mirror of
https://github.com/Evolution-X/hardware_interfaces
synced 2026-02-01 05:49:27 +00:00
Merge "Remove obsolete libcppbor code from identity module"
This commit is contained in:
@@ -65,57 +65,3 @@ cc_test {
|
||||
],
|
||||
test_suites: ["general-tests"],
|
||||
}
|
||||
|
||||
// --
|
||||
|
||||
cc_library {
|
||||
name: "libcppbor",
|
||||
vendor_available: true,
|
||||
host_supported: true,
|
||||
srcs: [
|
||||
"src/cppbor.cpp",
|
||||
"src/cppbor_parse.cpp",
|
||||
],
|
||||
export_include_dirs: [
|
||||
"include/cppbor",
|
||||
],
|
||||
shared_libs: [
|
||||
"libbase",
|
||||
],
|
||||
}
|
||||
|
||||
cc_test {
|
||||
name: "cppbor_test",
|
||||
tidy_timeout_srcs: [
|
||||
"tests/cppbor_test.cpp",
|
||||
],
|
||||
srcs: [
|
||||
"tests/cppbor_test.cpp",
|
||||
],
|
||||
shared_libs: [
|
||||
"libcppbor_external",
|
||||
"libbase",
|
||||
],
|
||||
static_libs: [
|
||||
"libgmock",
|
||||
],
|
||||
test_suites: ["general-tests"],
|
||||
}
|
||||
|
||||
cc_test_host {
|
||||
name: "cppbor_host_test",
|
||||
tidy_timeout_srcs: [
|
||||
"tests/cppbor_test.cpp",
|
||||
],
|
||||
srcs: [
|
||||
"tests/cppbor_test.cpp",
|
||||
],
|
||||
shared_libs: [
|
||||
"libcppbor_external",
|
||||
"libbase",
|
||||
],
|
||||
static_libs: [
|
||||
"libgmock",
|
||||
],
|
||||
test_suites: ["general-tests"],
|
||||
}
|
||||
|
||||
@@ -1,216 +0,0 @@
|
||||
CppBor: A Modern C++ CBOR Parser and Generator
|
||||
==============================================
|
||||
|
||||
CppBor provides a natural and easy-to-use syntax for constructing and
|
||||
parsing CBOR messages. It does not (yet) support all features of
|
||||
CBOR, nor (yet) support validation against CDDL schemata, though both
|
||||
are planned. CBOR features that aren't supported include:
|
||||
|
||||
* Indefinite length values
|
||||
* Semantic tagging
|
||||
* Floating point
|
||||
|
||||
CppBor requires C++-17.
|
||||
|
||||
## CBOR representation
|
||||
|
||||
CppBor represents CBOR data items as instances of the `Item` class or,
|
||||
more precisely, as instances of subclasses of `Item`, since `Item` is a
|
||||
pure interface. The subclasses of `Item` correspond almost one-to-one
|
||||
with CBOR major types, and are named to match the CDDL names to which
|
||||
they correspond. They are:
|
||||
|
||||
* `Uint` corresponds to major type 0, and can hold unsigned integers
|
||||
up through (2^64 - 1).
|
||||
* `Nint` corresponds to major type 1. It can only hold values from -1
|
||||
to -(2^63 - 1), since it's internal representation is an int64_t.
|
||||
This can be fixed, but it seems unlikely that applications will need
|
||||
the omitted range from -(2^63) to (2^64 - 1), since it's
|
||||
inconvenient to represent them in many programming languages.
|
||||
* `Int` is an abstract base of `Uint` and `Nint` that facilitates
|
||||
working with all signed integers representable with int64_t.
|
||||
* `Bstr` corresponds to major type 2, a byte string.
|
||||
* `Tstr` corresponds to major type 3, a text string.
|
||||
* `Array` corresponds to major type 4, an Array. It holds a
|
||||
variable-length array of `Item`s.
|
||||
* `Map` corresponds to major type 5, a Map. It holds a
|
||||
variable-length array of pairs of `Item`s.
|
||||
* `Simple` corresponds to major type 7. It's an abstract class since
|
||||
items require more specific type.
|
||||
* `Bool` is the only currently-implemented subclass of `Simple`.
|
||||
|
||||
Note that major type 6, semantic tag, is not yet implemented.
|
||||
|
||||
In practice, users of CppBor will rarely use most of these classes
|
||||
when generating CBOR encodings. This is because CppBor provides
|
||||
straightforward conversions from the obvious normal C++ types.
|
||||
Specifically, the following conversions are provided in appropriate
|
||||
contexts:
|
||||
|
||||
* Signed and unsigned integers convert to `Uint` or `Nint`, as
|
||||
appropriate.
|
||||
* `std::string`, `std::string_view`, `const char*` and
|
||||
`std::pair<char iterator, char iterator>` convert to `Tstr`.
|
||||
* `std::vector<uint8_t>`, `std::pair<uint8_t iterator, uint8_t
|
||||
iterator>` and `std::pair<uint8_t*, size_t>` convert to `Bstr`.
|
||||
* `bool` converts to `Bool`.
|
||||
|
||||
## CBOR generation
|
||||
|
||||
### Complete tree generation
|
||||
|
||||
The set of `encode` methods in `Item` provide the interface for
|
||||
producing encoded CBOR. The basic process for "complete tree"
|
||||
generation (as opposed to "incremental" generation, which is discussed
|
||||
below) is to construct an `Item` which models the data to be encoded,
|
||||
and then call one of the `encode` methods, whichever is convenient for
|
||||
the encoding destination. A trivial example:
|
||||
|
||||
```
|
||||
cppbor::Uint val(0);
|
||||
std::vector<uint8_t> encoding = val.encode();
|
||||
```
|
||||
|
||||
It's relatively rare that single values are encoded as above. More often, the
|
||||
"root" data item will be an `Array` or `Map` which contains a more complex structure.For example
|
||||
:
|
||||
|
||||
``` using cppbor::Map;
|
||||
using cppbor::Array;
|
||||
|
||||
std::vector<uint8_t> vec = // ...
|
||||
Map val("key1", Array(Map("key_a", 99 "key_b", vec), "foo"), "key2", true);
|
||||
std::vector<uint8_t> encoding = val.encode();
|
||||
```
|
||||
|
||||
This creates a map with two entries, with `Tstr` keys "Outer1" and
|
||||
"Outer2", respectively. The "Outer1" entry has as its value an
|
||||
`Array` containing a `Map` and a `Tstr`. The "Outer2" entry has a
|
||||
`Bool` value.
|
||||
|
||||
This example demonstrates how automatic conversion of C++ types to
|
||||
CppBor `Item` subclass instances is done. Where the caller provides a
|
||||
C++ or C string, a `Tstr` entry is added. Where the caller provides
|
||||
an integer literal or variable, a `Uint` or `Nint` is added, depending
|
||||
on whether the value is positive or negative.
|
||||
|
||||
As an alternative, a more fluent-style API is provided for building up
|
||||
structures. For example:
|
||||
|
||||
```
|
||||
using cppbor::Map;
|
||||
using cppbor::Array;
|
||||
|
||||
std::vector<uint8_t> vec = // ...
|
||||
Map val();
|
||||
val.add("key1", Array().add(Map().add("key_a", 99).add("key_b", vec)).add("foo")).add("key2", true);
|
||||
std::vector<uint8_t> encoding = val.encode();
|
||||
```
|
||||
|
||||
An advantage of this interface over the constructor -
|
||||
based creation approach above is that it need not be done all at once
|
||||
.The `add` methods return a reference to the object added to to allow calls to be chained,
|
||||
but chaining is not necessary; calls can be made
|
||||
sequentially, as the data to add is available.
|
||||
|
||||
#### `encode` methods
|
||||
|
||||
There are several variations of `Item::encode`, all of which
|
||||
accomplish the same task but output the encoded data in different
|
||||
ways, and with somewhat different performance characteristics. The
|
||||
provided options are:
|
||||
|
||||
* `bool encode(uint8\_t** pos, const uint8\_t* end)` encodes into the
|
||||
buffer referenced by the range [`*pos`, end). `*pos` is moved. If
|
||||
the encoding runs out of buffer space before finishing, the method
|
||||
returns false. This is the most efficient way to encode, into an
|
||||
already-allocated buffer.
|
||||
* `void encode(EncodeCallback encodeCallback)` calls `encodeCallback`
|
||||
for each encoded byte. It's the responsibility of the implementor
|
||||
of the callback to behave safely in the event that the output buffer
|
||||
(if applicable) is exhausted. This is less efficient than the prior
|
||||
method because it imposes an additional function call for each byte.
|
||||
* `template </*...*/> void encode(OutputIterator i)`
|
||||
encodes into the provided iterator. SFINAE ensures that the
|
||||
template doesn't match for non-iterators. The implementation
|
||||
actually uses the callback-based method, plus has whatever overhead
|
||||
the iterator adds.
|
||||
* `std::vector<uint8_t> encode()` creates a new std::vector, reserves
|
||||
sufficient capacity to hold the encoding, and inserts the encoded
|
||||
bytes with a std::pushback_iterator and the previous method.
|
||||
* `std::string toString()` does the same as the previous method, but
|
||||
returns a string instead of a vector.
|
||||
|
||||
### Incremental generation
|
||||
|
||||
Incremental generation requires deeper understanding of CBOR, because
|
||||
the library can't do as much to ensure that the output is valid. The
|
||||
basic tool for intcremental generation is the `encodeHeader`
|
||||
function. There are two variations, one which writes into a buffer,
|
||||
and one which uses a callback. Both simply write out the bytes of a
|
||||
header. To construct the same map as in the above examples,
|
||||
incrementally, one might write:
|
||||
|
||||
```
|
||||
using namespace cppbor; // For example brevity
|
||||
|
||||
std::vector encoding;
|
||||
auto iter = std::back_inserter(result);
|
||||
encodeHeader(MAP, 2 /* # of map entries */, iter);
|
||||
std::string s = "key1";
|
||||
encodeHeader(TSTR, s.size(), iter);
|
||||
std::copy(s.begin(), s.end(), iter);
|
||||
encodeHeader(ARRAY, 2 /* # of array entries */, iter);
|
||||
Map().add("key_a", 99).add("key_b", vec).encode(iter)
|
||||
s = "foo";
|
||||
encodeHeader(TSTR, foo.size(), iter);
|
||||
std::copy(s.begin(), s.end(), iter);
|
||||
s = "key2";
|
||||
encodeHeader(TSTR, foo.size(), iter);
|
||||
std::copy(s.begin(), s.end(), iter);
|
||||
encodeHeader(SIMPLE, TRUE, iter);
|
||||
```
|
||||
|
||||
As the above example demonstrates, the styles can be mixed -- Note the
|
||||
creation and encoding of the inner Map using the fluent style.
|
||||
|
||||
## Parsing
|
||||
|
||||
CppBor also supports parsing of encoded CBOR data, with the same
|
||||
feature set as encoding. There are two basic approaches to parsing,
|
||||
"full" and "stream"
|
||||
|
||||
### Full parsing
|
||||
|
||||
Full parsing means completely parsing a (possibly-compound) data
|
||||
item from a byte buffer. The `parse` functions that do not take a
|
||||
`ParseClient` pointer do this. They return a `ParseResult` which is a
|
||||
tuple of three values:
|
||||
|
||||
* std::unique_ptr<Item> that points to the parsed item, or is nullptr
|
||||
if there was a parse error.
|
||||
* const uint8_t* that points to the byte after the end of the decoded
|
||||
item, or to the first unparseable byte in the event of an error.
|
||||
* std::string that is empty on success or contains an error message if
|
||||
a parse error occurred.
|
||||
|
||||
Assuming a successful parse, you can then use `Item::type()` to
|
||||
discover the type of the parsed item (e.g. MAP), and then use the
|
||||
appropriate `Item::as*()` method (e.g. `Item::asMap()`) to get a
|
||||
pointer to an interface which allows you to retrieve specific values.
|
||||
|
||||
### Stream parsing
|
||||
|
||||
Stream parsing is more complex, but more flexible. To use
|
||||
StreamParsing, you must create your own subclass of `ParseClient` and
|
||||
call one of the `parse` functions that accepts it. See the
|
||||
`ParseClient` methods docstrings for details.
|
||||
|
||||
One unusual feature of stream parsing is that the `ParseClient`
|
||||
callback methods not only provide the parsed Item, but also pointers
|
||||
to the portion of the buffer that encode that Item. This is useful
|
||||
if, for example, you want to find an element inside of a structure,
|
||||
and then copy the encoding of that sub-structure, without bothering to
|
||||
parse the rest.
|
||||
|
||||
The full parser is implemented with the stream parser.
|
||||
@@ -1,827 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2019, The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <iterator>
|
||||
#include <memory>
|
||||
#include <numeric>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace cppbor {
|
||||
|
||||
enum MajorType : uint8_t {
|
||||
UINT = 0 << 5,
|
||||
NINT = 1 << 5,
|
||||
BSTR = 2 << 5,
|
||||
TSTR = 3 << 5,
|
||||
ARRAY = 4 << 5,
|
||||
MAP = 5 << 5,
|
||||
SEMANTIC = 6 << 5,
|
||||
SIMPLE = 7 << 5,
|
||||
};
|
||||
|
||||
enum SimpleType {
|
||||
BOOLEAN,
|
||||
NULL_T, // Only two supported, as yet.
|
||||
};
|
||||
|
||||
enum SpecialAddlInfoValues : uint8_t {
|
||||
FALSE = 20,
|
||||
TRUE = 21,
|
||||
NULL_V = 22,
|
||||
ONE_BYTE_LENGTH = 24,
|
||||
TWO_BYTE_LENGTH = 25,
|
||||
FOUR_BYTE_LENGTH = 26,
|
||||
EIGHT_BYTE_LENGTH = 27,
|
||||
};
|
||||
|
||||
class Item;
|
||||
class Uint;
|
||||
class Nint;
|
||||
class Int;
|
||||
class Tstr;
|
||||
class Bstr;
|
||||
class Simple;
|
||||
class Bool;
|
||||
class Array;
|
||||
class Map;
|
||||
class Null;
|
||||
class Semantic;
|
||||
|
||||
/**
|
||||
* Returns the size of a CBOR header that contains the additional info value addlInfo.
|
||||
*/
|
||||
size_t headerSize(uint64_t addlInfo);
|
||||
|
||||
/**
|
||||
* Encodes a CBOR header with the specified type and additional info into the range [pos, end).
|
||||
* Returns a pointer to one past the last byte written, or nullptr if there isn't sufficient space
|
||||
* to write the header.
|
||||
*/
|
||||
uint8_t* encodeHeader(MajorType type, uint64_t addlInfo, uint8_t* pos, const uint8_t* end);
|
||||
|
||||
using EncodeCallback = std::function<void(uint8_t)>;
|
||||
|
||||
/**
|
||||
* Encodes a CBOR header with the specified type and additional info, passing each byte in turn to
|
||||
* encodeCallback.
|
||||
*/
|
||||
void encodeHeader(MajorType type, uint64_t addlInfo, EncodeCallback encodeCallback);
|
||||
|
||||
/**
|
||||
* Encodes a CBOR header with the specified type and additional info, writing each byte to the
|
||||
* provided OutputIterator.
|
||||
*/
|
||||
template <typename OutputIterator,
|
||||
typename = std::enable_if_t<std::is_base_of_v<
|
||||
std::output_iterator_tag,
|
||||
typename std::iterator_traits<OutputIterator>::iterator_category>>>
|
||||
void encodeHeader(MajorType type, uint64_t addlInfo, OutputIterator iter) {
|
||||
return encodeHeader(type, addlInfo, [&](uint8_t v) { *iter++ = v; });
|
||||
}
|
||||
|
||||
/**
|
||||
* Item represents a CBOR-encodeable data item. Item is an abstract interface with a set of virtual
|
||||
* methods that allow encoding of the item or conversion to the appropriate derived type.
|
||||
*/
|
||||
class Item {
|
||||
public:
|
||||
virtual ~Item() {}
|
||||
|
||||
/**
|
||||
* Returns the CBOR type of the item.
|
||||
*/
|
||||
virtual MajorType type() const = 0;
|
||||
|
||||
// These methods safely downcast an Item to the appropriate subclass.
|
||||
virtual const Int* asInt() const { return nullptr; }
|
||||
virtual const Uint* asUint() const { return nullptr; }
|
||||
virtual const Nint* asNint() const { return nullptr; }
|
||||
virtual const Tstr* asTstr() const { return nullptr; }
|
||||
virtual const Bstr* asBstr() const { return nullptr; }
|
||||
virtual const Simple* asSimple() const { return nullptr; }
|
||||
virtual const Map* asMap() const { return nullptr; }
|
||||
virtual const Array* asArray() const { return nullptr; }
|
||||
virtual const Semantic* asSemantic() const { return nullptr; }
|
||||
|
||||
/**
|
||||
* Returns true if this is a "compound" item, i.e. one that contains one or more other items.
|
||||
*/
|
||||
virtual bool isCompound() const { return false; }
|
||||
|
||||
bool operator==(const Item& other) const&;
|
||||
bool operator!=(const Item& other) const& { return !(*this == other); }
|
||||
|
||||
/**
|
||||
* Returns the number of bytes required to encode this Item into CBOR. Note that if this is a
|
||||
* complex Item, calling this method will require walking the whole tree.
|
||||
*/
|
||||
virtual size_t encodedSize() const = 0;
|
||||
|
||||
/**
|
||||
* Encodes the Item into buffer referenced by range [*pos, end). Returns a pointer to one past
|
||||
* the last position written. Returns nullptr if there isn't enough space to encode.
|
||||
*/
|
||||
virtual uint8_t* encode(uint8_t* pos, const uint8_t* end) const = 0;
|
||||
|
||||
/**
|
||||
* Encodes the Item by passing each encoded byte to encodeCallback.
|
||||
*/
|
||||
virtual void encode(EncodeCallback encodeCallback) const = 0;
|
||||
|
||||
/**
|
||||
* Clones the Item
|
||||
*/
|
||||
virtual std::unique_ptr<Item> clone() const = 0;
|
||||
|
||||
/**
|
||||
* Encodes the Item into the provided OutputIterator.
|
||||
*/
|
||||
template <typename OutputIterator,
|
||||
typename = typename std::iterator_traits<OutputIterator>::iterator_category>
|
||||
void encode(OutputIterator i) const {
|
||||
return encode([&](uint8_t v) { *i++ = v; });
|
||||
}
|
||||
|
||||
/**
|
||||
* Encodes the Item into a new std::vector<uint8_t>.
|
||||
*/
|
||||
std::vector<uint8_t> encode() const {
|
||||
std::vector<uint8_t> retval;
|
||||
retval.reserve(encodedSize());
|
||||
encode(std::back_inserter(retval));
|
||||
return retval;
|
||||
}
|
||||
|
||||
/**
|
||||
* Encodes the Item into a new std::string.
|
||||
*/
|
||||
std::string toString() const {
|
||||
std::string retval;
|
||||
retval.reserve(encodedSize());
|
||||
encode([&](uint8_t v) { retval.push_back(v); });
|
||||
return retval;
|
||||
}
|
||||
|
||||
/**
|
||||
* Encodes only the header of the Item.
|
||||
*/
|
||||
inline uint8_t* encodeHeader(uint64_t addlInfo, uint8_t* pos, const uint8_t* end) const {
|
||||
return ::cppbor::encodeHeader(type(), addlInfo, pos, end);
|
||||
}
|
||||
|
||||
/**
|
||||
* Encodes only the header of the Item.
|
||||
*/
|
||||
inline void encodeHeader(uint64_t addlInfo, EncodeCallback encodeCallback) const {
|
||||
::cppbor::encodeHeader(type(), addlInfo, encodeCallback);
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Int is an abstraction that allows Uint and Nint objects to be manipulated without caring about
|
||||
* the sign.
|
||||
*/
|
||||
class Int : public Item {
|
||||
public:
|
||||
bool operator==(const Int& other) const& { return value() == other.value(); }
|
||||
|
||||
virtual int64_t value() const = 0;
|
||||
|
||||
const Int* asInt() const override { return this; }
|
||||
};
|
||||
|
||||
/**
|
||||
* Uint is a concrete Item that implements CBOR major type 0.
|
||||
*/
|
||||
class Uint : public Int {
|
||||
public:
|
||||
static constexpr MajorType kMajorType = UINT;
|
||||
|
||||
explicit Uint(uint64_t v) : mValue(v) {}
|
||||
|
||||
bool operator==(const Uint& other) const& { return mValue == other.mValue; }
|
||||
|
||||
MajorType type() const override { return kMajorType; }
|
||||
const Uint* asUint() const override { return this; }
|
||||
|
||||
size_t encodedSize() const override { return headerSize(mValue); }
|
||||
|
||||
int64_t value() const override { return mValue; }
|
||||
uint64_t unsignedValue() const { return mValue; }
|
||||
|
||||
using Item::encode;
|
||||
uint8_t* encode(uint8_t* pos, const uint8_t* end) const override {
|
||||
return encodeHeader(mValue, pos, end);
|
||||
}
|
||||
void encode(EncodeCallback encodeCallback) const override {
|
||||
encodeHeader(mValue, encodeCallback);
|
||||
}
|
||||
|
||||
virtual std::unique_ptr<Item> clone() const override { return std::make_unique<Uint>(mValue); }
|
||||
|
||||
private:
|
||||
uint64_t mValue;
|
||||
};
|
||||
|
||||
/**
|
||||
* Nint is a concrete Item that implements CBOR major type 1.
|
||||
|
||||
* Note that it is incapable of expressing the full range of major type 1 values, becaue it can only
|
||||
* express values that fall into the range [std::numeric_limits<int64_t>::min(), -1]. It cannot
|
||||
* express values in the range [std::numeric_limits<int64_t>::min() - 1,
|
||||
* -std::numeric_limits<uint64_t>::max()].
|
||||
*/
|
||||
class Nint : public Int {
|
||||
public:
|
||||
static constexpr MajorType kMajorType = NINT;
|
||||
|
||||
explicit Nint(int64_t v);
|
||||
|
||||
bool operator==(const Nint& other) const& { return mValue == other.mValue; }
|
||||
|
||||
MajorType type() const override { return kMajorType; }
|
||||
const Nint* asNint() const override { return this; }
|
||||
size_t encodedSize() const override { return headerSize(addlInfo()); }
|
||||
|
||||
int64_t value() const override { return mValue; }
|
||||
|
||||
using Item::encode;
|
||||
uint8_t* encode(uint8_t* pos, const uint8_t* end) const override {
|
||||
return encodeHeader(addlInfo(), pos, end);
|
||||
}
|
||||
void encode(EncodeCallback encodeCallback) const override {
|
||||
encodeHeader(addlInfo(), encodeCallback);
|
||||
}
|
||||
|
||||
virtual std::unique_ptr<Item> clone() const override { return std::make_unique<Nint>(mValue); }
|
||||
|
||||
private:
|
||||
uint64_t addlInfo() const { return -1LL - mValue; }
|
||||
|
||||
int64_t mValue;
|
||||
};
|
||||
|
||||
/**
|
||||
* Bstr is a concrete Item that implements major type 2.
|
||||
*/
|
||||
class Bstr : public Item {
|
||||
public:
|
||||
static constexpr MajorType kMajorType = BSTR;
|
||||
|
||||
// Construct from a vector
|
||||
explicit Bstr(std::vector<uint8_t> v) : mValue(std::move(v)) {}
|
||||
|
||||
// Construct from a string
|
||||
explicit Bstr(const std::string& v)
|
||||
: mValue(reinterpret_cast<const uint8_t*>(v.data()),
|
||||
reinterpret_cast<const uint8_t*>(v.data()) + v.size()) {}
|
||||
|
||||
// Construct from a pointer/size pair
|
||||
explicit Bstr(const std::pair<const uint8_t*, size_t>& buf)
|
||||
: mValue(buf.first, buf.first + buf.second) {}
|
||||
|
||||
// Construct from a pair of iterators
|
||||
template <typename I1, typename I2,
|
||||
typename = typename std::iterator_traits<I1>::iterator_category,
|
||||
typename = typename std::iterator_traits<I2>::iterator_category>
|
||||
explicit Bstr(const std::pair<I1, I2>& pair) : mValue(pair.first, pair.second) {}
|
||||
|
||||
// Construct from an iterator range.
|
||||
template <typename I1, typename I2,
|
||||
typename = typename std::iterator_traits<I1>::iterator_category,
|
||||
typename = typename std::iterator_traits<I2>::iterator_category>
|
||||
Bstr(I1 begin, I2 end) : mValue(begin, end) {}
|
||||
|
||||
bool operator==(const Bstr& other) const& { return mValue == other.mValue; }
|
||||
|
||||
MajorType type() const override { return kMajorType; }
|
||||
const Bstr* asBstr() const override { return this; }
|
||||
size_t encodedSize() const override { return headerSize(mValue.size()) + mValue.size(); }
|
||||
using Item::encode;
|
||||
uint8_t* encode(uint8_t* pos, const uint8_t* end) const override;
|
||||
void encode(EncodeCallback encodeCallback) const override {
|
||||
encodeHeader(mValue.size(), encodeCallback);
|
||||
encodeValue(encodeCallback);
|
||||
}
|
||||
|
||||
const std::vector<uint8_t>& value() const { return mValue; }
|
||||
|
||||
virtual std::unique_ptr<Item> clone() const override { return std::make_unique<Bstr>(mValue); }
|
||||
|
||||
private:
|
||||
void encodeValue(EncodeCallback encodeCallback) const;
|
||||
|
||||
std::vector<uint8_t> mValue;
|
||||
};
|
||||
|
||||
/**
|
||||
* Bstr is a concrete Item that implements major type 3.
|
||||
*/
|
||||
class Tstr : public Item {
|
||||
public:
|
||||
static constexpr MajorType kMajorType = TSTR;
|
||||
|
||||
// Construct from a string
|
||||
explicit Tstr(std::string v) : mValue(std::move(v)) {}
|
||||
|
||||
// Construct from a string_view
|
||||
explicit Tstr(const std::string_view& v) : mValue(v) {}
|
||||
|
||||
// Construct from a C string
|
||||
explicit Tstr(const char* v) : mValue(std::string(v)) {}
|
||||
|
||||
// Construct from a pair of iterators
|
||||
template <typename I1, typename I2,
|
||||
typename = typename std::iterator_traits<I1>::iterator_category,
|
||||
typename = typename std::iterator_traits<I2>::iterator_category>
|
||||
explicit Tstr(const std::pair<I1, I2>& pair) : mValue(pair.first, pair.second) {}
|
||||
|
||||
// Construct from an iterator range
|
||||
template <typename I1, typename I2,
|
||||
typename = typename std::iterator_traits<I1>::iterator_category,
|
||||
typename = typename std::iterator_traits<I2>::iterator_category>
|
||||
Tstr(I1 begin, I2 end) : mValue(begin, end) {}
|
||||
|
||||
bool operator==(const Tstr& other) const& { return mValue == other.mValue; }
|
||||
|
||||
MajorType type() const override { return kMajorType; }
|
||||
const Tstr* asTstr() const override { return this; }
|
||||
size_t encodedSize() const override { return headerSize(mValue.size()) + mValue.size(); }
|
||||
using Item::encode;
|
||||
uint8_t* encode(uint8_t* pos, const uint8_t* end) const override;
|
||||
void encode(EncodeCallback encodeCallback) const override {
|
||||
encodeHeader(mValue.size(), encodeCallback);
|
||||
encodeValue(encodeCallback);
|
||||
}
|
||||
|
||||
const std::string& value() const { return mValue; }
|
||||
|
||||
virtual std::unique_ptr<Item> clone() const override { return std::make_unique<Tstr>(mValue); }
|
||||
|
||||
private:
|
||||
void encodeValue(EncodeCallback encodeCallback) const;
|
||||
|
||||
std::string mValue;
|
||||
};
|
||||
|
||||
/**
|
||||
* CompoundItem is an abstract Item that provides common functionality for Items that contain other
|
||||
* items, i.e. Arrays (CBOR type 4) and Maps (CBOR type 5).
|
||||
*/
|
||||
class CompoundItem : public Item {
|
||||
public:
|
||||
bool operator==(const CompoundItem& other) const&;
|
||||
|
||||
virtual size_t size() const { return mEntries.size(); }
|
||||
|
||||
bool isCompound() const override { return true; }
|
||||
|
||||
size_t encodedSize() const override {
|
||||
return std::accumulate(mEntries.begin(), mEntries.end(), headerSize(size()),
|
||||
[](size_t sum, auto& entry) { return sum + entry->encodedSize(); });
|
||||
}
|
||||
|
||||
using Item::encode; // Make base versions visible.
|
||||
uint8_t* encode(uint8_t* pos, const uint8_t* end) const override;
|
||||
void encode(EncodeCallback encodeCallback) const override;
|
||||
|
||||
virtual uint64_t addlInfo() const = 0;
|
||||
|
||||
protected:
|
||||
std::vector<std::unique_ptr<Item>> mEntries;
|
||||
};
|
||||
|
||||
/*
|
||||
* Array is a concrete Item that implements CBOR major type 4.
|
||||
*
|
||||
* Note that Arrays are not copyable. This is because copying them is expensive and making them
|
||||
* move-only ensures that they're never copied accidentally. If you actually want to copy an Array,
|
||||
* use the clone() method.
|
||||
*/
|
||||
class Array : public CompoundItem {
|
||||
public:
|
||||
static constexpr MajorType kMajorType = ARRAY;
|
||||
|
||||
Array() = default;
|
||||
Array(const Array& other) = delete;
|
||||
Array(Array&&) = default;
|
||||
Array& operator=(const Array&) = delete;
|
||||
Array& operator=(Array&&) = default;
|
||||
|
||||
/**
|
||||
* Construct an Array from a variable number of arguments of different types. See
|
||||
* details::makeItem below for details on what types may be provided. In general, this accepts
|
||||
* all of the types you'd expect and doest the things you'd expect (integral values are addes as
|
||||
* Uint or Nint, std::string and char* are added as Tstr, bools are added as Bool, etc.).
|
||||
*/
|
||||
template <typename... Args, typename Enable>
|
||||
Array(Args&&... args);
|
||||
|
||||
/**
|
||||
* Append a single element to the Array, of any compatible type.
|
||||
*/
|
||||
template <typename T>
|
||||
Array& add(T&& v) &;
|
||||
template <typename T>
|
||||
Array&& add(T&& v) &&;
|
||||
|
||||
const std::unique_ptr<Item>& operator[](size_t index) const { return mEntries[index]; }
|
||||
std::unique_ptr<Item>& operator[](size_t index) { return mEntries[index]; }
|
||||
|
||||
MajorType type() const override { return kMajorType; }
|
||||
const Array* asArray() const override { return this; }
|
||||
|
||||
virtual std::unique_ptr<Item> clone() const override;
|
||||
|
||||
uint64_t addlInfo() const override { return size(); }
|
||||
};
|
||||
|
||||
/*
|
||||
* Map is a concrete Item that implements CBOR major type 5.
|
||||
*
|
||||
* Note that Maps are not copyable. This is because copying them is expensive and making them
|
||||
* move-only ensures that they're never copied accidentally. If you actually want to copy a
|
||||
* Map, use the clone() method.
|
||||
*/
|
||||
class Map : public CompoundItem {
|
||||
public:
|
||||
static constexpr MajorType kMajorType = MAP;
|
||||
|
||||
Map() = default;
|
||||
Map(const Map& other) = delete;
|
||||
Map(Map&&) = default;
|
||||
Map& operator=(const Map& other) = delete;
|
||||
Map& operator=(Map&&) = default;
|
||||
|
||||
/**
|
||||
* Construct a Map from a variable number of arguments of different types. An even number of
|
||||
* arguments must be provided (this is verified statically). See details::makeItem below for
|
||||
* details on what types may be provided. In general, this accepts all of the types you'd
|
||||
* expect and doest the things you'd expect (integral values are addes as Uint or Nint,
|
||||
* std::string and char* are added as Tstr, bools are added as Bool, etc.).
|
||||
*/
|
||||
template <typename... Args, typename Enable>
|
||||
Map(Args&&... args);
|
||||
|
||||
/**
|
||||
* Append a key/value pair to the Map, of any compatible types.
|
||||
*/
|
||||
template <typename Key, typename Value>
|
||||
Map& add(Key&& key, Value&& value) &;
|
||||
template <typename Key, typename Value>
|
||||
Map&& add(Key&& key, Value&& value) &&;
|
||||
|
||||
size_t size() const override {
|
||||
assertInvariant();
|
||||
return mEntries.size() / 2;
|
||||
}
|
||||
|
||||
template <typename Key, typename Enable>
|
||||
std::pair<std::unique_ptr<Item>&, bool> get(Key key);
|
||||
|
||||
std::pair<const std::unique_ptr<Item>&, const std::unique_ptr<Item>&> operator[](
|
||||
size_t index) const {
|
||||
assertInvariant();
|
||||
return {mEntries[index * 2], mEntries[index * 2 + 1]};
|
||||
}
|
||||
|
||||
std::pair<std::unique_ptr<Item>&, std::unique_ptr<Item>&> operator[](size_t index) {
|
||||
assertInvariant();
|
||||
return {mEntries[index * 2], mEntries[index * 2 + 1]};
|
||||
}
|
||||
|
||||
MajorType type() const override { return kMajorType; }
|
||||
const Map* asMap() const override { return this; }
|
||||
|
||||
virtual std::unique_ptr<Item> clone() const override;
|
||||
|
||||
uint64_t addlInfo() const override { return size(); }
|
||||
|
||||
private:
|
||||
void assertInvariant() const;
|
||||
};
|
||||
|
||||
class Semantic : public CompoundItem {
|
||||
public:
|
||||
static constexpr MajorType kMajorType = SEMANTIC;
|
||||
|
||||
template <typename T>
|
||||
explicit Semantic(uint64_t value, T&& child);
|
||||
|
||||
Semantic(const Semantic& other) = delete;
|
||||
Semantic(Semantic&&) = default;
|
||||
Semantic& operator=(const Semantic& other) = delete;
|
||||
Semantic& operator=(Semantic&&) = default;
|
||||
|
||||
size_t size() const override {
|
||||
assertInvariant();
|
||||
return 1;
|
||||
}
|
||||
|
||||
size_t encodedSize() const override {
|
||||
return std::accumulate(mEntries.begin(), mEntries.end(), headerSize(mValue),
|
||||
[](size_t sum, auto& entry) { return sum + entry->encodedSize(); });
|
||||
}
|
||||
|
||||
MajorType type() const override { return kMajorType; }
|
||||
const Semantic* asSemantic() const override { return this; }
|
||||
|
||||
const std::unique_ptr<Item>& child() const {
|
||||
assertInvariant();
|
||||
return mEntries[0];
|
||||
}
|
||||
|
||||
std::unique_ptr<Item>& child() {
|
||||
assertInvariant();
|
||||
return mEntries[0];
|
||||
}
|
||||
|
||||
uint64_t value() const { return mValue; }
|
||||
|
||||
uint64_t addlInfo() const override { return value(); }
|
||||
|
||||
virtual std::unique_ptr<Item> clone() const override {
|
||||
assertInvariant();
|
||||
return std::make_unique<Semantic>(mValue, mEntries[0]->clone());
|
||||
}
|
||||
|
||||
protected:
|
||||
Semantic() = default;
|
||||
Semantic(uint64_t value) : mValue(value) {}
|
||||
uint64_t mValue;
|
||||
|
||||
private:
|
||||
void assertInvariant() const;
|
||||
};
|
||||
|
||||
/**
|
||||
* Simple is abstract Item that implements CBOR major type 7. It is intended to be subclassed to
|
||||
* create concrete Simple types. At present only Bool is provided.
|
||||
*/
|
||||
class Simple : public Item {
|
||||
public:
|
||||
static constexpr MajorType kMajorType = SIMPLE;
|
||||
|
||||
bool operator==(const Simple& other) const&;
|
||||
|
||||
virtual SimpleType simpleType() const = 0;
|
||||
MajorType type() const override { return kMajorType; }
|
||||
|
||||
const Simple* asSimple() const override { return this; }
|
||||
|
||||
virtual const Bool* asBool() const { return nullptr; };
|
||||
virtual const Null* asNull() const { return nullptr; };
|
||||
};
|
||||
|
||||
/**
|
||||
* Bool is a concrete type that implements CBOR major type 7, with additional item values for TRUE
|
||||
* and FALSE.
|
||||
*/
|
||||
class Bool : public Simple {
|
||||
public:
|
||||
static constexpr SimpleType kSimpleType = BOOLEAN;
|
||||
|
||||
explicit Bool(bool v) : mValue(v) {}
|
||||
|
||||
bool operator==(const Bool& other) const& { return mValue == other.mValue; }
|
||||
|
||||
SimpleType simpleType() const override { return kSimpleType; }
|
||||
const Bool* asBool() const override { return this; }
|
||||
|
||||
size_t encodedSize() const override { return 1; }
|
||||
|
||||
using Item::encode;
|
||||
uint8_t* encode(uint8_t* pos, const uint8_t* end) const override {
|
||||
return encodeHeader(mValue ? TRUE : FALSE, pos, end);
|
||||
}
|
||||
void encode(EncodeCallback encodeCallback) const override {
|
||||
encodeHeader(mValue ? TRUE : FALSE, encodeCallback);
|
||||
}
|
||||
|
||||
bool value() const { return mValue; }
|
||||
|
||||
virtual std::unique_ptr<Item> clone() const override { return std::make_unique<Bool>(mValue); }
|
||||
|
||||
private:
|
||||
bool mValue;
|
||||
};
|
||||
|
||||
/**
|
||||
* Null is a concrete type that implements CBOR major type 7, with additional item value for NULL
|
||||
*/
|
||||
class Null : public Simple {
|
||||
public:
|
||||
static constexpr SimpleType kSimpleType = NULL_T;
|
||||
|
||||
explicit Null() {}
|
||||
|
||||
SimpleType simpleType() const override { return kSimpleType; }
|
||||
const Null* asNull() const override { return this; }
|
||||
|
||||
size_t encodedSize() const override { return 1; }
|
||||
|
||||
using Item::encode;
|
||||
uint8_t* encode(uint8_t* pos, const uint8_t* end) const override {
|
||||
return encodeHeader(NULL_V, pos, end);
|
||||
}
|
||||
void encode(EncodeCallback encodeCallback) const override {
|
||||
encodeHeader(NULL_V, encodeCallback);
|
||||
}
|
||||
|
||||
virtual std::unique_ptr<Item> clone() const override { return std::make_unique<Null>(); }
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
std::unique_ptr<T> downcastItem(std::unique_ptr<Item>&& v) {
|
||||
static_assert(std::is_base_of_v<Item, T> && !std::is_abstract_v<T>,
|
||||
"returned type is not an Item or is an abstract class");
|
||||
if (v && T::kMajorType == v->type()) {
|
||||
if constexpr (std::is_base_of_v<Simple, T>) {
|
||||
if (T::kSimpleType != v->asSimple()->simpleType()) {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
return std::unique_ptr<T>(static_cast<T*>(v.release()));
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Details. Mostly you shouldn't have to look below, except perhaps at the docstring for makeItem.
|
||||
*/
|
||||
namespace details {
|
||||
|
||||
template <typename T, typename V, typename Enable = void>
|
||||
struct is_iterator_pair_over : public std::false_type {};
|
||||
|
||||
template <typename I1, typename I2, typename V>
|
||||
struct is_iterator_pair_over<
|
||||
std::pair<I1, I2>, V,
|
||||
typename std::enable_if_t<std::is_same_v<V, typename std::iterator_traits<I1>::value_type>>>
|
||||
: public std::true_type {};
|
||||
|
||||
template <typename T, typename V, typename Enable = void>
|
||||
struct is_unique_ptr_of_subclass_of_v : public std::false_type {};
|
||||
|
||||
template <typename T, typename P>
|
||||
struct is_unique_ptr_of_subclass_of_v<T, std::unique_ptr<P>,
|
||||
typename std::enable_if_t<std::is_base_of_v<T, P>>>
|
||||
: public std::true_type {};
|
||||
|
||||
/* check if type is one of std::string (1), std::string_view (2), null-terminated char* (3) or pair
|
||||
* of iterators (4)*/
|
||||
template <typename T, typename Enable = void>
|
||||
struct is_text_type_v : public std::false_type {};
|
||||
|
||||
template <typename T>
|
||||
struct is_text_type_v<
|
||||
T, typename std::enable_if_t<
|
||||
/* case 1 */ //
|
||||
std::is_same_v<std::remove_cv_t<std::remove_reference_t<T>>, std::string>
|
||||
/* case 2 */ //
|
||||
|| std::is_same_v<std::remove_cv_t<std::remove_reference_t<T>>, std::string_view>
|
||||
/* case 3 */ //
|
||||
|| std::is_same_v<std::remove_cv_t<std::decay_t<T>>, char*> //
|
||||
|| std::is_same_v<std::remove_cv_t<std::decay_t<T>>, const char*>
|
||||
/* case 4 */
|
||||
|| details::is_iterator_pair_over<T, char>::value>> : public std::true_type {};
|
||||
|
||||
/**
|
||||
* Construct a unique_ptr<Item> from many argument types. Accepts:
|
||||
*
|
||||
* (a) booleans;
|
||||
* (b) integers, all sizes and signs;
|
||||
* (c) text strings, as defined by is_text_type_v above;
|
||||
* (d) byte strings, as std::vector<uint8_t>(d1), pair of iterators (d2) or pair<uint8_t*, size_T>
|
||||
* (d3); and
|
||||
* (e) Item subclass instances, including Array and Map. Items may be provided by naked pointer
|
||||
* (e1), unique_ptr (e2), reference (e3) or value (e3). If provided by reference or value, will
|
||||
* be moved if possible. If provided by pointer, ownership is taken.
|
||||
* (f) null pointer;
|
||||
*/
|
||||
template <typename T>
|
||||
std::unique_ptr<Item> makeItem(T v) {
|
||||
Item* p = nullptr;
|
||||
if constexpr (/* case a */ std::is_same_v<T, bool>) {
|
||||
p = new Bool(v);
|
||||
} else if constexpr (/* case b */ std::is_integral_v<T>) { // b
|
||||
if (v < 0) {
|
||||
p = new Nint(v);
|
||||
} else {
|
||||
p = new Uint(static_cast<uint64_t>(v));
|
||||
}
|
||||
} else if constexpr (/* case c */ //
|
||||
details::is_text_type_v<T>::value) {
|
||||
p = new Tstr(v);
|
||||
} else if constexpr (/* case d1 */ //
|
||||
std::is_same_v<std::remove_cv_t<std::remove_reference_t<T>>,
|
||||
std::vector<uint8_t>>
|
||||
/* case d2 */ //
|
||||
|| details::is_iterator_pair_over<T, uint8_t>::value
|
||||
/* case d3 */ //
|
||||
|| std::is_same_v<std::remove_cv_t<std::remove_reference_t<T>>,
|
||||
std::pair<uint8_t*, size_t>>) {
|
||||
p = new Bstr(v);
|
||||
} else if constexpr (/* case e1 */ //
|
||||
std::is_pointer_v<T> &&
|
||||
std::is_base_of_v<Item, std::remove_pointer_t<T>>) {
|
||||
p = v;
|
||||
} else if constexpr (/* case e2 */ //
|
||||
details::is_unique_ptr_of_subclass_of_v<Item, T>::value) {
|
||||
p = v.release();
|
||||
} else if constexpr (/* case e3 */ //
|
||||
std::is_base_of_v<Item, T>) {
|
||||
p = new T(std::move(v));
|
||||
} else if constexpr (/* case f */ std::is_null_pointer_v<T>) {
|
||||
p = new Null();
|
||||
} else {
|
||||
// It's odd that this can't be static_assert(false), since it shouldn't be evaluated if one
|
||||
// of the above ifs matches. But static_assert(false) always triggers.
|
||||
static_assert(std::is_same_v<T, bool>, "makeItem called with unsupported type");
|
||||
}
|
||||
return std::unique_ptr<Item>(p);
|
||||
}
|
||||
|
||||
} // namespace details
|
||||
|
||||
template <typename... Args,
|
||||
/* Prevent use as copy ctor */ typename = std::enable_if_t<
|
||||
(sizeof...(Args)) != 1 ||
|
||||
!(std::is_same_v<Array, std::remove_cv_t<std::remove_reference_t<Args>>> || ...)>>
|
||||
Array::Array(Args&&... args) {
|
||||
mEntries.reserve(sizeof...(args));
|
||||
(mEntries.push_back(details::makeItem(std::forward<Args>(args))), ...);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Array& Array::add(T&& v) & {
|
||||
mEntries.push_back(details::makeItem(std::forward<T>(v)));
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Array&& Array::add(T&& v) && {
|
||||
mEntries.push_back(details::makeItem(std::forward<T>(v)));
|
||||
return std::move(*this);
|
||||
}
|
||||
|
||||
template <typename... Args,
|
||||
/* Prevent use as copy ctor */ typename = std::enable_if_t<(sizeof...(Args)) != 1>>
|
||||
Map::Map(Args&&... args) {
|
||||
static_assert((sizeof...(Args)) % 2 == 0, "Map must have an even number of entries");
|
||||
mEntries.reserve(sizeof...(args));
|
||||
(mEntries.push_back(details::makeItem(std::forward<Args>(args))), ...);
|
||||
}
|
||||
|
||||
template <typename Key, typename Value>
|
||||
Map& Map::add(Key&& key, Value&& value) & {
|
||||
mEntries.push_back(details::makeItem(std::forward<Key>(key)));
|
||||
mEntries.push_back(details::makeItem(std::forward<Value>(value)));
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename Key, typename Value>
|
||||
Map&& Map::add(Key&& key, Value&& value) && {
|
||||
this->add(std::forward<Key>(key), std::forward<Value>(value));
|
||||
return std::move(*this);
|
||||
}
|
||||
|
||||
template <typename Key, typename = std::enable_if_t<std::is_integral_v<Key> ||
|
||||
details::is_text_type_v<Key>::value>>
|
||||
std::pair<std::unique_ptr<Item>&, bool> Map::get(Key key) {
|
||||
assertInvariant();
|
||||
auto keyItem = details::makeItem(key);
|
||||
for (size_t i = 0; i < mEntries.size(); i += 2) {
|
||||
if (*keyItem == *mEntries[i]) {
|
||||
return {mEntries[i + 1], true};
|
||||
}
|
||||
}
|
||||
return {keyItem, false};
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Semantic::Semantic(uint64_t value, T&& child) : mValue(value) {
|
||||
mEntries.reserve(1);
|
||||
mEntries.push_back(details::makeItem(std::forward<T>(child)));
|
||||
}
|
||||
|
||||
} // namespace cppbor
|
||||
@@ -1,133 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2019, The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "cppbor.h"
|
||||
|
||||
namespace cppbor {
|
||||
|
||||
using ParseResult = std::tuple<std::unique_ptr<Item> /* result */, const uint8_t* /* newPos */,
|
||||
std::string /* errMsg */>;
|
||||
|
||||
/**
|
||||
* Parse the first CBOR data item (possibly compound) from the range [begin, end).
|
||||
*
|
||||
* Returns a tuple of Item pointer, buffer pointer and error message. If parsing is successful, the
|
||||
* Item pointer is non-null, the buffer pointer points to the first byte after the
|
||||
* successfully-parsed item and the error message string is empty. If parsing fails, the Item
|
||||
* pointer is null, the buffer pointer points to the first byte that was unparseable (the first byte
|
||||
* of a data item header that is malformed in some way, e.g. an invalid value, or a length that is
|
||||
* too large for the remining buffer, etc.) and the string contains an error message describing the
|
||||
* problem encountered.
|
||||
*/
|
||||
ParseResult parse(const uint8_t* begin, const uint8_t* end);
|
||||
|
||||
/**
|
||||
* Parse the first CBOR data item (possibly compound) from the byte vector.
|
||||
*
|
||||
* Returns a tuple of Item pointer, buffer pointer and error message. If parsing is successful, the
|
||||
* Item pointer is non-null, the buffer pointer points to the first byte after the
|
||||
* successfully-parsed item and the error message string is empty. If parsing fails, the Item
|
||||
* pointer is null, the buffer pointer points to the first byte that was unparseable (the first byte
|
||||
* of a data item header that is malformed in some way, e.g. an invalid value, or a length that is
|
||||
* too large for the remining buffer, etc.) and the string contains an error message describing the
|
||||
* problem encountered.
|
||||
*/
|
||||
inline ParseResult parse(const std::vector<uint8_t>& encoding) {
|
||||
return parse(encoding.data(), encoding.data() + encoding.size());
|
||||
}
|
||||
|
||||
/**
|
||||
* Parse the first CBOR data item (possibly compound) from the range [begin, begin + size).
|
||||
*
|
||||
* Returns a tuple of Item pointer, buffer pointer and error message. If parsing is successful, the
|
||||
* Item pointer is non-null, the buffer pointer points to the first byte after the
|
||||
* successfully-parsed item and the error message string is empty. If parsing fails, the Item
|
||||
* pointer is null, the buffer pointer points to the first byte that was unparseable (the first byte
|
||||
* of a data item header that is malformed in some way, e.g. an invalid value, or a length that is
|
||||
* too large for the remining buffer, etc.) and the string contains an error message describing the
|
||||
* problem encountered.
|
||||
*/
|
||||
inline ParseResult parse(const uint8_t* begin, size_t size) {
|
||||
return parse(begin, begin + size);
|
||||
}
|
||||
|
||||
class ParseClient;
|
||||
|
||||
/**
|
||||
* Parse the CBOR data in the range [begin, end) in streaming fashion, calling methods on the
|
||||
* provided ParseClient when elements are found.
|
||||
*/
|
||||
void parse(const uint8_t* begin, const uint8_t* end, ParseClient* parseClient);
|
||||
|
||||
/**
|
||||
* Parse the CBOR data in the vector in streaming fashion, calling methods on the
|
||||
* provided ParseClient when elements are found.
|
||||
*/
|
||||
inline void parse(const std::vector<uint8_t>& encoding, ParseClient* parseClient) {
|
||||
return parse(encoding.data(), encoding.data() + encoding.size(), parseClient);
|
||||
}
|
||||
|
||||
/**
|
||||
* A pure interface that callers of the streaming parse functions must implement.
|
||||
*/
|
||||
class ParseClient {
|
||||
public:
|
||||
virtual ~ParseClient() {}
|
||||
|
||||
/**
|
||||
* Called when an item is found. The Item pointer points to the found item; use type() and
|
||||
* the appropriate as*() method to examine the value. hdrBegin points to the first byte of the
|
||||
* header, valueBegin points to the first byte of the value and end points one past the end of
|
||||
* the item. In the case of header-only items, such as integers, and compound items (ARRAY,
|
||||
* MAP or SEMANTIC) whose end has not yet been found, valueBegin and end are equal and point to
|
||||
* the byte past the header.
|
||||
*
|
||||
* Note that for compound types (ARRAY, MAP, and SEMANTIC), the Item will have no content. For
|
||||
* Map and Array items, the size() method will return a correct value, but the index operators
|
||||
* are unsafe, and the object cannot be safely compared with another Array/Map.
|
||||
*
|
||||
* The method returns a ParseClient*. In most cases "return this;" will be the right answer,
|
||||
* but a different ParseClient may be returned, which the parser will begin using. If the method
|
||||
* returns nullptr, parsing will be aborted immediately.
|
||||
*/
|
||||
virtual ParseClient* item(std::unique_ptr<Item>& item, const uint8_t* hdrBegin,
|
||||
const uint8_t* valueBegin, const uint8_t* end) = 0;
|
||||
|
||||
/**
|
||||
* Called when the end of a compound item (MAP or ARRAY) is found. The item argument will be
|
||||
* the same one passed to the item() call -- and may be empty if item() moved its value out.
|
||||
* hdrBegin, valueBegin and end point to the beginning of the item header, the beginning of the
|
||||
* first contained value, and one past the end of the last contained value, respectively.
|
||||
*
|
||||
* Note that the Item will have no content.
|
||||
*
|
||||
* As with item(), itemEnd() can change the ParseClient by returning a different one, or end the
|
||||
* parsing by returning nullptr;
|
||||
*/
|
||||
virtual ParseClient* itemEnd(std::unique_ptr<Item>& item, const uint8_t* hdrBegin,
|
||||
const uint8_t* valueBegin, const uint8_t* end) = 0;
|
||||
|
||||
/**
|
||||
* Called when parsing encounters an error. position is set to the first unparsed byte (one
|
||||
* past the last successfully-parsed byte) and errorMessage contains an message explaining what
|
||||
* sort of error occurred.
|
||||
*/
|
||||
virtual void error(const uint8_t* position, const std::string& errorMessage) = 0;
|
||||
};
|
||||
|
||||
} // namespace cppbor
|
||||
@@ -1,225 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2019, The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "cppbor.h"
|
||||
#include "cppbor_parse.h"
|
||||
|
||||
#define LOG_TAG "CppBor"
|
||||
#include <android-base/logging.h>
|
||||
|
||||
namespace cppbor {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename T, typename Iterator, typename = std::enable_if<std::is_unsigned<T>::value>>
|
||||
Iterator writeBigEndian(T value, Iterator pos) {
|
||||
for (unsigned i = 0; i < sizeof(value); ++i) {
|
||||
*pos++ = static_cast<uint8_t>(value >> (8 * (sizeof(value) - 1)));
|
||||
value = static_cast<T>(value << 8);
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
template <typename T, typename = std::enable_if<std::is_unsigned<T>::value>>
|
||||
void writeBigEndian(T value, std::function<void(uint8_t)>& cb) {
|
||||
for (unsigned i = 0; i < sizeof(value); ++i) {
|
||||
cb(static_cast<uint8_t>(value >> (8 * (sizeof(value) - 1))));
|
||||
value = static_cast<T>(value << 8);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
size_t headerSize(uint64_t addlInfo) {
|
||||
if (addlInfo < ONE_BYTE_LENGTH) return 1;
|
||||
if (addlInfo <= std::numeric_limits<uint8_t>::max()) return 2;
|
||||
if (addlInfo <= std::numeric_limits<uint16_t>::max()) return 3;
|
||||
if (addlInfo <= std::numeric_limits<uint32_t>::max()) return 5;
|
||||
return 9;
|
||||
}
|
||||
|
||||
uint8_t* encodeHeader(MajorType type, uint64_t addlInfo, uint8_t* pos, const uint8_t* end) {
|
||||
size_t sz = headerSize(addlInfo);
|
||||
if (end - pos < static_cast<ssize_t>(sz)) return nullptr;
|
||||
switch (sz) {
|
||||
case 1:
|
||||
*pos++ = type | static_cast<uint8_t>(addlInfo);
|
||||
return pos;
|
||||
case 2:
|
||||
*pos++ = type | ONE_BYTE_LENGTH;
|
||||
*pos++ = static_cast<uint8_t>(addlInfo);
|
||||
return pos;
|
||||
case 3:
|
||||
*pos++ = type | TWO_BYTE_LENGTH;
|
||||
return writeBigEndian(static_cast<uint16_t>(addlInfo), pos);
|
||||
case 5:
|
||||
*pos++ = type | FOUR_BYTE_LENGTH;
|
||||
return writeBigEndian(static_cast<uint32_t>(addlInfo), pos);
|
||||
case 9:
|
||||
*pos++ = type | EIGHT_BYTE_LENGTH;
|
||||
return writeBigEndian(addlInfo, pos);
|
||||
default:
|
||||
CHECK(false); // Impossible to get here.
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
void encodeHeader(MajorType type, uint64_t addlInfo, EncodeCallback encodeCallback) {
|
||||
size_t sz = headerSize(addlInfo);
|
||||
switch (sz) {
|
||||
case 1:
|
||||
encodeCallback(type | static_cast<uint8_t>(addlInfo));
|
||||
break;
|
||||
case 2:
|
||||
encodeCallback(type | ONE_BYTE_LENGTH);
|
||||
encodeCallback(static_cast<uint8_t>(addlInfo));
|
||||
break;
|
||||
case 3:
|
||||
encodeCallback(type | TWO_BYTE_LENGTH);
|
||||
writeBigEndian(static_cast<uint16_t>(addlInfo), encodeCallback);
|
||||
break;
|
||||
case 5:
|
||||
encodeCallback(type | FOUR_BYTE_LENGTH);
|
||||
writeBigEndian(static_cast<uint32_t>(addlInfo), encodeCallback);
|
||||
break;
|
||||
case 9:
|
||||
encodeCallback(type | EIGHT_BYTE_LENGTH);
|
||||
writeBigEndian(addlInfo, encodeCallback);
|
||||
break;
|
||||
default:
|
||||
CHECK(false); // Impossible to get here.
|
||||
}
|
||||
}
|
||||
|
||||
bool Item::operator==(const Item& other) const& {
|
||||
if (type() != other.type()) return false;
|
||||
switch (type()) {
|
||||
case UINT:
|
||||
return *asUint() == *(other.asUint());
|
||||
case NINT:
|
||||
return *asNint() == *(other.asNint());
|
||||
case BSTR:
|
||||
return *asBstr() == *(other.asBstr());
|
||||
case TSTR:
|
||||
return *asTstr() == *(other.asTstr());
|
||||
case ARRAY:
|
||||
return *asArray() == *(other.asArray());
|
||||
case MAP:
|
||||
return *asMap() == *(other.asMap());
|
||||
case SIMPLE:
|
||||
return *asSimple() == *(other.asSimple());
|
||||
case SEMANTIC:
|
||||
return *asSemantic() == *(other.asSemantic());
|
||||
default:
|
||||
CHECK(false); // Impossible to get here.
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
Nint::Nint(int64_t v) : mValue(v) {
|
||||
CHECK(v < 0) << "Only negative values allowed";
|
||||
}
|
||||
|
||||
bool Simple::operator==(const Simple& other) const& {
|
||||
if (simpleType() != other.simpleType()) return false;
|
||||
|
||||
switch (simpleType()) {
|
||||
case BOOLEAN:
|
||||
return *asBool() == *(other.asBool());
|
||||
case NULL_T:
|
||||
return true;
|
||||
default:
|
||||
CHECK(false); // Impossible to get here.
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t* Bstr::encode(uint8_t* pos, const uint8_t* end) const {
|
||||
pos = encodeHeader(mValue.size(), pos, end);
|
||||
if (!pos || end - pos < static_cast<ptrdiff_t>(mValue.size())) return nullptr;
|
||||
return std::copy(mValue.begin(), mValue.end(), pos);
|
||||
}
|
||||
|
||||
void Bstr::encodeValue(EncodeCallback encodeCallback) const {
|
||||
for (auto c : mValue) {
|
||||
encodeCallback(c);
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t* Tstr::encode(uint8_t* pos, const uint8_t* end) const {
|
||||
pos = encodeHeader(mValue.size(), pos, end);
|
||||
if (!pos || end - pos < static_cast<ptrdiff_t>(mValue.size())) return nullptr;
|
||||
return std::copy(mValue.begin(), mValue.end(), pos);
|
||||
}
|
||||
|
||||
void Tstr::encodeValue(EncodeCallback encodeCallback) const {
|
||||
for (auto c : mValue) {
|
||||
encodeCallback(static_cast<uint8_t>(c));
|
||||
}
|
||||
}
|
||||
|
||||
bool CompoundItem::operator==(const CompoundItem& other) const& {
|
||||
return type() == other.type() //
|
||||
&& addlInfo() == other.addlInfo() //
|
||||
// Can't use vector::operator== because the contents are pointers. std::equal lets us
|
||||
// provide a predicate that does the dereferencing.
|
||||
&& std::equal(mEntries.begin(), mEntries.end(), other.mEntries.begin(),
|
||||
[](auto& a, auto& b) -> bool { return *a == *b; });
|
||||
}
|
||||
|
||||
uint8_t* CompoundItem::encode(uint8_t* pos, const uint8_t* end) const {
|
||||
pos = encodeHeader(addlInfo(), pos, end);
|
||||
if (!pos) return nullptr;
|
||||
for (auto& entry : mEntries) {
|
||||
pos = entry->encode(pos, end);
|
||||
if (!pos) return nullptr;
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
void CompoundItem::encode(EncodeCallback encodeCallback) const {
|
||||
encodeHeader(addlInfo(), encodeCallback);
|
||||
for (auto& entry : mEntries) {
|
||||
entry->encode(encodeCallback);
|
||||
}
|
||||
}
|
||||
|
||||
void Map::assertInvariant() const {
|
||||
CHECK(mEntries.size() % 2 == 0);
|
||||
}
|
||||
|
||||
std::unique_ptr<Item> Map::clone() const {
|
||||
assertInvariant();
|
||||
auto res = std::make_unique<Map>();
|
||||
for (size_t i = 0; i < mEntries.size(); i += 2) {
|
||||
res->add(mEntries[i]->clone(), mEntries[i + 1]->clone());
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
std::unique_ptr<Item> Array::clone() const {
|
||||
auto res = std::make_unique<Array>();
|
||||
for (size_t i = 0; i < mEntries.size(); i++) {
|
||||
res->add(mEntries[i]->clone());
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
void Semantic::assertInvariant() const {
|
||||
CHECK(mEntries.size() == 1);
|
||||
}
|
||||
|
||||
} // namespace cppbor
|
||||
@@ -1,351 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2019, The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "cppbor_parse.h"
|
||||
|
||||
#include <sstream>
|
||||
#include <stack>
|
||||
|
||||
#define LOG_TAG "CppBor"
|
||||
#include <android-base/logging.h>
|
||||
|
||||
namespace cppbor {
|
||||
|
||||
namespace {
|
||||
|
||||
std::string insufficientLengthString(size_t bytesNeeded, size_t bytesAvail,
|
||||
const std::string& type) {
|
||||
std::stringstream errStream;
|
||||
errStream << "Need " << bytesNeeded << " byte(s) for " << type << ", have " << bytesAvail
|
||||
<< ".";
|
||||
return errStream.str();
|
||||
}
|
||||
|
||||
template <typename T, typename = std::enable_if_t<std::is_unsigned_v<T>>>
|
||||
std::tuple<bool, uint64_t, const uint8_t*> parseLength(const uint8_t* pos, const uint8_t* end,
|
||||
ParseClient* parseClient) {
|
||||
if (pos + sizeof(T) > end) {
|
||||
parseClient->error(pos - 1, insufficientLengthString(sizeof(T), end - pos, "length field"));
|
||||
return {false, 0, pos};
|
||||
}
|
||||
|
||||
const uint8_t* intEnd = pos + sizeof(T);
|
||||
T result = 0;
|
||||
do {
|
||||
result = static_cast<T>((result << 8) | *pos++);
|
||||
} while (pos < intEnd);
|
||||
return {true, result, pos};
|
||||
}
|
||||
|
||||
std::tuple<const uint8_t*, ParseClient*> parseRecursively(const uint8_t* begin, const uint8_t* end,
|
||||
ParseClient* parseClient);
|
||||
|
||||
std::tuple<const uint8_t*, ParseClient*> handleUint(uint64_t value, const uint8_t* hdrBegin,
|
||||
const uint8_t* hdrEnd,
|
||||
ParseClient* parseClient) {
|
||||
std::unique_ptr<Item> item = std::make_unique<Uint>(value);
|
||||
return {hdrEnd,
|
||||
parseClient->item(item, hdrBegin, hdrEnd /* valueBegin */, hdrEnd /* itemEnd */)};
|
||||
}
|
||||
|
||||
std::tuple<const uint8_t*, ParseClient*> handleNint(uint64_t value, const uint8_t* hdrBegin,
|
||||
const uint8_t* hdrEnd,
|
||||
ParseClient* parseClient) {
|
||||
if (value > std::numeric_limits<int64_t>::max()) {
|
||||
parseClient->error(hdrBegin, "NINT values that don't fit in int64_t are not supported.");
|
||||
return {hdrBegin, nullptr /* end parsing */};
|
||||
}
|
||||
std::unique_ptr<Item> item = std::make_unique<Nint>(-1 - static_cast<uint64_t>(value));
|
||||
return {hdrEnd,
|
||||
parseClient->item(item, hdrBegin, hdrEnd /* valueBegin */, hdrEnd /* itemEnd */)};
|
||||
}
|
||||
|
||||
std::tuple<const uint8_t*, ParseClient*> handleBool(uint64_t value, const uint8_t* hdrBegin,
|
||||
const uint8_t* hdrEnd,
|
||||
ParseClient* parseClient) {
|
||||
std::unique_ptr<Item> item = std::make_unique<Bool>(value == TRUE);
|
||||
return {hdrEnd,
|
||||
parseClient->item(item, hdrBegin, hdrEnd /* valueBegin */, hdrEnd /* itemEnd */)};
|
||||
}
|
||||
|
||||
std::tuple<const uint8_t*, ParseClient*> handleNull(const uint8_t* hdrBegin, const uint8_t* hdrEnd,
|
||||
ParseClient* parseClient) {
|
||||
std::unique_ptr<Item> item = std::make_unique<Null>();
|
||||
return {hdrEnd,
|
||||
parseClient->item(item, hdrBegin, hdrEnd /* valueBegin */, hdrEnd /* itemEnd */)};
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::tuple<const uint8_t*, ParseClient*> handleString(uint64_t length, const uint8_t* hdrBegin,
|
||||
const uint8_t* valueBegin, const uint8_t* end,
|
||||
const std::string& errLabel,
|
||||
ParseClient* parseClient) {
|
||||
if (end - valueBegin < static_cast<ssize_t>(length)) {
|
||||
parseClient->error(hdrBegin, insufficientLengthString(length, end - valueBegin, errLabel));
|
||||
return {hdrBegin, nullptr /* end parsing */};
|
||||
}
|
||||
|
||||
std::unique_ptr<Item> item = std::make_unique<T>(valueBegin, valueBegin + length);
|
||||
return {valueBegin + length,
|
||||
parseClient->item(item, hdrBegin, valueBegin, valueBegin + length)};
|
||||
}
|
||||
|
||||
class IncompleteItem {
|
||||
public:
|
||||
virtual ~IncompleteItem() {}
|
||||
virtual void add(std::unique_ptr<Item> item) = 0;
|
||||
};
|
||||
|
||||
class IncompleteArray : public Array, public IncompleteItem {
|
||||
public:
|
||||
IncompleteArray(size_t size) : mSize(size) {}
|
||||
|
||||
// We return the "complete" size, rather than the actual size.
|
||||
size_t size() const override { return mSize; }
|
||||
|
||||
void add(std::unique_ptr<Item> item) override {
|
||||
mEntries.reserve(mSize);
|
||||
mEntries.push_back(std::move(item));
|
||||
}
|
||||
|
||||
private:
|
||||
size_t mSize;
|
||||
};
|
||||
|
||||
class IncompleteMap : public Map, public IncompleteItem {
|
||||
public:
|
||||
IncompleteMap(size_t size) : mSize(size) {}
|
||||
|
||||
// We return the "complete" size, rather than the actual size.
|
||||
size_t size() const override { return mSize; }
|
||||
|
||||
void add(std::unique_ptr<Item> item) override {
|
||||
mEntries.reserve(mSize * 2);
|
||||
mEntries.push_back(std::move(item));
|
||||
}
|
||||
|
||||
private:
|
||||
size_t mSize;
|
||||
};
|
||||
|
||||
class IncompleteSemantic : public Semantic, public IncompleteItem {
|
||||
public:
|
||||
IncompleteSemantic(uint64_t value) : Semantic(value) {}
|
||||
|
||||
// We return the "complete" size, rather than the actual size.
|
||||
size_t size() const override { return 1; }
|
||||
|
||||
void add(std::unique_ptr<Item> item) override {
|
||||
mEntries.reserve(1);
|
||||
mEntries.push_back(std::move(item));
|
||||
}
|
||||
};
|
||||
|
||||
std::tuple<const uint8_t*, ParseClient*> handleEntries(size_t entryCount, const uint8_t* hdrBegin,
|
||||
const uint8_t* pos, const uint8_t* end,
|
||||
const std::string& typeName,
|
||||
ParseClient* parseClient) {
|
||||
while (entryCount > 0) {
|
||||
--entryCount;
|
||||
if (pos == end) {
|
||||
parseClient->error(hdrBegin, "Not enough entries for " + typeName + ".");
|
||||
return {hdrBegin, nullptr /* end parsing */};
|
||||
}
|
||||
std::tie(pos, parseClient) = parseRecursively(pos, end, parseClient);
|
||||
if (!parseClient) return {hdrBegin, nullptr};
|
||||
}
|
||||
return {pos, parseClient};
|
||||
}
|
||||
|
||||
std::tuple<const uint8_t*, ParseClient*> handleCompound(
|
||||
std::unique_ptr<Item> item, uint64_t entryCount, const uint8_t* hdrBegin,
|
||||
const uint8_t* valueBegin, const uint8_t* end, const std::string& typeName,
|
||||
ParseClient* parseClient) {
|
||||
parseClient =
|
||||
parseClient->item(item, hdrBegin, valueBegin, valueBegin /* don't know the end yet */);
|
||||
if (!parseClient) return {hdrBegin, nullptr};
|
||||
|
||||
const uint8_t* pos;
|
||||
std::tie(pos, parseClient) =
|
||||
handleEntries(entryCount, hdrBegin, valueBegin, end, typeName, parseClient);
|
||||
if (!parseClient) return {hdrBegin, nullptr};
|
||||
|
||||
return {pos, parseClient->itemEnd(item, hdrBegin, valueBegin, pos)};
|
||||
}
|
||||
|
||||
std::tuple<const uint8_t*, ParseClient*> parseRecursively(const uint8_t* begin, const uint8_t* end,
|
||||
ParseClient* parseClient) {
|
||||
const uint8_t* pos = begin;
|
||||
|
||||
MajorType type = static_cast<MajorType>(*pos & 0xE0);
|
||||
uint8_t tagInt = *pos & 0x1F;
|
||||
++pos;
|
||||
|
||||
bool success = true;
|
||||
uint64_t addlData;
|
||||
if (tagInt < ONE_BYTE_LENGTH || tagInt > EIGHT_BYTE_LENGTH) {
|
||||
addlData = tagInt;
|
||||
} else {
|
||||
switch (tagInt) {
|
||||
case ONE_BYTE_LENGTH:
|
||||
std::tie(success, addlData, pos) = parseLength<uint8_t>(pos, end, parseClient);
|
||||
break;
|
||||
|
||||
case TWO_BYTE_LENGTH:
|
||||
std::tie(success, addlData, pos) = parseLength<uint16_t>(pos, end, parseClient);
|
||||
break;
|
||||
|
||||
case FOUR_BYTE_LENGTH:
|
||||
std::tie(success, addlData, pos) = parseLength<uint32_t>(pos, end, parseClient);
|
||||
break;
|
||||
|
||||
case EIGHT_BYTE_LENGTH:
|
||||
std::tie(success, addlData, pos) = parseLength<uint64_t>(pos, end, parseClient);
|
||||
break;
|
||||
|
||||
default:
|
||||
CHECK(false); // It's impossible to get here
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!success) return {begin, nullptr};
|
||||
|
||||
switch (type) {
|
||||
case UINT:
|
||||
return handleUint(addlData, begin, pos, parseClient);
|
||||
|
||||
case NINT:
|
||||
return handleNint(addlData, begin, pos, parseClient);
|
||||
|
||||
case BSTR:
|
||||
return handleString<Bstr>(addlData, begin, pos, end, "byte string", parseClient);
|
||||
|
||||
case TSTR:
|
||||
return handleString<Tstr>(addlData, begin, pos, end, "text string", parseClient);
|
||||
|
||||
case ARRAY:
|
||||
return handleCompound(std::make_unique<IncompleteArray>(addlData), addlData, begin, pos,
|
||||
end, "array", parseClient);
|
||||
|
||||
case MAP:
|
||||
return handleCompound(std::make_unique<IncompleteMap>(addlData), addlData * 2, begin,
|
||||
pos, end, "map", parseClient);
|
||||
|
||||
case SEMANTIC:
|
||||
return handleCompound(std::make_unique<IncompleteSemantic>(addlData), 1, begin, pos,
|
||||
end, "semantic", parseClient);
|
||||
|
||||
case SIMPLE:
|
||||
switch (addlData) {
|
||||
case TRUE:
|
||||
case FALSE:
|
||||
return handleBool(addlData, begin, pos, parseClient);
|
||||
case NULL_V:
|
||||
return handleNull(begin, pos, parseClient);
|
||||
}
|
||||
}
|
||||
CHECK(false); // Impossible to get here.
|
||||
return {};
|
||||
}
|
||||
|
||||
class FullParseClient : public ParseClient {
|
||||
public:
|
||||
virtual ParseClient* item(std::unique_ptr<Item>& item, const uint8_t*, const uint8_t*,
|
||||
const uint8_t* end) override {
|
||||
if (mParentStack.empty() && !item->isCompound()) {
|
||||
// This is the first and only item.
|
||||
mTheItem = std::move(item);
|
||||
mPosition = end;
|
||||
return nullptr; // We're done.
|
||||
}
|
||||
|
||||
if (item->isCompound()) {
|
||||
// Starting a new compound data item, i.e. a new parent. Save it on the parent stack.
|
||||
// It's safe to save a raw pointer because the unique_ptr is guaranteed to stay in
|
||||
// existence until the corresponding itemEnd() call.
|
||||
assert(dynamic_cast<CompoundItem*>(item.get()));
|
||||
mParentStack.push(static_cast<CompoundItem*>(item.get()));
|
||||
return this;
|
||||
} else {
|
||||
appendToLastParent(std::move(item));
|
||||
return this;
|
||||
}
|
||||
}
|
||||
|
||||
virtual ParseClient* itemEnd(std::unique_ptr<Item>& item, const uint8_t*, const uint8_t*,
|
||||
const uint8_t* end) override {
|
||||
CHECK(item->isCompound() && item.get() == mParentStack.top());
|
||||
mParentStack.pop();
|
||||
|
||||
if (mParentStack.empty()) {
|
||||
mTheItem = std::move(item);
|
||||
mPosition = end;
|
||||
return nullptr; // We're done
|
||||
} else {
|
||||
appendToLastParent(std::move(item));
|
||||
return this;
|
||||
}
|
||||
}
|
||||
|
||||
virtual void error(const uint8_t* position, const std::string& errorMessage) override {
|
||||
mPosition = position;
|
||||
mErrorMessage = errorMessage;
|
||||
}
|
||||
|
||||
std::tuple<std::unique_ptr<Item> /* result */, const uint8_t* /* newPos */,
|
||||
std::string /* errMsg */>
|
||||
parseResult() {
|
||||
std::unique_ptr<Item> p = std::move(mTheItem);
|
||||
return {std::move(p), mPosition, std::move(mErrorMessage)};
|
||||
}
|
||||
|
||||
private:
|
||||
void appendToLastParent(std::unique_ptr<Item> item) {
|
||||
auto parent = mParentStack.top();
|
||||
assert(dynamic_cast<IncompleteItem*>(parent));
|
||||
if (parent->type() == ARRAY) {
|
||||
static_cast<IncompleteArray*>(parent)->add(std::move(item));
|
||||
} else if (parent->type() == MAP) {
|
||||
static_cast<IncompleteMap*>(parent)->add(std::move(item));
|
||||
} else if (parent->type() == SEMANTIC) {
|
||||
static_cast<IncompleteSemantic*>(parent)->add(std::move(item));
|
||||
} else {
|
||||
CHECK(false); // Impossible to get here.
|
||||
}
|
||||
}
|
||||
|
||||
std::unique_ptr<Item> mTheItem;
|
||||
std::stack<CompoundItem*> mParentStack;
|
||||
const uint8_t* mPosition = nullptr;
|
||||
std::string mErrorMessage;
|
||||
};
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
void parse(const uint8_t* begin, const uint8_t* end, ParseClient* parseClient) {
|
||||
parseRecursively(begin, end, parseClient);
|
||||
}
|
||||
|
||||
std::tuple<std::unique_ptr<Item> /* result */, const uint8_t* /* newPos */,
|
||||
std::string /* errMsg */>
|
||||
parse(const uint8_t* begin, const uint8_t* end) {
|
||||
FullParseClient parseClient;
|
||||
parse(begin, end, &parseClient);
|
||||
return parseClient.parseResult();
|
||||
}
|
||||
|
||||
} // namespace cppbor
|
||||
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user