Sensor() {
std::unique_lock<std::mutex> lock(mRunMutex);
mStopThread = true;
mIsEnabled = false;
mWaitCV.notify_all();
lock.release();
mRunThread.join();
}
const SensorInfo& Sensor::getSensorInfo() const {
return mSensorInfo;
}
void Sensor::batch(int64_t samplingPeriodNs) {
if (samplingPeriodNs < mSensorInfo.minDelayUs * 1000ll) {
samplingPeriodNs = mSensorInfo.minDelayUs * 1000ll;
} else if (samplingPeriodNs > mSensorInfo.maxDelayUs * 1000ll) {
samplingPeriodNs = mSensorInfo.maxDelayUs * 1000ll;
}
if (mSamplingPeriodNs != samplingPeriodNs) {
mSamplingPeriodNs = samplingPeriodNs;
// Wake up the 'run' thread to check if a new event should be generated now
mWaitCV.notify_all();
}
}
void Sensor::activate(bool enable) {
if (mIsEnabled != enable) {
std::unique_lock<std::mutex> lock(mRunMutex);
mIsEnabled = enable;
mWaitCV.notify_all();
}
}
ScopedAStatus Sensor::flush() {
// Only generate a flush complete event if the sensor is enabled and if the sensor is not a
// one-shot sensor.
if (!mIsEnabled ||
(mSensorInfo.flags & static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE))) {
return ScopedAStatus::fromServiceSpecificError(
static_cast<int32_t>(BnSensors::ERROR_BAD_VALUE));
}
// Note: If a sensor supports batching, write all of the currently batched events for the sensor
// to the Event FMQ prior to writing the flush complete event.
Event ev;
ev.sensorHandle = mSensorInfo.sensorHandle;
ev.sensorType = SensorType::META_DATA;
EventPayload::MetaData meta = {
.what = MetaDataEventType::META_DATA_FLUSH_COMPLETE,
};
ev.payload.set<EventPayload::Tag::meta>(meta);
std::vector<Event> evs{ev};
mCallback->postEvents(evs, isWakeUpSensor());
return ScopedAStatus::ok();
}
void Sensor::startThread(Sensor* sensor) {
sensor->run();
}
void Sensor::run() {
std::unique_lock<std::mutex> runLock(mRunMutex);
constexpr int64_t kNanosecondsInSeconds = 1000 * 1000 * 1000;
while (!mStopThread) {
if (!mIsEnabled || mMode == OperationMode::DATA_INJECTION) {
mWaitCV.wait(runLock, [&] {
return ((mIsEnabled && mMode == OperationMode::NORMAL) || mStopThread);
});
} else {
timespec curTime;
clock_gettime(CLOCK_BOOTTIME, &curTime);
int64_t now = (curTime.tv_sec * kNanosecondsInSeconds) + curTime.tv_nsec;
int64_t nextSampleTime = mLastSampleTimeNs + mSamplingPeriodNs;
if (now >= nextSampleTime) {
mLastSampleTimeNs = now;
nextSampleTime = mLastSampleTimeNs + mSamplingPeriodNs;
mCallback->postEvents(readEvents(), isWakeUpSensor());
}
mWaitCV.wait_for(runLock, std::chrono::nanoseconds(nextSampleTime - now));
}
}
}
bool Sensor::isWakeUpSensor() {
return mSensorInfo.flags & static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_WAKE_UP);
}
std::vector<Event> Sensor::readEvents() {
std::vector<Event> events;
Event event;
event.sensorHandle = mSensorInfo.sensorHandle;
event.sensorType = mSensorInfo.type;
event.timestamp = ::android::elapsedRealtimeNano();
memset(&event.payload, 0, sizeof(event.payload));
readEventPayload(event.payload);
events.push_back(event);
return events;
}
void Sensor::setOperationMode(OperationMode mode) {
if (mMode != mode) {
std::unique_lock<std::mutex> lock(mRunMutex);
mMode = mode;
mWaitCV.notify_all();
}
}
bool Sensor::supportsDataInjection() const {
return mSensorInfo.flags & static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_DATA_INJECTION);
}
ScopedAStatus Sensor::injectEvent(const Event& event) {
if (event.sensorType == SensorType::ADDITIONAL_INFO) {
return ScopedAStatus::ok();
// When in OperationMode::NORMAL, SensorType::ADDITIONAL_INFO is used to push operation
// environment data into the device.
}
if (!supportsDataInjection()) {
return ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
if (mMode == OperationMode::DATA_INJECTION) {
mCallback->postEvents(std::vector<Event>{event}, isWakeUpSensor());
return ScopedAStatus::ok();
}
return ScopedAStatus::fromServiceSpecificError(
static_cast<int32_t>(BnSensors::ERROR_BAD_VALUE));
}
OnChangeSensor::OnChangeSensor(ISensorsEventCallback* callback)
: Sensor(callback), mPreviousEventSet(false) {}
void OnChangeSensor::activate(bool enable) {
Sensor::activate(enable);
if (!enable) {
mPreviousEventSet = false;
}
}
std::vector<Event> OnChangeSensor::readEvents() {
std::vector<Event> events = Sensor::readEvents();
std::vector<Event> outputEvents;
for (auto iter = events.begin(); iter != events.end(); ++iter) {
Event ev = *iter;
if (!mPreviousEventSet ||
memcmp(&mPreviousEvent.payload, &ev.payload, sizeof(ev.payload)) != 0) {
outputEvents.push_back(ev);
mPreviousEvent = ev;
mPreviousEventSet = true;
}
}
return outputEvents;
}
AccelSensor::AccelSensor(int32_t sensorHandle, ISensorsEventCallback* callback) : Sensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Accel Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::ACCELEROMETER;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 78.4f; // +/- 8g
mSensorInfo.resolution = 1.52e-5;
mSensorInfo.power = 0.001f; // mA
mSensorInfo.minDelayUs = 10 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_DATA_INJECTION);
};
void AccelSensor::readEventPayload(EventPayload& payload) {
EventPayload::Vec3 vec3 = {
.x = 0,
.y = 0,
.z = -9.8,
.status = SensorStatus::ACCURACY_HIGH,
};
payload.set<EventPayload::Tag::vec3>(vec3);
}
PressureSensor::PressureSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: Sensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Pressure Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::PRESSURE;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 1100.0f; // hPa
mSensorInfo.resolution = 0.005f; // hPa
mSensorInfo.power = 0.001f; // mA
mSensorInfo.minDelayUs = 100 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = 0;
};
void PressureSensor::readEventPayload(EventPayload& payload) {
payload.set<EventPayload::Tag::scalar>(1013.25f);
}
MagnetometerSensor::MagnetometerSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: Sensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Magnetic Field Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::MAGNETIC_FIELD;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 1300.0f;
mSensorInfo.resolution = 0.01f;
mSensorInfo.power = 0.001f; // mA
mSensorInfo.minDelayUs = 20 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = 0;
};
void MagnetometerSensor::readEventPayload(EventPayload& payload) {
EventPayload::Vec3 vec3 = {
.x = 100.0,
.y = 0,
.z = 50.0,
.status = SensorStatus::ACCURACY_HIGH,
};
payload.set<EventPayload::Tag::vec3>(vec3);
}
LightSensor::LightSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: OnChangeSensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Light Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::LIGHT;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 43000.0f;
mSensorInfo.resolution = 10.0f;
mSensorInfo.power = 0.001f; // mA
mSensorInfo.minDelayUs = 200 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE);
};
void LightSensor::readEventPayload(EventPayload& payload) {
payload.set<EventPayload::Tag::scalar>(80.0f);
}
ProximitySensor::ProximitySensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: OnChangeSensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Proximity Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::PROXIMITY;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 5.0f;
mSensorInfo.resolution = 1.0f;
mSensorInfo.power = 0.012f; // mA
mSensorInfo.minDelayUs = 200 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE |
SensorInfo::SENSOR_FLAG_BITS_WAKE_UP);
};
void ProximitySensor::readEventPayload(EventPayload& payload) {
payload.set<EventPayload::Tag::scalar>(2.5f);
}
GyroSensor::GyroSensor(int32_t sensorHandle, ISensorsEventCallback* callback) : Sensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Gyro Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::GYROSCOPE;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 1000.0f * M_PI / 180.0f;
mSensorInfo.resolution = 1000.0f * M_PI / (180.0f * 32768.0f);
mSensorInfo.power = 0.001f;
mSensorInfo.minDelayUs = 10 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = 0;
};
void GyroSensor::readEventPayload(EventPayload& payload) {
EventPayload::Vec3 vec3 = {
.x = 0,
.y = 0,
.z = 0,
.status = SensorStatus::ACCURACY_HIGH,
};
payload.set<EventPayload::Tag::vec3>(vec3);
}
AmbientTempSensor::AmbientTempSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: OnChangeSensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Ambient Temp Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::AMBIENT_TEMPERATURE;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 80.0f;
mSensorInfo.resolution = 0.01f;
mSensorInfo.power = 0.001f;
mSensorInfo.minDelayUs = 40 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE);
};
void AmbientTempSensor::readEventPayload(EventPayload& payload) {
payload.set<EventPayload::Tag::scalar>(40.0f);
}
RelativeHumiditySensor::RelativeHumiditySensor(int32_t sensorHandle,
ISensorsEventCallback* callback)
: OnChangeSensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Relative Humidity Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::RELATIVE_HUMIDITY;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 100.0f;
mSensorInfo.resolution = 0.1f;
mSensorInfo.power = 0.001f;
mSensorInfo.minDelayUs = 40 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE);
}
void RelativeHumiditySensor::readEventPayload(EventPayload& payload) {
payload.set<EventPayload::Tag::scalar>(50.0f);
}
HingeAngleSensor::HingeAngleSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: OnChangeSensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Hinge Angle Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::HINGE_ANGLE;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 360.0f;
mSensorInfo.resolution = 1.0f;
mSensorInfo.power = 0.001f;
mSensorInfo.minDelayUs = 40 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE |
SensorInfo::SENSOR_FLAG_BITS_WAKE_UP |
SensorInfo::SENSOR_FLAG_BITS_DATA_INJECTION);
}
void HingeAngleSensor::readEventPayload(EventPayload& payload) {
payload.set<EventPayload::Tag::scalar>(180.0f);
}
} // namespace sensors
} // namespace hardware
} // namespace android
} // namespace aidl

View File

@@ -16,66 +16,139 @@
#include "sensors-impl/Sensors.h"
#include <aidl/android/hardware/common/fmq/SynchronizedReadWrite.h>
using ::aidl::android::hardware::common::fmq::MQDescriptor;
using ::aidl::android::hardware::common::fmq::SynchronizedReadWrite;
using ::aidl::android::hardware::sensors::Event;
using ::aidl::android::hardware::sensors::ISensors;
using ::aidl::android::hardware::sensors::ISensorsCallback;
using ::aidl::android::hardware::sensors::SensorInfo;
using ::ndk::ScopedAStatus;
namespace aidl {
namespace android {
namespace hardware {
namespace sensors {
// TODO(b/195593357): Implement AIDL HAL
::ndk::ScopedAStatus Sensors::activate(int32_t /* in_sensorHandle */, bool /* in_enabled */) {
return ndk::ScopedAStatus::ok();
ScopedAStatus Sensors::activate(int32_t in_sensorHandle, bool in_enabled) {
auto sensor = mSensors.find(in_sensorHandle);
if (sensor != mSensors.end()) {
sensor->second->activate(in_enabled);
return ScopedAStatus::ok();
}
return ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
::ndk::ScopedAStatus Sensors::batch(int32_t /* in_sensorHandle */,
int64_t /* in_samplingPeriodNs */,
int64_t /* in_maxReportLatencyNs */) {
return ndk::ScopedAStatus::ok();
ScopedAStatus Sensors::batch(int32_t in_sensorHandle, int64_t in_samplingPeriodNs,
int64_t /* in_maxReportLatencyNs */) {
auto sensor = mSensors.find(in_sensorHandle);
if (sensor != mSensors.end()) {
sensor->second->batch(in_samplingPeriodNs);
return ScopedAStatus::ok();
}
return ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
::ndk::ScopedAStatus Sensors::configDirectReport(int32_t /* in_sensorHandle */,
int32_t /* in_channelHandle */,
ISensors::RateLevel /* in_rate */,
int32_t* /* _aidl_return */) {
return ndk::ScopedAStatus::ok();
ScopedAStatus Sensors::configDirectReport(int32_t /* in_sensorHandle */,
int32_t /* in_channelHandle */,
ISensors::RateLevel /* in_rate */,
int32_t* _aidl_return) {
*_aidl_return = EX_UNSUPPORTED_OPERATION;
return ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
::ndk::ScopedAStatus Sensors::flush(int32_t /* in_sensorHandle */) {
return ndk::ScopedAStatus::ok();
ScopedAStatus Sensors::flush(int32_t in_sensorHandle) {
auto sensor = mSensors.find(in_sensorHandle);
if (sensor != mSensors.end()) {
return sensor->second->flush();
}
return ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
::ndk::ScopedAStatus Sensors::getSensorsList(std::vector<SensorInfo>* /* _aidl_return */) {
return ndk::ScopedAStatus::ok();
ScopedAStatus Sensors::getSensorsList(std::vector<SensorInfo>* _aidl_return) {
for (const auto& sensor : mSensors) {
_aidl_return->push_back(sensor.second->getSensorInfo());
}
return ScopedAStatus::ok();
}
::ndk::ScopedAStatus Sensors::initialize(
const MQDescriptor<Event, SynchronizedReadWrite>& /* in_eventQueueDescriptor */,
const MQDescriptor<int32_t, SynchronizedReadWrite>& /* in_wakeLockDescriptor */,
const std::shared_ptr<ISensorsCallback>& /* in_sensorsCallback */) {
return ndk::ScopedAStatus::ok();
ScopedAStatus Sensors::initialize(
const MQDescriptor<Event, SynchronizedReadWrite>& in_eventQueueDescriptor,
const MQDescriptor<int32_t, SynchronizedReadWrite>& in_wakeLockDescriptor,
const std::shared_ptr<::aidl::android::hardware::sensors::ISensorsCallback>&
in_sensorsCallback) {
ScopedAStatus result = ScopedAStatus::ok();
mEventQueue = std::make_unique<AidlMessageQueue<Event, SynchronizedReadWrite>>(
in_eventQueueDescriptor, true /* resetPointers */);
// Ensure that all sensors are disabled.
for (auto sensor : mSensors) {
sensor.second->activate(false);
}
// Stop the Wake Lock thread if it is currently running
if (mReadWakeLockQueueRun.load()) {
mReadWakeLockQueueRun = false;
mWakeLockThread.join();
}
// Save a reference to the callback
mCallback = in_sensorsCallback;
// Ensure that any existing EventFlag is properly deleted
deleteEventFlag();
// Create the EventFlag that is used to signal to the framework that sensor events have been
// written to the Event FMQ
if (EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag) != OK) {
result = ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
// Create the Wake Lock FMQ that is used by the framework to communicate whenever WAKE_UP
// events have been successfully read and handled by the framework.
mWakeLockQueue = std::make_unique<AidlMessageQueue<int32_t, SynchronizedReadWrite>>(
in_wakeLockDescriptor, true /* resetPointers */);
if (!mCallback || !mEventQueue || !mWakeLockQueue || mEventQueueFlag == nullptr) {
result = ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
// Start the thread to read events from the Wake Lock FMQ
mReadWakeLockQueueRun = true;
mWakeLockThread = std::thread(startReadWakeLockThread, this);
return result;
}
::ndk::ScopedAStatus Sensors::injectSensorData(const Event& /* in_event */) {
return ndk::ScopedAStatus::ok();
ScopedAStatus Sensors::injectSensorData(const Event& in_event) {
auto sensor = mSensors.find(in_event.sensorHandle);
if (sensor != mSensors.end()) {
return sensor->second->injectEvent(in_event);
}
return ScopedAStatus::fromServiceSpecificError(static_cast<int32_t>(ERROR_BAD_VALUE));
}
::ndk::ScopedAStatus Sensors::registerDirectChannel(const ISensors::SharedMemInfo& /* in_mem */,
int32_t* /* _aidl_return */) {
return ndk::ScopedAStatus::ok();
ScopedAStatus Sensors::registerDirectChannel(const ISensors::SharedMemInfo& /* in_mem */,
int32_t* _aidl_return) {
*_aidl_return = EX_UNSUPPORTED_OPERATION;
return ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
::ndk::ScopedAStatus Sensors::setOperationMode(OperationMode /* in_mode */) {
return ndk::ScopedAStatus::ok();
ScopedAStatus Sensors::setOperationMode(OperationMode in_mode) {
for (auto sensor : mSensors) {
sensor.second->setOperationMode(in_mode);
}
return ScopedAStatus::ok();
}
::ndk::ScopedAStatus Sensors::unregisterDirectChannel(int32_t /* in_channelHandle */) {
return ndk::ScopedAStatus::ok();
ScopedAStatus Sensors::unregisterDirectChannel(int32_t /* in_channelHandle */) {
return ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
} // namespace sensors

View File

@@ -0,0 +1,168 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <thread>
#include <aidl/android/hardware/sensors/BnSensors.h>
namespace aidl {
namespace android {
namespace hardware {
namespace sensors {
class ISensorsEventCallback {
public:
using Event = ::aidl::android::hardware::sensors::Event;
virtual ~ISensorsEventCallback(){};
virtual void postEvents(const std::vector<Event>& events, bool wakeup) = 0;
};
class Sensor {
public:
using OperationMode = ::aidl::android::hardware::sensors::ISensors::OperationMode;
using Event = ::aidl::android::hardware::sensors::Event;
using EventPayload = ::aidl::android::hardware::sensors::Event::EventPayload;
using SensorInfo = ::aidl::android::hardware::sensors::SensorInfo;
using SensorType = ::aidl::android::hardware::sensors::SensorType;
using MetaDataEventType =
::aidl::android::hardware::sensors::Event::EventPayload::MetaData::MetaDataEventType;
Sensor(ISensorsEventCallback* callback);
virtual ~Sensor();
const SensorInfo& getSensorInfo() const;
void batch(int64_t samplingPeriodNs);
virtual void activate(bool enable);
ndk::ScopedAStatus flush();
void setOperationMode(OperationMode mode);
bool supportsDataInjection() const;
ndk::ScopedAStatus injectEvent(const Event& event);
protected:
void run();
virtual std::vector<Event> readEvents();
virtual void readEventPayload(EventPayload&) = 0;
static void startThread(Sensor* sensor);
bool isWakeUpSensor();
bool mIsEnabled;
int64_t mSamplingPeriodNs;
int64_t mLastSampleTimeNs;
SensorInfo mSensorInfo;
std::atomic_bool mStopThread;
std::condition_variable mWaitCV;
std::mutex mRunMutex;
std::thread mRunThread;
ISensorsEventCallback* mCallback;
OperationMode mMode;
};
class OnChangeSensor : public Sensor {
public:
OnChangeSensor(ISensorsEventCallback* callback);
virtual void activate(bool enable) override;
protected:
virtual std::vector<Event> readEvents() override;
protected:
Event mPreviousEvent;
bool mPreviousEventSet;
};
class AccelSensor : public Sensor {
public:
AccelSensor(int32_t sensorHandle, ISensorsEventCallback* callback);
protected:
virtual void readEventPayload(EventPayload& payload) override;
};
class GyroSensor : public Sensor {
public:
GyroSensor(int32_t sensorHandle, ISensorsEventCallback* callback);
protected:
virtual void readEventPayload(EventPayload& payload) override;
};
class AmbientTempSensor : public OnChangeSensor {
public:
AmbientTempSensor(int32_t sensorHandle, ISensorsEventCallback* callback);
protected:
virtual void readEventPayload(EventPayload& payload) override;
};
class PressureSensor : public Sensor {
public:
PressureSensor(int32_t sensorHandle, ISensorsEventCallback* callback);
protected:
virtual void readEventPayload(EventPayload& payload) override;
};
class MagnetometerSensor : public Sensor {
public:
MagnetometerSensor(int32_t sensorHandle, ISensorsEventCallback* callback);
protected:
virtual void readEventPayload(EventPayload& payload) override;
};
class LightSensor : public OnChangeSensor {
public:
LightSensor(int32_t sensorHandle, ISensorsEventCallback* callback);
protected:
virtual void readEventPayload(EventPayload& payload) override;
};
class ProximitySensor : public OnChangeSensor {
public:
ProximitySensor(int32_t sensorHandle, ISensorsEventCallback* callback);
protected:
virtual void readEventPayload(EventPayload& payload) override;
};
class RelativeHumiditySensor : public OnChangeSensor {
public:
RelativeHumiditySensor(int32_t sensorHandle, ISensorsEventCallback* callback);
protected:
virtual void readEventPayload(EventPayload& payload) override;
};
class HingeAngleSensor : public OnChangeSensor {
public:
HingeAngleSensor(int32_t sensorHandle, ISensorsEventCallback* callback);
protected:
virtual void readEventPayload(EventPayload& payload) override;
};
} // namespace sensors
} // namespace hardware
} // namespace android
} // namespace aidl

View File

@@ -16,14 +16,52 @@
#pragma once
#include <aidl/android/hardware/common/fmq/SynchronizedReadWrite.h>
#include <aidl/android/hardware/sensors/BnSensors.h>
#include <fmq/AidlMessageQueue.h>
#include <hardware_legacy/power.h>
#include <map>
#include "Sensor.h"
namespace aidl {
namespace android {
namespace hardware {
namespace sensors {
class Sensors : public BnSensors {
using aidl::android::hardware::common::fmq::SynchronizedReadWrite;
using ::android::AidlMessageQueue;
using ::android::OK;
using ::android::status_t;
using ::android::hardware::EventFlag;
class Sensors : public BnSensors, public ISensorsEventCallback {
static constexpr const char* kWakeLockName = "SensorsHAL_WAKEUP";
public:
Sensors()
: mEventQueueFlag(nullptr),
mNextHandle(1),
mOutstandingWakeUpEvents(0),
mReadWakeLockQueueRun(false),
mAutoReleaseWakeLockTime(0),
mHasWakeLock(false) {
AddSensor<AccelSensor>();
AddSensor<GyroSensor>();
AddSensor<AmbientTempSensor>();
AddSensor<PressureSensor>();
AddSensor<MagnetometerSensor>();
AddSensor<LightSensor>();
AddSensor<ProximitySensor>();
AddSensor<RelativeHumiditySensor>();
AddSensor<HingeAngleSensor>();
}
virtual ~Sensors() {
deleteEventFlag();
mReadWakeLockQueueRun = false;
mWakeLockThread.join();
}
::ndk::ScopedAStatus activate(int32_t in_sensorHandle, bool in_enabled) override;
::ndk::ScopedAStatus batch(int32_t in_sensorHandle, int64_t in_samplingPeriodNs,
int64_t in_maxReportLatencyNs) override;
@@ -52,6 +90,124 @@ class Sensors : public BnSensors {
::ndk::ScopedAStatus setOperationMode(
::aidl::android::hardware::sensors::ISensors::OperationMode in_mode) override;
::ndk::ScopedAStatus unregisterDirectChannel(int32_t in_channelHandle) override;
void postEvents(const std::vector<Event>& events, bool wakeup) override {
std::lock_guard<std::mutex> lock(mWriteLock);
if (mEventQueue == nullptr) {
return;
}
if (mEventQueue->write(&events.front(), events.size())) {
mEventQueueFlag->wake(
static_cast<uint32_t>(BnSensors::EVENT_QUEUE_FLAG_BITS_READ_AND_PROCESS));
if (wakeup) {
// Keep track of the number of outstanding WAKE_UP events in order to properly hold
// a wake lock until the framework has secured a wake lock
updateWakeLock(events.size(), 0 /* eventsHandled */);
}
}
}
protected:
// Add a new sensor
template <class SensorType>
void AddSensor() {
std::shared_ptr<SensorType> sensor =
std::make_shared<SensorType>(mNextHandle++ /* sensorHandle */, this /* callback */);
mSensors[sensor->getSensorInfo().sensorHandle] = sensor;
}
// Utility function to delete the Event Flag
void deleteEventFlag() {
if (mEventQueueFlag != nullptr) {
status_t status = EventFlag::deleteEventFlag(&mEventQueueFlag);
if (status != OK) {
ALOGI("Failed to delete event flag: %d", status);
}
}
}
static void startReadWakeLockThread(Sensors* sensors) { sensors->readWakeLockFMQ(); }
// Function to read the Wake Lock FMQ and release the wake lock when appropriate
void readWakeLockFMQ() {
while (mReadWakeLockQueueRun.load()) {
constexpr int64_t kReadTimeoutNs = 500 * 1000 * 1000; // 500 ms
int32_t eventsHandled = 0;
// Read events from the Wake Lock FMQ. Timeout after a reasonable amount of time to
// ensure that any held wake lock is able to be released if it is held for too long.
mWakeLockQueue->readBlocking(
&eventsHandled, 1 /* count */, 0 /* readNotification */,
static_cast<uint32_t>(WAKE_LOCK_QUEUE_FLAG_BITS_DATA_WRITTEN), kReadTimeoutNs);
updateWakeLock(0 /* eventsWritten */, eventsHandled);
}
}
/**
* Responsible for acquiring and releasing a wake lock when there are unhandled WAKE_UP events
*/
void updateWakeLock(int32_t eventsWritten, int32_t eventsHandled) {
std::lock_guard<std::mutex> lock(mWakeLockLock);
int32_t newVal = mOutstandingWakeUpEvents + eventsWritten - eventsHandled;
if (newVal < 0) {
mOutstandingWakeUpEvents = 0;
} else {
mOutstandingWakeUpEvents = newVal;
}
if (eventsWritten > 0) {
// Update the time at which the last WAKE_UP event was sent
mAutoReleaseWakeLockTime = ::android::uptimeMillis() +
static_cast<uint32_t>(WAKE_LOCK_TIMEOUT_SECONDS) * 1000;
}
if (!mHasWakeLock && mOutstandingWakeUpEvents > 0 &&
acquire_wake_lock(PARTIAL_WAKE_LOCK, kWakeLockName) == 0) {
mHasWakeLock = true;
} else if (mHasWakeLock) {
// Check if the wake lock should be released automatically if
// SensorTimeout::WAKE_LOCK_SECONDS has elapsed since the last WAKE_UP event was written
// to the Wake Lock FMQ.
if (::android::uptimeMillis() > mAutoReleaseWakeLockTime) {
ALOGD("No events read from wake lock FMQ for %d seconds, auto releasing wake lock",
WAKE_LOCK_TIMEOUT_SECONDS);
mOutstandingWakeUpEvents = 0;
}
if (mOutstandingWakeUpEvents == 0 && release_wake_lock(kWakeLockName) == 0) {
mHasWakeLock = false;
}
}
}
private:
// The Event FMQ where sensor events are written
std::unique_ptr<AidlMessageQueue<Event, SynchronizedReadWrite>> mEventQueue;
// The Wake Lock FMQ that is read to determine when the framework has handled WAKE_UP events
std::unique_ptr<AidlMessageQueue<int32_t, SynchronizedReadWrite>> mWakeLockQueue;
// Event Flag to signal to the framework when sensor events are available to be read
EventFlag* mEventQueueFlag;
// Callback for asynchronous events, such as dynamic sensor connections.
std::shared_ptr<::aidl::android::hardware::sensors::ISensorsCallback> mCallback;
// A map of the available sensors.
std::map<int32_t, std::shared_ptr<Sensor>> mSensors;
// The next available sensor handle.
int32_t mNextHandle;
// Lock to protect writes to the FMQs.
std::mutex mWriteLock;
// Lock to protect acquiring and releasing the wake lock
std::mutex mWakeLockLock;
// Track the number of WAKE_UP events that have not been handled by the framework
uint32_t mOutstandingWakeUpEvents;
// A thread to read the Wake Lock FMQ
std::thread mWakeLockThread;
// Flag to indicate that the Wake Lock Thread should continue to run
std::atomic_bool mReadWakeLockQueueRun;
// Track the time when the wake lock should automatically be released
int64_t mAutoReleaseWakeLockTime;
// Flag to indicate if a wake lock has been acquired
bool mHasWakeLock;
};
} // namespace sensors