Add Sensors HAL 2.1

Creates Sensors HAL 2.1 to support the addition of a new sensor type for
hinge angle sensors.

Bug: 144139857
Test: mma
Change-Id: Id78fb16324d28f2291b3ad1950197bfd2632d6f4
This commit is contained in:
Anthony Stange
2020-02-05 17:47:23 -05:00
parent 368c0d9efe
commit d8cafdbdfd
5 changed files with 365 additions and 0 deletions

View File

@@ -693,6 +693,9 @@ dcc8872337f0135e81970e1d8d5fd7139160dc80e9be76f0ae05290fa7e472b8 android.hardwar
a2977755bc5f1ef47f04b7f2400632efda6218e1515dba847da487145cfabc4f android.hardware.radio.config@1.3::IRadioConfig
742360c775313438b0f82256eac62fb5bbc76a6ae6f388573f3aa142fb2c1eea android.hardware.radio.config@1.3::IRadioConfigIndication
0006ab8e8b0910cbd3bbb08d5f17d5fac7d65a2bdad5f2334e4851db9d1e6fa8 android.hardware.radio.config@1.3::IRadioConfigResponse
3ca6616381080bdd6c08141ad12775a94ae868c58b02b1274ae3326f7de724ab android.hardware.sensors@2.1::ISensors
3d4141c6373cd9ca02fe221a7d12343840de2255d032c38248fe8e35816b58b2 android.hardware.sensors@2.1::ISensorsCallback
8051cc50fc90ed447f058a8b15d81f35a65f1bd9004b1de4f127edeb89b47978 android.hardware.sensors@2.1::types
4a6517ea4ad807855428b0101d8e1a486497bd88ab4300ba3b2be43d46d32580 android.hardware.soundtrigger@2.3::types
12d7533ff0754f45bf59ab300799074570a99a676545652c2c23abc73cb4515d android.hardware.soundtrigger@2.3::ISoundTriggerHw
7746fda1fbf9c7c132bae701cc5a161309e4f5e7f3e8065811045975ee86196d android.hardware.usb.gadget@1.1::IUsbGadget

21
sensors/2.1/Android.bp Normal file
View File

@@ -0,0 +1,21 @@
// This file is autogenerated by hidl-gen -Landroidbp.
hidl_interface {
name: "android.hardware.sensors@2.1",
root: "android.hardware",
vndk: {
enabled: true,
},
srcs: [
"types.hal",
"ISensors.hal",
"ISensorsCallback.hal",
],
interfaces: [
"android.hardware.sensors@1.0",
"android.hardware.sensors@2.0",
"android.hidl.base@1.0",
],
gen_java: false,
gen_java_constants: true,
}

148
sensors/2.1/ISensors.hal Normal file
View File

@@ -0,0 +1,148 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.hardware.sensors@2.1;
import @1.0::Result;
import @2.0::ISensors;
import @2.1::ISensorsCallback;
interface ISensors extends @2.0::ISensors {
/**
* Enumerate all available (static) sensors.
*
* The SensorInfo for each sensor returned by getSensorsList must be stable
* from the initial call to getSensorsList after a device boot until the
* entire system restarts. The SensorInfo for each sensor must not change
* between subsequent calls to getSensorsList, even across restarts of the
* HAL and its dependencies (for example, the sensor handle for a given
* sensor must not change across HAL restarts).
*/
getSensorsList_2_1() generates (vec<SensorInfo> list);
/**
* Initialize the Sensors HAL's Fast Message Queues (FMQ) and callback.
*
* The Fast Message Queues (FMQ) that are used to send data between the
* framework and the HAL. The callback is used by the HAL to notify the
* framework of asynchronous events, such as a dynamic sensor connection.
*
* The Event FMQ is used to transport sensor events from the HAL to the
* framework. The Event FMQ is created using the eventQueueDescriptor.
* Data may only be written to the Event FMQ. Data must not be read from
* the Event FMQ since the framework is the only reader. Upon receiving
* sensor events, the HAL writes the sensor events to the Event FMQ.
*
* Once the HAL is finished writing sensor events to the Event FMQ, the HAL
* must notify the framework that sensor events are available to be read and
* processed. This is accomplished by either:
* 1) Calling the Event FMQs EventFlag::wake() function with
EventQueueFlagBits::READ_AND_PROCESS
* 2) Setting the write notification in the Event FMQs writeBlocking()
* function to EventQueueFlagBits::READ_AND_PROCESS.
*
* If the Event FMQs writeBlocking() function is used, the read
* notification must be set to EventQueueFlagBits::EVENTS_READ in order to
* be notified and unblocked when the framework has successfully read events
* from the Event FMQ.
*
* The Wake Lock FMQ is used by the framework to notify the HAL when it is
* safe to release its wake_lock. When the framework receives WAKE_UP events
* from the Event FMQ and the framework has acquired a wake_lock, the
* framework must write the number of WAKE_UP events processed to the Wake
* Lock FMQ. When the HAL reads the data from the Wake Lock FMQ, the HAL
* decrements its current count of unprocessed WAKE_UP events and releases
* its wake_lock if the current count of unprocessed WAKE_UP events is
* zero. It is important to note that the HAL must acquire the wake lock and
* update its internal state regarding the number of outstanding WAKE_UP
* events _before_ posting the event to the Wake Lock FMQ, in order to avoid
* a race condition that can lead to loss of wake lock synchronization with
* the framework.
*
* The framework must use the WakeLockQueueFlagBits::DATA_WRITTEN value to
* notify the HAL that data has been written to the Wake Lock FMQ and must
* be read by HAL.
*
* The ISensorsCallback is used by the HAL to notify the framework of
* asynchronous events, such as a dynamic sensor connection.
*
* The name of any wake_lock acquired by the Sensors HAL for WAKE_UP events
* must begin with "SensorsHAL_WAKEUP".
*
* If WAKE_LOCK_TIMEOUT_SECONDS has elapsed since the most recent WAKE_UP
* event was written to the Event FMQ without receiving a message on the
* Wake Lock FMQ, then any held wake_lock for WAKE_UP events must be
* released.
*
* If either the Event FMQ or the Wake Lock FMQ is already initialized when
* initialize is invoked, then both existing FMQs must be discarded and the
* new descriptors must be used to create new FMQs within the HAL. The
* number of outstanding WAKE_UP events should also be reset to zero, and
* any outstanding wake_locks held as a result of WAKE_UP events should be
* released.
*
* All active sensor requests and direct channels must be closed and
* properly cleaned up when initialize is called in order to ensure that the
* HAL and framework's state is consistent (e.g. after a runtime restart).
*
* initialize must be thread safe and prevent concurrent calls
* to initialize from simultaneously modifying state.
*
* @param eventQueueDescriptor Fast Message Queue descriptor that is used to
* create the Event FMQ which is where sensor events are written. The
* descriptor is obtained from the framework's FMQ that is used to read
* sensor events.
* @param wakeLockDescriptor Fast Message Queue descriptor that is used to
* create the Wake Lock FMQ which is where wake_lock events are read
* from. The descriptor is obtained from the framework's FMQ that is
* used to write wake_lock events.
* @param sensorsCallback sensors callback that receives asynchronous data
* from the Sensors HAL.
* @return result OK on success; BAD_VALUE if descriptor is invalid (such
* as null)
*/
@entry
@callflow(next = {"getSensorsList"})
initialize_2_1(fmq_sync<Event> eventQueueDescriptor,
fmq_sync<uint32_t> wakeLockDescriptor,
ISensorsCallback sensorsCallback)
generates
(Result result);
/**
* Inject a single sensor event or push operation environment parameters to
* device.
*
* When device is in NORMAL mode, this function is called to push operation
* environment data to device. In this operation, Event is always of
* SensorType::AdditionalInfo type. See operation evironment parameters
* section in AdditionalInfoType.
*
* When device is in DATA_INJECTION mode, this function is also used for
* injecting sensor events.
*
* Regardless of OperationMode, injected SensorType::ADDITIONAL_INFO
* type events should not be routed back to the sensor event queue.
*
* @see AdditionalInfoType
* @see OperationMode
* @param event sensor event to be injected
* @return result OK on success; PERMISSION_DENIED if operation is not
* allowed; INVALID_OPERATION, if this functionality is unsupported;
* BAD_VALUE if sensor event cannot be injected.
*/
injectSensorData_2_1(Event event) generates (Result result);
};

View File

@@ -0,0 +1,33 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.hardware.sensors@2.1;
import @2.0::ISensorsCallback;
import @2.1::SensorInfo;
interface ISensorsCallback extends @2.0::ISensorsCallback {
/**
* Notify the framework that new dynamic sensors have been connected.
*
* If a dynamic sensor was previously connected and has not been
* disconnected, then that sensor must not be included in sensorInfos.
*
* @param sensorInfos vector of SensorInfo for each dynamic sensor that
* was connected.
*/
oneway onDynamicSensorsConnected_2_1(vec<SensorInfo> sensorInfos);
};

160
sensors/2.1/types.hal Normal file
View File

@@ -0,0 +1,160 @@
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.hardware.sensors@2.1;
import @1.0::EventPayload;
import @1.0::SensorType;
import @1.0::SensorFlagBits;
@export(name="", value_prefix="SENSOR_TYPE_")
enum SensorType : @1.0::SensorType {
/**
* HINGE_ANGLE
* reporting-mode: on-change
* wake-up sensor: yes
*
* A sensor of this type measures the angle, in degrees, between two
* integral parts of the device. Movement of a hinge measured by this sensor
* type is expected to alter the ways in which the user may interact with
* the device, for example by unfolding or revealing a display.
*
* Sensor data is output using @1.0::EventPayload.scalar.
*
* Implement wake-up proximity sensor before implementing a non wake-up
* proximity sensor.
*/
HINGE_ANGLE = 36,
};
struct Event {
/** Time measured in nanoseconds, in "elapsedRealtimeNano()'s" timebase. */
int64_t timestamp;
/** sensor identifier */
int32_t sensorHandle;
@2.1::SensorType sensorType;
/** Union discriminated on sensorType */
EventPayload u;
};
struct SensorInfo {
/**
* handle that identifies this sensors. This handle is used to reference
* this sensor throughout the HAL API.
*/
int32_t sensorHandle;
/**
* Name of this sensor.
* All sensors of the same "type" must have a different "name".
*/
string name;
/** vendor of the hardware part */
string vendor;
/**
* version of the hardware part + driver. The value of this field
* must increase when the driver is updated in a way that changes the
* output of this sensor. This is important for fused sensors when the
* fusion algorithm is updated.
*/
int32_t version;
/** this sensor's type. */
@2.1::SensorType type;
/**
* type of this sensor as a string.
*
* When defining an OEM specific sensor or sensor manufacturer specific
* sensor, use your reserve domain name as a prefix.
* e.g. com.google.glass.onheaddetector
*
* For sensors of known type defined in SensorType (value <
* SensorType::DEVICE_PRIVATE_BASE), this can be an empty string.
*/
string typeAsString;
/** maximum range of this sensor's value in SI units */
float maxRange;
/** smallest difference between two values reported by this sensor */
float resolution;
/** rough estimate of this sensor's power consumption in mA */
float power;
/**
* this value depends on the reporting mode:
*
* continuous: minimum sample period allowed in microseconds
* on-change : 0
* one-shot :-1
* special : 0, unless otherwise noted
*/
int32_t minDelay;
/**
* number of events reserved for this sensor in the batch mode FIFO.
* If there is a dedicated FIFO for this sensor, then this is the
* size of this FIFO. If the FIFO is shared with other sensors,
* this is the size reserved for that sensor and it can be zero.
*/
uint32_t fifoReservedEventCount;
/**
* maximum number of events of this sensor that could be batched.
* This is especially relevant when the FIFO is shared between
* several sensors; this value is then set to the size of that FIFO.
*/
uint32_t fifoMaxEventCount;
/**
* permission required to see this sensor, register to it and receive data.
* Set to "" if no permission is required. Some sensor types like the
* heart rate monitor have a mandatory require_permission.
* For sensors that always require a specific permission, like the heart
* rate monitor, the android framework might overwrite this string
* automatically.
*/
string requiredPermission;
/**
* This value is defined only for continuous mode and on-change sensors.
* It is the delay between two sensor events corresponding to the lowest
* frequency that this sensor supports. When lower frequencies are requested
* through batch()/setDelay() the events will be generated at this frequency
* instead.
* It can be used by the framework or applications to estimate when the
* batch FIFO may be full.
*
* NOTE: periodNs is in nanoseconds where as maxDelay/minDelay are in
* microseconds.
*
* continuous, on-change: maximum sampling period allowed in
* microseconds.
*
* one-shot, special : 0
*/
int32_t maxDelay;
/** Bitmask of SensorFlagBits */
bitfield<SensorFlagBits> flags;
};