NN validation tests

This CL adds validation tests for all of the existing generated models.
The strategy of this CL is this: given a valid model or request, make a
single change to invalidate the model or request, then verify that the
vendor service driver catches the inconsistency and returns
INVALID_ARGUMENT.

Bug: 67828197
Test: mma
Test: VtsHalNeuralnetworksV1_0TargetTest
Test: VtsHalNeuralnetworksV1_1TargetTest
Change-Id: I8efcdbdccc77aaf78992e52c1eac5c940fc81a03
This commit is contained in:
Michael Butler
2018-03-22 16:37:57 -07:00
parent c7d15e9f51
commit f76acd0312
23 changed files with 2392 additions and 1126 deletions

View File

@@ -18,7 +18,6 @@ cc_library_static {
name: "VtsHalNeuralnetworksTest_utils",
srcs: [
"Callbacks.cpp",
"Models.cpp",
"GeneratedTestHarness.cpp",
],
defaults: ["VtsHalTargetTestDefaults"],
@@ -41,14 +40,17 @@ cc_library_static {
cc_test {
name: "VtsHalNeuralnetworksV1_0TargetTest",
srcs: [
"VtsHalNeuralnetworksV1_0.cpp",
"VtsHalNeuralnetworksV1_0BasicTest.cpp",
"VtsHalNeuralnetworksV1_0GeneratedTest.cpp",
"BasicTests.cpp",
"GeneratedTests.cpp",
"ValidateModel.cpp",
"ValidateRequest.cpp",
"ValidationTests.cpp",
"VtsHalNeuralnetworks.cpp",
],
defaults: ["VtsHalTargetTestDefaults"],
static_libs: [
"android.hardware.neuralnetworks@1.0",
"android.hardware.neuralnetworks@1.1",
"android.hardware.neuralnetworks@1.0",
"android.hidl.allocator@1.0",
"android.hidl.memory@1.0",
"libhidlmemory",

View File

@@ -0,0 +1,56 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworks.h"
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_0 {
namespace vts {
namespace functional {
// create device test
TEST_F(NeuralnetworksHidlTest, CreateDevice) {}
// status test
TEST_F(NeuralnetworksHidlTest, StatusTest) {
Return<DeviceStatus> status = device->getStatus();
ASSERT_TRUE(status.isOk());
EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
}
// initialization
TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) {
Return<void> ret =
device->getCapabilities([](ErrorStatus status, const Capabilities& capabilities) {
EXPECT_EQ(ErrorStatus::NONE, status);
EXPECT_LT(0.0f, capabilities.float32Performance.execTime);
EXPECT_LT(0.0f, capabilities.float32Performance.powerUsage);
EXPECT_LT(0.0f, capabilities.quantized8Performance.execTime);
EXPECT_LT(0.0f, capabilities.quantized8Performance.powerUsage);
});
EXPECT_TRUE(ret.isOk());
}
} // namespace functional
} // namespace vts
} // namespace V1_0
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View File

@@ -17,14 +17,6 @@ namespace neuralnetworks {
namespace V1_0 {
namespace implementation {
using ::android::hardware::hidl_array;
using ::android::hardware::hidl_memory;
using ::android::hardware::hidl_string;
using ::android::hardware::hidl_vec;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::sp;
/**
* The CallbackBase class is used internally by the NeuralNetworks runtime to
* synchronize between different threads. An asynchronous task is launched

View File

@@ -179,7 +179,7 @@ void EvaluatePreparedModel(sp<IPreparedModel>& preparedModel, std::function<bool
}
}
void Execute(sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> create_model,
void Execute(const sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> create_model,
std::function<bool(int)> is_ignored,
const std::vector<MixedTypedExampleType>& examples) {
V1_0::Model model = create_model();
@@ -223,7 +223,7 @@ void Execute(sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> create_
EvaluatePreparedModel(preparedModel, is_ignored, examples);
}
void Execute(sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> create_model,
void Execute(const sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> create_model,
std::function<bool(int)> is_ignored,
const std::vector<MixedTypedExampleType>& examples) {
V1_1::Model model = create_model();

View File

@@ -16,47 +16,33 @@
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworksV1_0.h"
#include "VtsHalNeuralnetworks.h"
#include "Callbacks.h"
#include "TestHarness.h"
#include "Utils.h"
#include <android-base/logging.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
using ::android::hardware::neuralnetworks::V1_0::IDevice;
using ::android::hardware::neuralnetworks::V1_0::IPreparedModel;
using ::android::hardware::neuralnetworks::V1_0::Capabilities;
using ::android::hardware::neuralnetworks::V1_0::DeviceStatus;
using ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc;
using ::android::hardware::neuralnetworks::V1_0::Model;
using ::android::hardware::neuralnetworks::V1_0::OperationType;
using ::android::hardware::neuralnetworks::V1_0::PerformanceInfo;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::hardware::hidl_memory;
using ::android::hardware::hidl_string;
using ::android::hardware::hidl_vec;
using ::android::hidl::allocator::V1_0::IAllocator;
using ::android::hidl::memory::V1_0::IMemory;
using ::android::sp;
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace generated_tests {
using ::generated_tests::MixedTypedExampleType;
extern void Execute(sp<IDevice>&, std::function<Model(void)>, std::function<bool(int)>,
const std::vector<MixedTypedExampleType>&);
extern void Execute(const sp<V1_0::IDevice>&, std::function<V1_0::Model(void)>,
std::function<bool(int)>, const std::vector<MixedTypedExampleType>&);
} // namespace generated_tests
namespace V1_0 {
namespace vts {
namespace functional {
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
using ::android::nn::allocateSharedMemory;
// Mixed-typed examples
typedef generated_tests::MixedTypedExampleType MixedTypedExample;

View File

@@ -1,202 +0,0 @@
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "Models.h"
#include "Utils.h"
#include <android-base/logging.h>
#include <android/hidl/allocator/1.0/IAllocator.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
#include <vector>
using ::android::sp;
namespace android {
namespace hardware {
namespace neuralnetworks {
// create a valid model
V1_1::Model createValidTestModel_1_1() {
const std::vector<float> operand2Data = {5.0f, 6.0f, 7.0f, 8.0f};
const uint32_t size = operand2Data.size() * sizeof(float);
const uint32_t operand1 = 0;
const uint32_t operand2 = 1;
const uint32_t operand3 = 2;
const uint32_t operand4 = 3;
const std::vector<Operand> operands = {
{
.type = OperandType::TENSOR_FLOAT32,
.dimensions = {1, 2, 2, 1},
.numberOfConsumers = 1,
.scale = 0.0f,
.zeroPoint = 0,
.lifetime = OperandLifeTime::MODEL_INPUT,
.location = {.poolIndex = 0, .offset = 0, .length = 0},
},
{
.type = OperandType::TENSOR_FLOAT32,
.dimensions = {1, 2, 2, 1},
.numberOfConsumers = 1,
.scale = 0.0f,
.zeroPoint = 0,
.lifetime = OperandLifeTime::CONSTANT_COPY,
.location = {.poolIndex = 0, .offset = 0, .length = size},
},
{
.type = OperandType::INT32,
.dimensions = {},
.numberOfConsumers = 1,
.scale = 0.0f,
.zeroPoint = 0,
.lifetime = OperandLifeTime::CONSTANT_COPY,
.location = {.poolIndex = 0, .offset = size, .length = sizeof(int32_t)},
},
{
.type = OperandType::TENSOR_FLOAT32,
.dimensions = {1, 2, 2, 1},
.numberOfConsumers = 0,
.scale = 0.0f,
.zeroPoint = 0,
.lifetime = OperandLifeTime::MODEL_OUTPUT,
.location = {.poolIndex = 0, .offset = 0, .length = 0},
},
};
const std::vector<Operation> operations = {{
.type = OperationType::ADD, .inputs = {operand1, operand2, operand3}, .outputs = {operand4},
}};
const std::vector<uint32_t> inputIndexes = {operand1};
const std::vector<uint32_t> outputIndexes = {operand4};
std::vector<uint8_t> operandValues(
reinterpret_cast<const uint8_t*>(operand2Data.data()),
reinterpret_cast<const uint8_t*>(operand2Data.data()) + size);
int32_t activation[1] = {static_cast<int32_t>(FusedActivationFunc::NONE)};
operandValues.insert(operandValues.end(), reinterpret_cast<const uint8_t*>(&activation[0]),
reinterpret_cast<const uint8_t*>(&activation[1]));
const std::vector<hidl_memory> pools = {};
return {
.operands = operands,
.operations = operations,
.inputIndexes = inputIndexes,
.outputIndexes = outputIndexes,
.operandValues = operandValues,
.pools = pools,
};
}
// create first invalid model
V1_1::Model createInvalidTestModel1_1_1() {
Model model = createValidTestModel_1_1();
model.operations[0].type = static_cast<OperationType>(0xDEADBEEF); /* INVALID */
return model;
}
// create second invalid model
V1_1::Model createInvalidTestModel2_1_1() {
Model model = createValidTestModel_1_1();
const uint32_t operand1 = 0;
const uint32_t operand5 = 4; // INVALID OPERAND
model.inputIndexes = std::vector<uint32_t>({operand1, operand5 /* INVALID OPERAND */});
return model;
}
V1_0::Model createValidTestModel_1_0() {
V1_1::Model model = createValidTestModel_1_1();
return nn::convertToV1_0(model);
}
V1_0::Model createInvalidTestModel1_1_0() {
V1_1::Model model = createInvalidTestModel1_1_1();
return nn::convertToV1_0(model);
}
V1_0::Model createInvalidTestModel2_1_0() {
V1_1::Model model = createInvalidTestModel2_1_1();
return nn::convertToV1_0(model);
}
// create a valid request
Request createValidTestRequest() {
std::vector<float> inputData = {1.0f, 2.0f, 3.0f, 4.0f};
std::vector<float> outputData = {-1.0f, -1.0f, -1.0f, -1.0f};
const uint32_t INPUT = 0;
const uint32_t OUTPUT = 1;
// prepare inputs
uint32_t inputSize = static_cast<uint32_t>(inputData.size() * sizeof(float));
uint32_t outputSize = static_cast<uint32_t>(outputData.size() * sizeof(float));
std::vector<RequestArgument> inputs = {{
.location = {.poolIndex = INPUT, .offset = 0, .length = inputSize}, .dimensions = {},
}};
std::vector<RequestArgument> outputs = {{
.location = {.poolIndex = OUTPUT, .offset = 0, .length = outputSize}, .dimensions = {},
}};
std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
nn::allocateSharedMemory(outputSize)};
if (pools[INPUT].size() == 0 || pools[OUTPUT].size() == 0) {
return {};
}
// load data
sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
sp<IMemory> outputMemory = mapMemory(pools[OUTPUT]);
if (inputMemory.get() == nullptr || outputMemory.get() == nullptr) {
return {};
}
float* inputPtr = reinterpret_cast<float*>(static_cast<void*>(inputMemory->getPointer()));
float* outputPtr = reinterpret_cast<float*>(static_cast<void*>(outputMemory->getPointer()));
if (inputPtr == nullptr || outputPtr == nullptr) {
return {};
}
inputMemory->update();
outputMemory->update();
std::copy(inputData.begin(), inputData.end(), inputPtr);
std::copy(outputData.begin(), outputData.end(), outputPtr);
inputMemory->commit();
outputMemory->commit();
return {.inputs = inputs, .outputs = outputs, .pools = pools};
}
// create first invalid request
Request createInvalidTestRequest1() {
Request request = createValidTestRequest();
const uint32_t INVALID = 2;
std::vector<float> inputData = {1.0f, 2.0f, 3.0f, 4.0f};
uint32_t inputSize = static_cast<uint32_t>(inputData.size() * sizeof(float));
request.inputs[0].location = {
.poolIndex = INVALID /* INVALID */, .offset = 0, .length = inputSize};
return request;
}
// create second invalid request
Request createInvalidTestRequest2() {
Request request = createValidTestRequest();
request.inputs[0].dimensions = std::vector<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8} /* INVALID */);
return request;
}
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View File

@@ -1,5 +1,5 @@
/*
* Copyright (C) 2017 The Android Open Source Project
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -14,29 +14,187 @@
* limitations under the License.
*/
#ifndef VTS_HAL_NEURALNETWORKS_V1_0_VTS_FUNCTIONAL_MODELS_H
#define VTS_HAL_NEURALNETWORKS_V1_0_VTS_FUNCTIONAL_MODELS_H
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include <android/hardware/neuralnetworks/1.1/types.h>
#include "TestHarness.h"
#include <android/hardware/neuralnetworks/1.0/types.h>
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_0 {
namespace vts {
namespace functional {
// create V1_1 model
V1_1::Model createValidTestModel_1_1();
V1_1::Model createInvalidTestModel1_1_1();
V1_1::Model createInvalidTestModel2_1_1();
using MixedTypedExample = generated_tests::MixedTypedExampleType;
// create V1_0 model
V1_0::Model createValidTestModel_1_0();
V1_0::Model createInvalidTestModel1_1_0();
V1_0::Model createInvalidTestModel2_1_0();
#define FOR_EACH_TEST_MODEL(FN) \
FN(add_broadcast_quant8) \
FN(add) \
FN(add_quant8) \
FN(avg_pool_float_1) \
FN(avg_pool_float_2) \
FN(avg_pool_float_3) \
FN(avg_pool_float_4) \
FN(avg_pool_float_5) \
FN(avg_pool_quant8_1) \
FN(avg_pool_quant8_2) \
FN(avg_pool_quant8_3) \
FN(avg_pool_quant8_4) \
FN(avg_pool_quant8_5) \
FN(concat_float_1) \
FN(concat_float_2) \
FN(concat_float_3) \
FN(concat_quant8_1) \
FN(concat_quant8_2) \
FN(concat_quant8_3) \
FN(conv_1_h3_w2_SAME) \
FN(conv_1_h3_w2_VALID) \
FN(conv_3_h3_w2_SAME) \
FN(conv_3_h3_w2_VALID) \
FN(conv_float_2) \
FN(conv_float_channels) \
FN(conv_float_channels_weights_as_inputs) \
FN(conv_float_large) \
FN(conv_float_large_weights_as_inputs) \
FN(conv_float) \
FN(conv_float_weights_as_inputs) \
FN(conv_quant8_2) \
FN(conv_quant8_channels) \
FN(conv_quant8_channels_weights_as_inputs) \
FN(conv_quant8_large) \
FN(conv_quant8_large_weights_as_inputs) \
FN(conv_quant8) \
FN(conv_quant8_overflow) \
FN(conv_quant8_overflow_weights_as_inputs) \
FN(conv_quant8_weights_as_inputs) \
FN(depth_to_space_float_1) \
FN(depth_to_space_float_2) \
FN(depth_to_space_float_3) \
FN(depth_to_space_quant8_1) \
FN(depth_to_space_quant8_2) \
FN(depthwise_conv2d_float_2) \
FN(depthwise_conv2d_float_large_2) \
FN(depthwise_conv2d_float_large_2_weights_as_inputs) \
FN(depthwise_conv2d_float_large) \
FN(depthwise_conv2d_float_large_weights_as_inputs) \
FN(depthwise_conv2d_float) \
FN(depthwise_conv2d_float_weights_as_inputs) \
FN(depthwise_conv2d_quant8_2) \
FN(depthwise_conv2d_quant8_large) \
FN(depthwise_conv2d_quant8_large_weights_as_inputs) \
FN(depthwise_conv2d_quant8) \
FN(depthwise_conv2d_quant8_weights_as_inputs) \
FN(depthwise_conv) \
FN(dequantize) \
FN(embedding_lookup) \
FN(floor) \
FN(fully_connected_float_2) \
FN(fully_connected_float_large) \
FN(fully_connected_float_large_weights_as_inputs) \
FN(fully_connected_float) \
FN(fully_connected_float_weights_as_inputs) \
FN(fully_connected_quant8_2) \
FN(fully_connected_quant8_large) \
FN(fully_connected_quant8_large_weights_as_inputs) \
FN(fully_connected_quant8) \
FN(fully_connected_quant8_weights_as_inputs) \
FN(hashtable_lookup_float) \
FN(hashtable_lookup_quant8) \
FN(l2_normalization_2) \
FN(l2_normalization_large) \
FN(l2_normalization) \
FN(l2_pool_float_2) \
FN(l2_pool_float_large) \
FN(l2_pool_float) \
FN(local_response_norm_float_1) \
FN(local_response_norm_float_2) \
FN(local_response_norm_float_3) \
FN(local_response_norm_float_4) \
FN(logistic_float_1) \
FN(logistic_float_2) \
FN(logistic_quant8_1) \
FN(logistic_quant8_2) \
FN(lsh_projection_2) \
FN(lsh_projection) \
FN(lsh_projection_weights_as_inputs) \
FN(lstm2) \
FN(lstm2_state2) \
FN(lstm2_state) \
FN(lstm3) \
FN(lstm3_state2) \
FN(lstm3_state3) \
FN(lstm3_state) \
FN(lstm) \
FN(lstm_state2) \
FN(lstm_state) \
FN(max_pool_float_1) \
FN(max_pool_float_2) \
FN(max_pool_float_3) \
FN(max_pool_float_4) \
FN(max_pool_quant8_1) \
FN(max_pool_quant8_2) \
FN(max_pool_quant8_3) \
FN(max_pool_quant8_4) \
FN(mobilenet_224_gender_basic_fixed) \
FN(mobilenet_quantized) \
FN(mul_broadcast_quant8) \
FN(mul) \
FN(mul_quant8) \
FN(mul_relu) \
FN(relu1_float_1) \
FN(relu1_float_2) \
FN(relu1_quant8_1) \
FN(relu1_quant8_2) \
FN(relu6_float_1) \
FN(relu6_float_2) \
FN(relu6_quant8_1) \
FN(relu6_quant8_2) \
FN(relu_float_1) \
FN(relu_float_2) \
FN(relu_quant8_1) \
FN(relu_quant8_2) \
FN(reshape) \
FN(reshape_quant8) \
FN(reshape_quant8_weights_as_inputs) \
FN(reshape_weights_as_inputs) \
FN(resize_bilinear_2) \
FN(resize_bilinear) \
FN(rnn) \
FN(rnn_state) \
FN(softmax_float_1) \
FN(softmax_float_2) \
FN(softmax_quant8_1) \
FN(softmax_quant8_2) \
FN(space_to_depth_float_1) \
FN(space_to_depth_float_2) \
FN(space_to_depth_float_3) \
FN(space_to_depth_quant8_1) \
FN(space_to_depth_quant8_2) \
FN(svdf2) \
FN(svdf) \
FN(svdf_state) \
FN(tanh)
// create the request
V1_0::Request createValidTestRequest();
V1_0::Request createInvalidTestRequest1();
V1_0::Request createInvalidTestRequest2();
#define FORWARD_DECLARE_GENERATED_OBJECTS(function) \
namespace function { \
extern std::vector<MixedTypedExample> examples; \
Model createTestModel(); \
}
FOR_EACH_TEST_MODEL(FORWARD_DECLARE_GENERATED_OBJECTS)
#undef FORWARD_DECLARE_GENERATED_OBJECTS
} // namespace functional
} // namespace vts
} // namespace V1_0
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
#endif // VTS_HAL_NEURALNETWORKS_V1_0_VTS_FUNCTIONAL_MODELS_H

View File

@@ -0,0 +1,506 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworks.h"
#include "Callbacks.h"
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_0 {
namespace vts {
namespace functional {
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
///////////////////////// UTILITY FUNCTIONS /////////////////////////
static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
const V1_0::Model& model) {
SCOPED_TRACE(message + " [getSupportedOperations]");
Return<void> ret =
device->getSupportedOperations(model, [&](ErrorStatus status, const hidl_vec<bool>&) {
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
});
EXPECT_TRUE(ret.isOk());
}
static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
const V1_0::Model& model) {
SCOPED_TRACE(message + " [prepareModel]");
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
ASSERT_EQ(nullptr, preparedModel.get());
}
// Primary validation function. This function will take a valid model, apply a
// mutation to it to invalidate the model, then pass it to interface calls that
// use the model. Note that the model here is passed by value, and any mutation
// to the model does not leave this function.
static void validate(const sp<IDevice>& device, const std::string& message, V1_0::Model model,
const std::function<void(Model*)>& mutation) {
mutation(&model);
validateGetSupportedOperations(device, message, model);
validatePrepareModel(device, message, model);
}
// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
// so this is efficiently accomplished by moving the element to the end and
// resizing the hidl_vec to one less.
template <typename Type>
static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
if (vec) {
std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
vec->resize(vec->size() - 1);
}
}
template <typename Type>
static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
// assume vec is valid
const uint32_t index = vec->size();
vec->resize(index + 1);
(*vec)[index] = value;
return index;
}
static uint32_t addOperand(Model* model) {
return hidl_vec_push_back(&model->operands,
{
.type = OperandType::INT32,
.dimensions = {},
.numberOfConsumers = 0,
.scale = 0.0f,
.zeroPoint = 0,
.lifetime = OperandLifeTime::MODEL_INPUT,
.location = {.poolIndex = 0, .offset = 0, .length = 0},
});
}
static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
uint32_t index = addOperand(model);
model->operands[index].numberOfConsumers = 1;
model->operands[index].lifetime = lifetime;
return index;
}
///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
static const int32_t invalidOperandTypes[] = {
static_cast<int32_t>(OperandType::FLOAT32) - 1, // lower bound fundamental
static_cast<int32_t>(OperandType::TENSOR_QUANT8_ASYMM) + 1, // upper bound fundamental
static_cast<int32_t>(OperandType::OEM) - 1, // lower bound OEM
static_cast<int32_t>(OperandType::TENSOR_OEM_BYTE) + 1, // upper bound OEM
};
static void mutateOperandTypeTest(const sp<IDevice>& device, const V1_0::Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
for (int32_t invalidOperandType : invalidOperandTypes) {
const std::string message = "mutateOperandTypeTest: operand " +
std::to_string(operand) + " set to value " +
std::to_string(invalidOperandType);
validate(device, message, model, [operand, invalidOperandType](Model* model) {
model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
});
}
}
}
///////////////////////// VALIDATE OPERAND RANK /////////////////////////
static uint32_t getInvalidRank(OperandType type) {
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
return 1;
case OperandType::TENSOR_FLOAT32:
case OperandType::TENSOR_INT32:
case OperandType::TENSOR_QUANT8_ASYMM:
return 0;
default:
return 0;
}
}
static void mutateOperandRankTest(const sp<IDevice>& device, const V1_0::Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
" has rank of " + std::to_string(invalidRank);
validate(device, message, model, [operand, invalidRank](Model* model) {
model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
});
}
}
///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
static float getInvalidScale(OperandType type) {
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
case OperandType::TENSOR_FLOAT32:
return 1.0f;
case OperandType::TENSOR_INT32:
return -1.0f;
case OperandType::TENSOR_QUANT8_ASYMM:
return 0.0f;
default:
return 0.0f;
}
}
static void mutateOperandScaleTest(const sp<IDevice>& device, const V1_0::Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const float invalidScale = getInvalidScale(model.operands[operand].type);
const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
" has scale of " + std::to_string(invalidScale);
validate(device, message, model, [operand, invalidScale](Model* model) {
model->operands[operand].scale = invalidScale;
});
}
}
///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
case OperandType::TENSOR_FLOAT32:
case OperandType::TENSOR_INT32:
return {1};
case OperandType::TENSOR_QUANT8_ASYMM:
return {-1, 256};
default:
return {};
}
}
static void mutateOperandZeroPointTest(const sp<IDevice>& device, const V1_0::Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const std::vector<int32_t> invalidZeroPoints =
getInvalidZeroPoints(model.operands[operand].type);
for (int32_t invalidZeroPoint : invalidZeroPoints) {
const std::string message = "mutateOperandZeroPointTest: operand " +
std::to_string(operand) + " has zero point of " +
std::to_string(invalidZeroPoint);
validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
model->operands[operand].zeroPoint = invalidZeroPoint;
});
}
}
}
///////////////////////// VALIDATE EXTRA ??? /////////////////////////
// TODO: Operand::lifetime
// TODO: Operand::location
///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
static void mutateOperand(Operand* operand, OperandType type) {
Operand newOperand = *operand;
newOperand.type = type;
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
newOperand.dimensions = hidl_vec<uint32_t>();
newOperand.scale = 0.0f;
newOperand.zeroPoint = 0;
break;
case OperandType::TENSOR_FLOAT32:
newOperand.dimensions =
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
newOperand.scale = 0.0f;
newOperand.zeroPoint = 0;
break;
case OperandType::TENSOR_INT32:
newOperand.dimensions =
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
newOperand.zeroPoint = 0;
break;
case OperandType::TENSOR_QUANT8_ASYMM:
newOperand.dimensions =
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
break;
case OperandType::OEM:
case OperandType::TENSOR_OEM_BYTE:
default:
break;
}
*operand = newOperand;
}
static bool mutateOperationOperandTypeSkip(size_t operand, const V1_0::Model& model) {
// LSH_PROJECTION's second argument is allowed to have any type. This is the
// only operation that currently has a type that can be anything independent
// from any other type. Changing the operand type to any other type will
// result in a valid model for LSH_PROJECTION. If this is the case, skip the
// test.
for (const Operation& operation : model.operations) {
if (operation.type == OperationType::LSH_PROJECTION && operand == operation.inputs[1]) {
return true;
}
}
return false;
}
static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const V1_0::Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
if (mutateOperationOperandTypeSkip(operand, model)) {
continue;
}
for (OperandType invalidOperandType : hidl_enum_iterator<OperandType>{}) {
// Do not test OEM types
if (invalidOperandType == model.operands[operand].type ||
invalidOperandType == OperandType::OEM ||
invalidOperandType == OperandType::TENSOR_OEM_BYTE) {
continue;
}
const std::string message = "mutateOperationOperandTypeTest: operand " +
std::to_string(operand) + " set to type " +
toString(invalidOperandType);
validate(device, message, model, [operand, invalidOperandType](Model* model) {
mutateOperand(&model->operands[operand], invalidOperandType);
});
}
}
}
///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
static const int32_t invalidOperationTypes[] = {
static_cast<int32_t>(OperationType::ADD) - 1, // lower bound fundamental
static_cast<int32_t>(OperationType::TANH) + 1, // upper bound fundamental
static_cast<int32_t>(OperationType::OEM_OPERATION) - 1, // lower bound OEM
static_cast<int32_t>(OperationType::OEM_OPERATION) + 1, // upper bound OEM
};
static void mutateOperationTypeTest(const sp<IDevice>& device, const V1_0::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
for (int32_t invalidOperationType : invalidOperationTypes) {
const std::string message = "mutateOperationTypeTest: operation " +
std::to_string(operation) + " set to value " +
std::to_string(invalidOperationType);
validate(device, message, model, [operation, invalidOperationType](Model* model) {
model->operations[operation].type =
static_cast<OperationType>(invalidOperationType);
});
}
}
}
///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device,
const V1_0::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const uint32_t invalidOperand = model.operands.size();
for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
const std::string message = "mutateOperationInputOperandIndexTest: operation " +
std::to_string(operation) + " input " +
std::to_string(input);
validate(device, message, model, [operation, input, invalidOperand](Model* model) {
model->operations[operation].inputs[input] = invalidOperand;
});
}
}
}
///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device,
const V1_0::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const uint32_t invalidOperand = model.operands.size();
for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
std::to_string(operation) + " output " +
std::to_string(output);
validate(device, message, model, [operation, output, invalidOperand](Model* model) {
model->operations[operation].outputs[output] = invalidOperand;
});
}
}
}
///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
if (vec) {
// remove elements matching "value"
auto last = std::remove(vec->begin(), vec->end(), value);
vec->resize(std::distance(vec->begin(), last));
// decrement elements exceeding "value"
std::transform(vec->begin(), vec->end(), vec->begin(),
[value](uint32_t v) { return v > value ? v-- : v; });
}
}
static void removeOperand(Model* model, uint32_t index) {
hidl_vec_removeAt(&model->operands, index);
for (Operation& operation : model->operations) {
removeValueAndDecrementGreaterValues(&operation.inputs, index);
removeValueAndDecrementGreaterValues(&operation.outputs, index);
}
removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
}
static void removeOperandTest(const sp<IDevice>& device, const V1_0::Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const std::string message = "removeOperandTest: operand " + std::to_string(operand);
validate(device, message, model,
[operand](Model* model) { removeOperand(model, operand); });
}
}
///////////////////////// REMOVE OPERATION /////////////////////////
static void removeOperation(Model* model, uint32_t index) {
for (uint32_t operand : model->operations[index].inputs) {
model->operands[operand].numberOfConsumers--;
}
hidl_vec_removeAt(&model->operations, index);
}
static void removeOperationTest(const sp<IDevice>& device, const V1_0::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const std::string message = "removeOperationTest: operation " + std::to_string(operation);
validate(device, message, model,
[operation](Model* model) { removeOperation(model, operation); });
}
}
///////////////////////// REMOVE OPERATION INPUT /////////////////////////
static void removeOperationInputTest(const sp<IDevice>& device, const V1_0::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
const V1_0::Operation& op = model.operations[operation];
// CONCATENATION has at least 2 inputs, with the last element being
// INT32. Skip this test if removing one of CONCATENATION's
// inputs still produces a valid model.
if (op.type == V1_0::OperationType::CONCATENATION && op.inputs.size() > 2 &&
input != op.inputs.size() - 1) {
continue;
}
const std::string message = "removeOperationInputTest: operation " +
std::to_string(operation) + ", input " +
std::to_string(input);
validate(device, message, model, [operation, input](Model* model) {
uint32_t operand = model->operations[operation].inputs[input];
model->operands[operand].numberOfConsumers--;
hidl_vec_removeAt(&model->operations[operation].inputs, input);
});
}
}
}
///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
static void removeOperationOutputTest(const sp<IDevice>& device, const V1_0::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
const std::string message = "removeOperationOutputTest: operation " +
std::to_string(operation) + ", output " +
std::to_string(output);
validate(device, message, model, [operation, output](Model* model) {
hidl_vec_removeAt(&model->operations[operation].outputs, output);
});
}
}
}
///////////////////////// MODEL VALIDATION /////////////////////////
// TODO: remove model input
// TODO: remove model output
// TODO: add unused operation
///////////////////////// ADD OPERATION INPUT /////////////////////////
static void addOperationInputTest(const sp<IDevice>& device, const V1_0::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
validate(device, message, model, [operation](Model* model) {
uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
hidl_vec_push_back(&model->operations[operation].inputs, index);
hidl_vec_push_back(&model->inputIndexes, index);
});
}
}
///////////////////////// ADD OPERATION OUTPUT /////////////////////////
static void addOperationOutputTest(const sp<IDevice>& device, const V1_0::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const std::string message =
"addOperationOutputTest: operation " + std::to_string(operation);
validate(device, message, model, [operation](Model* model) {
uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
hidl_vec_push_back(&model->operations[operation].outputs, index);
hidl_vec_push_back(&model->outputIndexes, index);
});
}
}
////////////////////////// ENTRY POINT //////////////////////////////
void ValidationTest::validateModel(const V1_0::Model& model) {
mutateOperandTypeTest(device, model);
mutateOperandRankTest(device, model);
mutateOperandScaleTest(device, model);
mutateOperandZeroPointTest(device, model);
mutateOperationOperandTypeTest(device, model);
mutateOperationTypeTest(device, model);
mutateOperationInputOperandIndexTest(device, model);
mutateOperationOutputOperandIndexTest(device, model);
removeOperandTest(device, model);
removeOperationTest(device, model);
removeOperationInputTest(device, model);
removeOperationOutputTest(device, model);
addOperationInputTest(device, model);
addOperationOutputTest(device, model);
}
} // namespace functional
} // namespace vts
} // namespace V1_0
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View File

@@ -0,0 +1,261 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworks.h"
#include "Callbacks.h"
#include "TestHarness.h"
#include "Utils.h"
#include <android-base/logging.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_0 {
namespace vts {
namespace functional {
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
using ::android::hidl::memory::V1_0::IMemory;
using generated_tests::MixedTyped;
using generated_tests::MixedTypedExampleType;
using generated_tests::for_all;
///////////////////////// UTILITY FUNCTIONS /////////////////////////
static void createPreparedModel(const sp<IDevice>& device, const V1_0::Model& model,
sp<IPreparedModel>* preparedModel) {
ASSERT_NE(nullptr, preparedModel);
// see if service can handle model
bool fullySupportsModel = false;
Return<void> supportedOpsLaunchStatus = device->getSupportedOperations(
model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
ASSERT_EQ(ErrorStatus::NONE, status);
ASSERT_NE(0ul, supported.size());
fullySupportsModel =
std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
});
ASSERT_TRUE(supportedOpsLaunchStatus.isOk());
// launch prepare model
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
// retrieve prepared model
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
*preparedModel = preparedModelCallback->getPreparedModel();
// The getSupportedOperations call returns a list of operations that are
// guaranteed not to fail if prepareModel is called, and
// 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
// If a driver has any doubt that it can prepare an operation, it must
// return false. So here, if a driver isn't sure if it can support an
// operation, but reports that it successfully prepared the model, the test
// can continue.
if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
ASSERT_EQ(nullptr, preparedModel->get());
LOG(INFO) << "NN VTS: Unable to test Request validation because vendor service cannot "
"prepare model that it does not support.";
std::cout << "[ ] Unable to test Request validation because vendor service "
"cannot prepare model that it does not support."
<< std::endl;
return;
}
ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
ASSERT_NE(nullptr, preparedModel->get());
}
// Primary validation function. This function will take a valid request, apply a
// mutation to it to invalidate the request, then pass it to interface calls
// that use the request. Note that the request here is passed by value, and any
// mutation to the request does not leave this function.
static void validate(const sp<IPreparedModel>& preparedModel, const std::string& message,
Request request, const std::function<void(Request*)>& mutation) {
mutation(&request);
SCOPED_TRACE(message + " [execute]");
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
ASSERT_NE(nullptr, executionCallback.get());
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
ASSERT_TRUE(executeLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
executionCallback->wait();
ErrorStatus executionReturnStatus = executionCallback->getStatus();
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
}
// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
// so this is efficiently accomplished by moving the element to the end and
// resizing the hidl_vec to one less.
template <typename Type>
static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
if (vec) {
std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
vec->resize(vec->size() - 1);
}
}
template <typename Type>
static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
// assume vec is valid
const uint32_t index = vec->size();
vec->resize(index + 1);
(*vec)[index] = value;
return index;
}
///////////////////////// REMOVE INPUT ////////////////////////////////////
static void removeInputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
for (size_t input = 0; input < request.inputs.size(); ++input) {
const std::string message = "removeInput: removed input " + std::to_string(input);
validate(preparedModel, message, request,
[input](Request* request) { hidl_vec_removeAt(&request->inputs, input); });
}
}
///////////////////////// REMOVE OUTPUT ////////////////////////////////////
static void removeOutputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
for (size_t output = 0; output < request.outputs.size(); ++output) {
const std::string message = "removeOutput: removed Output " + std::to_string(output);
validate(preparedModel, message, request,
[output](Request* request) { hidl_vec_removeAt(&request->outputs, output); });
}
}
///////////////////////////// ENTRY POINT //////////////////////////////////
std::vector<Request> createRequests(const std::vector<MixedTypedExampleType>& examples) {
const uint32_t INPUT = 0;
const uint32_t OUTPUT = 1;
std::vector<Request> requests;
for (auto& example : examples) {
const MixedTyped& inputs = example.first;
const MixedTyped& outputs = example.second;
std::vector<RequestArgument> inputs_info, outputs_info;
uint32_t inputSize = 0, outputSize = 0;
// This function only partially specifies the metadata (vector of RequestArguments).
// The contents are copied over below.
for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) {
if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1);
RequestArgument arg = {
.location = {.poolIndex = INPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
.dimensions = {},
};
RequestArgument arg_empty = {
.hasNoValue = true,
};
inputs_info[index] = s ? arg : arg_empty;
inputSize += s;
});
// Compute offset for inputs 1 and so on
{
size_t offset = 0;
for (auto& i : inputs_info) {
if (!i.hasNoValue) i.location.offset = offset;
offset += i.location.length;
}
}
// Go through all outputs, initialize RequestArgument descriptors
for_all(outputs, [&outputs_info, &outputSize](int index, auto, auto s) {
if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
RequestArgument arg = {
.location = {.poolIndex = OUTPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
.dimensions = {},
};
outputs_info[index] = arg;
outputSize += s;
});
// Compute offset for outputs 1 and so on
{
size_t offset = 0;
for (auto& i : outputs_info) {
i.location.offset = offset;
offset += i.location.length;
}
}
std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
nn::allocateSharedMemory(outputSize)};
if (pools[INPUT].size() == 0 || pools[OUTPUT].size() == 0) {
return {};
}
// map pool
sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
if (inputMemory == nullptr) {
return {};
}
char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer()));
if (inputPtr == nullptr) {
return {};
}
// initialize pool
inputMemory->update();
for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) {
char* begin = (char*)p;
char* end = begin + s;
// TODO: handle more than one input
std::copy(begin, end, inputPtr + inputs_info[index].location.offset);
});
inputMemory->commit();
requests.push_back({.inputs = inputs_info, .outputs = outputs_info, .pools = pools});
}
return requests;
}
void ValidationTest::validateRequests(const V1_0::Model& model,
const std::vector<Request>& requests) {
// create IPreparedModel
sp<IPreparedModel> preparedModel;
ASSERT_NO_FATAL_FAILURE(createPreparedModel(device, model, &preparedModel));
if (preparedModel == nullptr) {
return;
}
// validate each request
for (const Request& request : requests) {
removeInputTest(preparedModel, request);
removeOutputTest(preparedModel, request);
}
}
} // namespace functional
} // namespace vts
} // namespace V1_0
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View File

@@ -0,0 +1,50 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "Models.h"
#include "VtsHalNeuralnetworks.h"
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_0 {
namespace vts {
namespace functional {
// forward declarations
std::vector<Request> createRequests(const std::vector<MixedTypedExample>& examples);
// generate validation tests
#define VTS_CURRENT_TEST_CASE(TestName) \
TEST_F(ValidationTest, TestName) { \
const Model model = TestName::createTestModel(); \
const std::vector<Request> requests = createRequests(TestName::examples); \
validateModel(model); \
validateRequests(model, requests); \
}
FOR_EACH_TEST_MODEL(VTS_CURRENT_TEST_CASE)
#undef VTS_CURRENT_TEST_CASE
} // namespace functional
} // namespace vts
} // namespace V1_0
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View File

@@ -16,15 +16,7 @@
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworksV1_0.h"
#include "Utils.h"
#include <android-base/logging.h>
using ::android::hardware::hidl_memory;
using ::android::hidl::allocator::V1_0::IAllocator;
using ::android::hidl::memory::V1_0::IMemory;
using ::android::sp;
#include "VtsHalNeuralnetworks.h"
namespace android {
namespace hardware {
@@ -33,11 +25,6 @@ namespace V1_0 {
namespace vts {
namespace functional {
// allocator helper
hidl_memory allocateSharedMemory(int64_t size) {
return nn::allocateSharedMemory(size);
}
// A class for test environment setup
NeuralnetworksHidlEnvironment::NeuralnetworksHidlEnvironment() {}
@@ -51,23 +38,49 @@ NeuralnetworksHidlEnvironment* NeuralnetworksHidlEnvironment::getInstance() {
}
void NeuralnetworksHidlEnvironment::registerTestServices() {
registerTestService<V1_0::IDevice>();
registerTestService<IDevice>();
}
// The main test class for NEURALNETWORK HIDL HAL.
NeuralnetworksHidlTest::NeuralnetworksHidlTest() {}
NeuralnetworksHidlTest::~NeuralnetworksHidlTest() {}
void NeuralnetworksHidlTest::SetUp() {
device = ::testing::VtsHalHidlTargetTestBase::getService<V1_0::IDevice>(
::testing::VtsHalHidlTargetTestBase::SetUp();
device = ::testing::VtsHalHidlTargetTestBase::getService<IDevice>(
NeuralnetworksHidlEnvironment::getInstance());
ASSERT_NE(nullptr, device.get());
}
void NeuralnetworksHidlTest::TearDown() {}
void NeuralnetworksHidlTest::TearDown() {
device = nullptr;
::testing::VtsHalHidlTargetTestBase::TearDown();
}
} // namespace functional
} // namespace vts
::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus) {
return os << toString(errorStatus);
}
::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus) {
return os << toString(deviceStatus);
}
} // namespace V1_0
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
using android::hardware::neuralnetworks::V1_0::vts::functional::NeuralnetworksHidlEnvironment;
int main(int argc, char** argv) {
::testing::AddGlobalTestEnvironment(NeuralnetworksHidlEnvironment::getInstance());
::testing::InitGoogleTest(&argc, argv);
NeuralnetworksHidlEnvironment::getInstance()->init(&argc, argv);
int status = RUN_ALL_TESTS();
return status;
}

View File

@@ -18,16 +18,15 @@
#define VTS_HAL_NEURALNETWORKS_V1_0_TARGET_TESTS_H
#include <android/hardware/neuralnetworks/1.0/IDevice.h>
#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hidl/allocator/1.0/IAllocator.h>
#include <VtsHalHidlTargetTestBase.h>
#include <VtsHalHidlTargetTestEnvBase.h>
#include <android-base/macros.h>
#include <gtest/gtest.h>
#include <string>
#include <iostream>
#include <vector>
namespace android {
namespace hardware {
@@ -36,47 +35,47 @@ namespace V1_0 {
namespace vts {
namespace functional {
hidl_memory allocateSharedMemory(int64_t size);
// A class for test environment setup
class NeuralnetworksHidlEnvironment : public ::testing::VtsHalHidlTargetTestEnvBase {
DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlEnvironment);
NeuralnetworksHidlEnvironment();
NeuralnetworksHidlEnvironment(const NeuralnetworksHidlEnvironment&) = delete;
NeuralnetworksHidlEnvironment(NeuralnetworksHidlEnvironment&&) = delete;
NeuralnetworksHidlEnvironment& operator=(const NeuralnetworksHidlEnvironment&) = delete;
NeuralnetworksHidlEnvironment& operator=(NeuralnetworksHidlEnvironment&&) = delete;
~NeuralnetworksHidlEnvironment() override;
public:
~NeuralnetworksHidlEnvironment() override;
static NeuralnetworksHidlEnvironment* getInstance();
void registerTestServices() override;
};
// The main test class for NEURALNETWORKS HIDL HAL.
class NeuralnetworksHidlTest : public ::testing::VtsHalHidlTargetTestBase {
DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlTest);
public:
NeuralnetworksHidlTest();
~NeuralnetworksHidlTest() override;
void SetUp() override;
void TearDown() override;
sp<V1_0::IDevice> device;
protected:
sp<IDevice> device;
};
// Tag for the validation tests
class ValidationTest : public NeuralnetworksHidlTest {
protected:
void validateModel(const Model& model);
void validateRequests(const Model& model, const std::vector<Request>& request);
};
// Tag for the generated tests
class GeneratedTest : public NeuralnetworksHidlTest {};
} // namespace functional
} // namespace vts
// pretty-print values for error messages
template <typename CharT, typename Traits>
::std::basic_ostream<CharT, Traits>& operator<<(::std::basic_ostream<CharT, Traits>& os,
V1_0::ErrorStatus errorStatus) {
return os << toString(errorStatus);
}
template <typename CharT, typename Traits>
::std::basic_ostream<CharT, Traits>& operator<<(::std::basic_ostream<CharT, Traits>& os,
V1_0::DeviceStatus deviceStatus) {
return os << toString(deviceStatus);
}
::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus);
::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus);
} // namespace V1_0
} // namespace neuralnetworks

View File

@@ -1,293 +0,0 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworksV1_0.h"
#include "Callbacks.h"
#include "Models.h"
#include "TestHarness.h"
#include <android-base/logging.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
using ::android::hardware::neuralnetworks::V1_0::IDevice;
using ::android::hardware::neuralnetworks::V1_0::IPreparedModel;
using ::android::hardware::neuralnetworks::V1_0::Capabilities;
using ::android::hardware::neuralnetworks::V1_0::DeviceStatus;
using ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc;
using ::android::hardware::neuralnetworks::V1_0::Model;
using ::android::hardware::neuralnetworks::V1_0::OperationType;
using ::android::hardware::neuralnetworks::V1_0::PerformanceInfo;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::hardware::hidl_memory;
using ::android::hardware::hidl_string;
using ::android::hardware::hidl_vec;
using ::android::hidl::allocator::V1_0::IAllocator;
using ::android::hidl::memory::V1_0::IMemory;
using ::android::sp;
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_0 {
namespace vts {
namespace functional {
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
static void doPrepareModelShortcut(const sp<IDevice>& device, sp<IPreparedModel>* preparedModel) {
ASSERT_NE(nullptr, preparedModel);
Model model = createValidTestModel_1_0();
// see if service can handle model
bool fullySupportsModel = false;
Return<void> supportedOpsLaunchStatus = device->getSupportedOperations(
model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
ASSERT_EQ(ErrorStatus::NONE, status);
ASSERT_NE(0ul, supported.size());
fullySupportsModel =
std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
});
ASSERT_TRUE(supportedOpsLaunchStatus.isOk());
// launch prepare model
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
// retrieve prepared model
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
*preparedModel = preparedModelCallback->getPreparedModel();
// The getSupportedOperations call returns a list of operations that are
// guaranteed not to fail if prepareModel is called, and
// 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
// If a driver has any doubt that it can prepare an operation, it must
// return false. So here, if a driver isn't sure if it can support an
// operation, but reports that it successfully prepared the model, the test
// can continue.
if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
ASSERT_EQ(nullptr, preparedModel->get());
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"prepare model that it does not support.";
std::cout << "[ ] Early termination of test because vendor service cannot "
"prepare model that it does not support."
<< std::endl;
return;
}
ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
ASSERT_NE(nullptr, preparedModel->get());
}
// create device test
TEST_F(NeuralnetworksHidlTest, CreateDevice) {}
// status test
TEST_F(NeuralnetworksHidlTest, StatusTest) {
Return<DeviceStatus> status = device->getStatus();
ASSERT_TRUE(status.isOk());
EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
}
// initialization
TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) {
Return<void> ret =
device->getCapabilities([](ErrorStatus status, const Capabilities& capabilities) {
EXPECT_EQ(ErrorStatus::NONE, status);
EXPECT_LT(0.0f, capabilities.float32Performance.execTime);
EXPECT_LT(0.0f, capabilities.float32Performance.powerUsage);
EXPECT_LT(0.0f, capabilities.quantized8Performance.execTime);
EXPECT_LT(0.0f, capabilities.quantized8Performance.powerUsage);
});
EXPECT_TRUE(ret.isOk());
}
// supported operations positive test
TEST_F(NeuralnetworksHidlTest, SupportedOperationsPositiveTest) {
Model model = createValidTestModel_1_0();
Return<void> ret = device->getSupportedOperations(
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
EXPECT_EQ(ErrorStatus::NONE, status);
EXPECT_EQ(model.operations.size(), supported.size());
});
EXPECT_TRUE(ret.isOk());
}
// supported operations negative test 1
TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest1) {
Model model = createInvalidTestModel1_1_0();
Return<void> ret = device->getSupportedOperations(
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
(void)supported;
});
EXPECT_TRUE(ret.isOk());
}
// supported operations negative test 2
TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest2) {
Model model = createInvalidTestModel2_1_0();
Return<void> ret = device->getSupportedOperations(
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
(void)supported;
});
EXPECT_TRUE(ret.isOk());
}
// prepare simple model positive test
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelPositiveTest) {
sp<IPreparedModel> preparedModel;
doPrepareModelShortcut(device, &preparedModel);
}
// prepare simple model negative test 1
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest1) {
Model model = createInvalidTestModel1_1_0();
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
EXPECT_EQ(nullptr, preparedModel.get());
}
// prepare simple model negative test 2
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest2) {
Model model = createInvalidTestModel2_1_0();
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
EXPECT_EQ(nullptr, preparedModel.get());
}
// execute simple graph positive test
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphPositiveTest) {
std::vector<float> outputData = {-1.0f, -1.0f, -1.0f, -1.0f};
std::vector<float> expectedData = {6.0f, 8.0f, 10.0f, 12.0f};
const uint32_t OUTPUT = 1;
sp<IPreparedModel> preparedModel;
ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
if (preparedModel == nullptr) {
return;
}
Request request = createValidTestRequest();
auto postWork = [&] {
sp<IMemory> outputMemory = mapMemory(request.pools[OUTPUT]);
if (outputMemory == nullptr) {
return false;
}
float* outputPtr = reinterpret_cast<float*>(static_cast<void*>(outputMemory->getPointer()));
if (outputPtr == nullptr) {
return false;
}
outputMemory->read();
std::copy(outputPtr, outputPtr + outputData.size(), outputData.begin());
outputMemory->commit();
return true;
};
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
ASSERT_NE(nullptr, executionCallback.get());
executionCallback->on_finish(postWork);
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
ASSERT_TRUE(executeLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executeLaunchStatus));
executionCallback->wait();
ErrorStatus executionReturnStatus = executionCallback->getStatus();
EXPECT_EQ(ErrorStatus::NONE, executionReturnStatus);
EXPECT_EQ(expectedData, outputData);
}
// execute simple graph negative test 1
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest1) {
sp<IPreparedModel> preparedModel;
ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
if (preparedModel == nullptr) {
return;
}
Request request = createInvalidTestRequest1();
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
ASSERT_NE(nullptr, executionCallback.get());
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
ASSERT_TRUE(executeLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
executionCallback->wait();
ErrorStatus executionReturnStatus = executionCallback->getStatus();
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
}
// execute simple graph negative test 2
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest2) {
sp<IPreparedModel> preparedModel;
ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
if (preparedModel == nullptr) {
return;
}
Request request = createInvalidTestRequest2();
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
ASSERT_NE(nullptr, executionCallback.get());
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
ASSERT_TRUE(executeLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
executionCallback->wait();
ErrorStatus executionReturnStatus = executionCallback->getStatus();
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
}
} // namespace functional
} // namespace vts
} // namespace V1_0
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
using android::hardware::neuralnetworks::V1_0::vts::functional::NeuralnetworksHidlEnvironment;
int main(int argc, char** argv) {
::testing::AddGlobalTestEnvironment(NeuralnetworksHidlEnvironment::getInstance());
::testing::InitGoogleTest(&argc, argv);
NeuralnetworksHidlEnvironment::getInstance()->init(&argc, argv);
int status = RUN_ALL_TESTS();
return status;
}

View File

@@ -17,9 +17,12 @@
cc_test {
name: "VtsHalNeuralnetworksV1_1TargetTest",
srcs: [
"VtsHalNeuralnetworksV1_1.cpp",
"VtsHalNeuralnetworksV1_1BasicTest.cpp",
"VtsHalNeuralnetworksV1_1GeneratedTest.cpp",
"BasicTests.cpp",
"GeneratedTests.cpp",
"ValidateModel.cpp",
"ValidateRequest.cpp",
"ValidationTests.cpp",
"VtsHalNeuralnetworks.cpp",
],
defaults: ["VtsHalTargetTestDefaults"],
static_libs: [

View File

@@ -0,0 +1,58 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworks.h"
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_1 {
namespace vts {
namespace functional {
// create device test
TEST_F(NeuralnetworksHidlTest, CreateDevice) {}
// status test
TEST_F(NeuralnetworksHidlTest, StatusTest) {
Return<DeviceStatus> status = device->getStatus();
ASSERT_TRUE(status.isOk());
EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
}
// initialization
TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) {
Return<void> ret =
device->getCapabilities_1_1([](ErrorStatus status, const Capabilities& capabilities) {
EXPECT_EQ(ErrorStatus::NONE, status);
EXPECT_LT(0.0f, capabilities.float32Performance.execTime);
EXPECT_LT(0.0f, capabilities.float32Performance.powerUsage);
EXPECT_LT(0.0f, capabilities.quantized8Performance.execTime);
EXPECT_LT(0.0f, capabilities.quantized8Performance.powerUsage);
EXPECT_LT(0.0f, capabilities.relaxedFloat32toFloat16Performance.execTime);
EXPECT_LT(0.0f, capabilities.relaxedFloat32toFloat16Performance.powerUsage);
});
EXPECT_TRUE(ret.isOk());
}
} // namespace functional
} // namespace vts
} // namespace V1_1
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View File

@@ -16,54 +16,33 @@
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworksV1_1.h"
#include "VtsHalNeuralnetworks.h"
#include "Callbacks.h"
#include "TestHarness.h"
#include "Utils.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.1/IDevice.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
using ::android::hardware::neuralnetworks::V1_0::IPreparedModel;
using ::android::hardware::neuralnetworks::V1_0::Capabilities;
using ::android::hardware::neuralnetworks::V1_0::DeviceStatus;
using ::android::hardware::neuralnetworks::V1_0::ErrorStatus;
using ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc;
using ::android::hardware::neuralnetworks::V1_0::Operand;
using ::android::hardware::neuralnetworks::V1_0::OperandLifeTime;
using ::android::hardware::neuralnetworks::V1_0::OperandType;
using ::android::hardware::neuralnetworks::V1_0::Request;
using ::android::hardware::neuralnetworks::V1_1::IDevice;
using ::android::hardware::neuralnetworks::V1_1::Model;
using ::android::hardware::neuralnetworks::V1_1::Operation;
using ::android::hardware::neuralnetworks::V1_1::OperationType;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::hardware::hidl_memory;
using ::android::hardware::hidl_string;
using ::android::hardware::hidl_vec;
using ::android::hidl::allocator::V1_0::IAllocator;
using ::android::hidl::memory::V1_0::IMemory;
using ::android::sp;
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace generated_tests {
using ::generated_tests::MixedTypedExampleType;
extern void Execute(sp<V1_1::IDevice>&, std::function<Model(void)>, std::function<bool(int)>,
const std::vector<MixedTypedExampleType>&);
extern void Execute(const sp<V1_1::IDevice>&, std::function<V1_1::Model(void)>,
std::function<bool(int)>, const std::vector<MixedTypedExampleType>&);
} // namespace generated_tests
namespace V1_1 {
namespace vts {
namespace functional {
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
using ::android::nn::allocateSharedMemory;
// Mixed-typed examples
typedef generated_tests::MixedTypedExampleType MixedTypedExample;

View File

@@ -0,0 +1,323 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef VTS_HAL_NEURALNETWORKS_V1_1_VTS_FUNCTIONAL_MODELS_H
#define VTS_HAL_NEURALNETWORKS_V1_1_VTS_FUNCTIONAL_MODELS_H
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "TestHarness.h"
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_1 {
namespace vts {
namespace functional {
using MixedTypedExample = generated_tests::MixedTypedExampleType;
#define FOR_EACH_TEST_MODEL(FN) \
FN(add) \
FN(add_broadcast_quant8) \
FN(add_quant8) \
FN(add_relaxed) \
FN(avg_pool_float_1) \
FN(avg_pool_float_1_relaxed) \
FN(avg_pool_float_2) \
FN(avg_pool_float_2_relaxed) \
FN(avg_pool_float_3) \
FN(avg_pool_float_3_relaxed) \
FN(avg_pool_float_4) \
FN(avg_pool_float_4_relaxed) \
FN(avg_pool_float_5) \
FN(avg_pool_quant8_1) \
FN(avg_pool_quant8_2) \
FN(avg_pool_quant8_3) \
FN(avg_pool_quant8_4) \
FN(avg_pool_quant8_5) \
FN(batch_to_space) \
FN(batch_to_space_float_1) \
FN(batch_to_space_quant8_1) \
FN(concat_float_1) \
FN(concat_float_1_relaxed) \
FN(concat_float_2) \
FN(concat_float_2_relaxed) \
FN(concat_float_3) \
FN(concat_float_3_relaxed) \
FN(concat_quant8_1) \
FN(concat_quant8_2) \
FN(concat_quant8_3) \
FN(conv_1_h3_w2_SAME) \
FN(conv_1_h3_w2_SAME_relaxed) \
FN(conv_1_h3_w2_VALID) \
FN(conv_1_h3_w2_VALID_relaxed) \
FN(conv_3_h3_w2_SAME) \
FN(conv_3_h3_w2_SAME_relaxed) \
FN(conv_3_h3_w2_VALID) \
FN(conv_3_h3_w2_VALID_relaxed) \
FN(conv_float) \
FN(conv_float_2) \
FN(conv_float_channels) \
FN(conv_float_channels_relaxed) \
FN(conv_float_channels_weights_as_inputs) \
FN(conv_float_channels_weights_as_inputs_relaxed) \
FN(conv_float_large) \
FN(conv_float_large_relaxed) \
FN(conv_float_large_weights_as_inputs) \
FN(conv_float_large_weights_as_inputs_relaxed) \
FN(conv_float_relaxed) \
FN(conv_float_weights_as_inputs) \
FN(conv_float_weights_as_inputs_relaxed) \
FN(conv_quant8) \
FN(conv_quant8_2) \
FN(conv_quant8_channels) \
FN(conv_quant8_channels_weights_as_inputs) \
FN(conv_quant8_large) \
FN(conv_quant8_large_weights_as_inputs) \
FN(conv_quant8_overflow) \
FN(conv_quant8_overflow_weights_as_inputs) \
FN(conv_quant8_weights_as_inputs) \
FN(depth_to_space_float_1) \
FN(depth_to_space_float_1_relaxed) \
FN(depth_to_space_float_2) \
FN(depth_to_space_float_2_relaxed) \
FN(depth_to_space_float_3) \
FN(depth_to_space_float_3_relaxed) \
FN(depth_to_space_quant8_1) \
FN(depth_to_space_quant8_2) \
FN(depthwise_conv) \
FN(depthwise_conv2d_float) \
FN(depthwise_conv2d_float_2) \
FN(depthwise_conv2d_float_large) \
FN(depthwise_conv2d_float_large_2) \
FN(depthwise_conv2d_float_large_2_weights_as_inputs) \
FN(depthwise_conv2d_float_large_relaxed) \
FN(depthwise_conv2d_float_large_weights_as_inputs) \
FN(depthwise_conv2d_float_large_weights_as_inputs_relaxed) \
FN(depthwise_conv2d_float_weights_as_inputs) \
FN(depthwise_conv2d_quant8) \
FN(depthwise_conv2d_quant8_2) \
FN(depthwise_conv2d_quant8_large) \
FN(depthwise_conv2d_quant8_large_weights_as_inputs) \
FN(depthwise_conv2d_quant8_weights_as_inputs) \
FN(depthwise_conv_relaxed) \
FN(dequantize) \
FN(div) \
FN(embedding_lookup) \
FN(embedding_lookup_relaxed) \
FN(floor) \
FN(floor_relaxed) \
FN(fully_connected_float) \
FN(fully_connected_float_2) \
FN(fully_connected_float_large) \
FN(fully_connected_float_large_weights_as_inputs) \
FN(fully_connected_float_relaxed) \
FN(fully_connected_float_weights_as_inputs) \
FN(fully_connected_float_weights_as_inputs_relaxed) \
FN(fully_connected_quant8) \
FN(fully_connected_quant8_2) \
FN(fully_connected_quant8_large) \
FN(fully_connected_quant8_large_weights_as_inputs) \
FN(fully_connected_quant8_weights_as_inputs) \
FN(hashtable_lookup_float) \
FN(hashtable_lookup_float_relaxed) \
FN(hashtable_lookup_quant8) \
FN(l2_normalization) \
FN(l2_normalization_2) \
FN(l2_normalization_large) \
FN(l2_normalization_large_relaxed) \
FN(l2_normalization_relaxed) \
FN(l2_pool_float) \
FN(l2_pool_float_2) \
FN(l2_pool_float_large) \
FN(l2_pool_float_relaxed) \
FN(local_response_norm_float_1) \
FN(local_response_norm_float_1_relaxed) \
FN(local_response_norm_float_2) \
FN(local_response_norm_float_2_relaxed) \
FN(local_response_norm_float_3) \
FN(local_response_norm_float_3_relaxed) \
FN(local_response_norm_float_4) \
FN(local_response_norm_float_4_relaxed) \
FN(logistic_float_1) \
FN(logistic_float_1_relaxed) \
FN(logistic_float_2) \
FN(logistic_float_2_relaxed) \
FN(logistic_quant8_1) \
FN(logistic_quant8_2) \
FN(lsh_projection) \
FN(lsh_projection_2) \
FN(lsh_projection_2_relaxed) \
FN(lsh_projection_relaxed) \
FN(lsh_projection_weights_as_inputs) \
FN(lsh_projection_weights_as_inputs_relaxed) \
FN(lstm) \
FN(lstm2) \
FN(lstm2_relaxed) \
FN(lstm2_state) \
FN(lstm2_state2) \
FN(lstm2_state2_relaxed) \
FN(lstm2_state_relaxed) \
FN(lstm3) \
FN(lstm3_relaxed) \
FN(lstm3_state) \
FN(lstm3_state2) \
FN(lstm3_state2_relaxed) \
FN(lstm3_state3) \
FN(lstm3_state3_relaxed) \
FN(lstm3_state_relaxed) \
FN(lstm_relaxed) \
FN(lstm_state) \
FN(lstm_state2) \
FN(lstm_state2_relaxed) \
FN(lstm_state_relaxed) \
FN(max_pool_float_1) \
FN(max_pool_float_1_relaxed) \
FN(max_pool_float_2) \
FN(max_pool_float_2_relaxed) \
FN(max_pool_float_3) \
FN(max_pool_float_3_relaxed) \
FN(max_pool_float_4) \
FN(max_pool_quant8_1) \
FN(max_pool_quant8_2) \
FN(max_pool_quant8_3) \
FN(max_pool_quant8_4) \
FN(mean) \
FN(mean_float_1) \
FN(mean_float_2) \
FN(mean_quant8_1) \
FN(mean_quant8_2) \
FN(mobilenet_224_gender_basic_fixed) \
FN(mobilenet_224_gender_basic_fixed_relaxed) \
FN(mobilenet_quantized) \
FN(mul) \
FN(mul_broadcast_quant8) \
FN(mul_quant8) \
FN(mul_relaxed) \
FN(mul_relu) \
FN(mul_relu_relaxed) \
FN(pad) \
FN(pad_float_1) \
FN(relu1_float_1) \
FN(relu1_float_1_relaxed) \
FN(relu1_float_2) \
FN(relu1_float_2_relaxed) \
FN(relu1_quant8_1) \
FN(relu1_quant8_2) \
FN(relu6_float_1) \
FN(relu6_float_1_relaxed) \
FN(relu6_float_2) \
FN(relu6_float_2_relaxed) \
FN(relu6_quant8_1) \
FN(relu6_quant8_2) \
FN(relu_float_1) \
FN(relu_float_1_relaxed) \
FN(relu_float_2) \
FN(relu_quant8_1) \
FN(relu_quant8_2) \
FN(reshape) \
FN(reshape_quant8) \
FN(reshape_quant8_weights_as_inputs) \
FN(reshape_relaxed) \
FN(reshape_weights_as_inputs) \
FN(reshape_weights_as_inputs_relaxed) \
FN(resize_bilinear) \
FN(resize_bilinear_2) \
FN(resize_bilinear_relaxed) \
FN(rnn) \
FN(rnn_relaxed) \
FN(rnn_state) \
FN(rnn_state_relaxed) \
FN(softmax_float_1) \
FN(softmax_float_1_relaxed) \
FN(softmax_float_2) \
FN(softmax_float_2_relaxed) \
FN(softmax_quant8_1) \
FN(softmax_quant8_2) \
FN(space_to_batch) \
FN(space_to_batch_float_1) \
FN(space_to_batch_float_2) \
FN(space_to_batch_float_3) \
FN(space_to_batch_quant8_1) \
FN(space_to_batch_quant8_2) \
FN(space_to_batch_quant8_3) \
FN(space_to_depth_float_1) \
FN(space_to_depth_float_1_relaxed) \
FN(space_to_depth_float_2) \
FN(space_to_depth_float_2_relaxed) \
FN(space_to_depth_float_3) \
FN(space_to_depth_float_3_relaxed) \
FN(space_to_depth_quant8_1) \
FN(space_to_depth_quant8_2) \
FN(squeeze) \
FN(squeeze_float_1) \
FN(squeeze_quant8_1) \
FN(strided_slice) \
FN(strided_slice_float_1) \
FN(strided_slice_float_10) \
FN(strided_slice_float_2) \
FN(strided_slice_float_3) \
FN(strided_slice_float_4) \
FN(strided_slice_float_5) \
FN(strided_slice_float_6) \
FN(strided_slice_float_7) \
FN(strided_slice_float_8) \
FN(strided_slice_float_9) \
FN(strided_slice_qaunt8_10) \
FN(strided_slice_quant8_1) \
FN(strided_slice_quant8_2) \
FN(strided_slice_quant8_3) \
FN(strided_slice_quant8_4) \
FN(strided_slice_quant8_5) \
FN(strided_slice_quant8_6) \
FN(strided_slice_quant8_7) \
FN(strided_slice_quant8_8) \
FN(strided_slice_quant8_9) \
FN(sub) \
FN(svdf) \
FN(svdf2) \
FN(svdf2_relaxed) \
FN(svdf_relaxed) \
FN(svdf_state) \
FN(svdf_state_relaxed) \
FN(tanh) \
FN(tanh_relaxed) \
FN(transpose) \
FN(transpose_float_1) \
FN(transpose_quant8_1)
#define FORWARD_DECLARE_GENERATED_OBJECTS(function) \
namespace function { \
extern std::vector<MixedTypedExample> examples; \
Model createTestModel(); \
}
FOR_EACH_TEST_MODEL(FORWARD_DECLARE_GENERATED_OBJECTS)
#undef FORWARD_DECLARE_GENERATED_OBJECTS
} // namespace functional
} // namespace vts
} // namespace V1_1
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
#endif // VTS_HAL_NEURALNETWORKS_V1_1_VTS_FUNCTIONAL_MODELS_H

View File

@@ -0,0 +1,513 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworks.h"
#include "Callbacks.h"
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_1 {
using V1_0::IPreparedModel;
using V1_0::Operand;
using V1_0::OperandLifeTime;
using V1_0::OperandType;
namespace vts {
namespace functional {
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
///////////////////////// UTILITY FUNCTIONS /////////////////////////
static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
const V1_1::Model& model) {
SCOPED_TRACE(message + " [getSupportedOperations_1_1]");
Return<void> ret =
device->getSupportedOperations_1_1(model, [&](ErrorStatus status, const hidl_vec<bool>&) {
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
});
EXPECT_TRUE(ret.isOk());
}
static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
const V1_1::Model& model) {
SCOPED_TRACE(message + " [prepareModel_1_1]");
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus =
device->prepareModel_1_1(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
ASSERT_EQ(nullptr, preparedModel.get());
}
// Primary validation function. This function will take a valid model, apply a
// mutation to it to invalidate the model, then pass it to interface calls that
// use the model. Note that the model here is passed by value, and any mutation
// to the model does not leave this function.
static void validate(const sp<IDevice>& device, const std::string& message, V1_1::Model model,
const std::function<void(Model*)>& mutation) {
mutation(&model);
validateGetSupportedOperations(device, message, model);
validatePrepareModel(device, message, model);
}
// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
// so this is efficiently accomplished by moving the element to the end and
// resizing the hidl_vec to one less.
template <typename Type>
static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
if (vec) {
std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
vec->resize(vec->size() - 1);
}
}
template <typename Type>
static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
// assume vec is valid
const uint32_t index = vec->size();
vec->resize(index + 1);
(*vec)[index] = value;
return index;
}
static uint32_t addOperand(Model* model) {
return hidl_vec_push_back(&model->operands,
{
.type = OperandType::INT32,
.dimensions = {},
.numberOfConsumers = 0,
.scale = 0.0f,
.zeroPoint = 0,
.lifetime = OperandLifeTime::MODEL_INPUT,
.location = {.poolIndex = 0, .offset = 0, .length = 0},
});
}
static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
uint32_t index = addOperand(model);
model->operands[index].numberOfConsumers = 1;
model->operands[index].lifetime = lifetime;
return index;
}
///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
static const int32_t invalidOperandTypes[] = {
static_cast<int32_t>(OperandType::FLOAT32) - 1, // lower bound fundamental
static_cast<int32_t>(OperandType::TENSOR_QUANT8_ASYMM) + 1, // upper bound fundamental
static_cast<int32_t>(OperandType::OEM) - 1, // lower bound OEM
static_cast<int32_t>(OperandType::TENSOR_OEM_BYTE) + 1, // upper bound OEM
};
static void mutateOperandTypeTest(const sp<IDevice>& device, const V1_1::Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
for (int32_t invalidOperandType : invalidOperandTypes) {
const std::string message = "mutateOperandTypeTest: operand " +
std::to_string(operand) + " set to value " +
std::to_string(invalidOperandType);
validate(device, message, model, [operand, invalidOperandType](Model* model) {
model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
});
}
}
}
///////////////////////// VALIDATE OPERAND RANK /////////////////////////
static uint32_t getInvalidRank(OperandType type) {
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
return 1;
case OperandType::TENSOR_FLOAT32:
case OperandType::TENSOR_INT32:
case OperandType::TENSOR_QUANT8_ASYMM:
return 0;
default:
return 0;
}
}
static void mutateOperandRankTest(const sp<IDevice>& device, const V1_1::Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
" has rank of " + std::to_string(invalidRank);
validate(device, message, model, [operand, invalidRank](Model* model) {
model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
});
}
}
///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
static float getInvalidScale(OperandType type) {
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
case OperandType::TENSOR_FLOAT32:
return 1.0f;
case OperandType::TENSOR_INT32:
return -1.0f;
case OperandType::TENSOR_QUANT8_ASYMM:
return 0.0f;
default:
return 0.0f;
}
}
static void mutateOperandScaleTest(const sp<IDevice>& device, const V1_1::Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const float invalidScale = getInvalidScale(model.operands[operand].type);
const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
" has scale of " + std::to_string(invalidScale);
validate(device, message, model, [operand, invalidScale](Model* model) {
model->operands[operand].scale = invalidScale;
});
}
}
///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
case OperandType::TENSOR_FLOAT32:
case OperandType::TENSOR_INT32:
return {1};
case OperandType::TENSOR_QUANT8_ASYMM:
return {-1, 256};
default:
return {};
}
}
static void mutateOperandZeroPointTest(const sp<IDevice>& device, const V1_1::Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const std::vector<int32_t> invalidZeroPoints =
getInvalidZeroPoints(model.operands[operand].type);
for (int32_t invalidZeroPoint : invalidZeroPoints) {
const std::string message = "mutateOperandZeroPointTest: operand " +
std::to_string(operand) + " has zero point of " +
std::to_string(invalidZeroPoint);
validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
model->operands[operand].zeroPoint = invalidZeroPoint;
});
}
}
}
///////////////////////// VALIDATE EXTRA ??? /////////////////////////
// TODO: Operand::lifetime
// TODO: Operand::location
///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
static void mutateOperand(Operand* operand, OperandType type) {
Operand newOperand = *operand;
newOperand.type = type;
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
newOperand.dimensions = hidl_vec<uint32_t>();
newOperand.scale = 0.0f;
newOperand.zeroPoint = 0;
break;
case OperandType::TENSOR_FLOAT32:
newOperand.dimensions =
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
newOperand.scale = 0.0f;
newOperand.zeroPoint = 0;
break;
case OperandType::TENSOR_INT32:
newOperand.dimensions =
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
newOperand.zeroPoint = 0;
break;
case OperandType::TENSOR_QUANT8_ASYMM:
newOperand.dimensions =
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
break;
case OperandType::OEM:
case OperandType::TENSOR_OEM_BYTE:
default:
break;
}
*operand = newOperand;
}
static bool mutateOperationOperandTypeSkip(size_t operand, const V1_1::Model& model) {
// LSH_PROJECTION's second argument is allowed to have any type. This is the
// only operation that currently has a type that can be anything independent
// from any other type. Changing the operand type to any other type will
// result in a valid model for LSH_PROJECTION. If this is the case, skip the
// test.
for (const Operation& operation : model.operations) {
if (operation.type == OperationType::LSH_PROJECTION && operand == operation.inputs[1]) {
return true;
}
}
return false;
}
static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const V1_1::Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
if (mutateOperationOperandTypeSkip(operand, model)) {
continue;
}
for (OperandType invalidOperandType : hidl_enum_iterator<OperandType>{}) {
// Do not test OEM types
if (invalidOperandType == model.operands[operand].type ||
invalidOperandType == OperandType::OEM ||
invalidOperandType == OperandType::TENSOR_OEM_BYTE) {
continue;
}
const std::string message = "mutateOperationOperandTypeTest: operand " +
std::to_string(operand) + " set to type " +
toString(invalidOperandType);
validate(device, message, model, [operand, invalidOperandType](Model* model) {
mutateOperand(&model->operands[operand], invalidOperandType);
});
}
}
}
///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
static const int32_t invalidOperationTypes[] = {
static_cast<int32_t>(OperationType::ADD) - 1, // lower bound fundamental
static_cast<int32_t>(OperationType::TRANSPOSE) + 1, // upper bound fundamental
static_cast<int32_t>(OperationType::OEM_OPERATION) - 1, // lower bound OEM
static_cast<int32_t>(OperationType::OEM_OPERATION) + 1, // upper bound OEM
};
static void mutateOperationTypeTest(const sp<IDevice>& device, const V1_1::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
for (int32_t invalidOperationType : invalidOperationTypes) {
const std::string message = "mutateOperationTypeTest: operation " +
std::to_string(operation) + " set to value " +
std::to_string(invalidOperationType);
validate(device, message, model, [operation, invalidOperationType](Model* model) {
model->operations[operation].type =
static_cast<OperationType>(invalidOperationType);
});
}
}
}
///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device,
const V1_1::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const uint32_t invalidOperand = model.operands.size();
for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
const std::string message = "mutateOperationInputOperandIndexTest: operation " +
std::to_string(operation) + " input " +
std::to_string(input);
validate(device, message, model, [operation, input, invalidOperand](Model* model) {
model->operations[operation].inputs[input] = invalidOperand;
});
}
}
}
///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device,
const V1_1::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const uint32_t invalidOperand = model.operands.size();
for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
std::to_string(operation) + " output " +
std::to_string(output);
validate(device, message, model, [operation, output, invalidOperand](Model* model) {
model->operations[operation].outputs[output] = invalidOperand;
});
}
}
}
///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
if (vec) {
// remove elements matching "value"
auto last = std::remove(vec->begin(), vec->end(), value);
vec->resize(std::distance(vec->begin(), last));
// decrement elements exceeding "value"
std::transform(vec->begin(), vec->end(), vec->begin(),
[value](uint32_t v) { return v > value ? v-- : v; });
}
}
static void removeOperand(Model* model, uint32_t index) {
hidl_vec_removeAt(&model->operands, index);
for (Operation& operation : model->operations) {
removeValueAndDecrementGreaterValues(&operation.inputs, index);
removeValueAndDecrementGreaterValues(&operation.outputs, index);
}
removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
}
static void removeOperandTest(const sp<IDevice>& device, const V1_1::Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const std::string message = "removeOperandTest: operand " + std::to_string(operand);
validate(device, message, model,
[operand](Model* model) { removeOperand(model, operand); });
}
}
///////////////////////// REMOVE OPERATION /////////////////////////
static void removeOperation(Model* model, uint32_t index) {
for (uint32_t operand : model->operations[index].inputs) {
model->operands[operand].numberOfConsumers--;
}
hidl_vec_removeAt(&model->operations, index);
}
static void removeOperationTest(const sp<IDevice>& device, const V1_1::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const std::string message = "removeOperationTest: operation " + std::to_string(operation);
validate(device, message, model,
[operation](Model* model) { removeOperation(model, operation); });
}
}
///////////////////////// REMOVE OPERATION INPUT /////////////////////////
static void removeOperationInputTest(const sp<IDevice>& device, const V1_1::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
const V1_1::Operation& op = model.operations[operation];
// CONCATENATION has at least 2 inputs, with the last element being
// INT32. Skip this test if removing one of CONCATENATION's
// inputs still produces a valid model.
if (op.type == V1_1::OperationType::CONCATENATION && op.inputs.size() > 2 &&
input != op.inputs.size() - 1) {
continue;
}
const std::string message = "removeOperationInputTest: operation " +
std::to_string(operation) + ", input " +
std::to_string(input);
validate(device, message, model, [operation, input](Model* model) {
uint32_t operand = model->operations[operation].inputs[input];
model->operands[operand].numberOfConsumers--;
hidl_vec_removeAt(&model->operations[operation].inputs, input);
});
}
}
}
///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
static void removeOperationOutputTest(const sp<IDevice>& device, const V1_1::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
const std::string message = "removeOperationOutputTest: operation " +
std::to_string(operation) + ", output " +
std::to_string(output);
validate(device, message, model, [operation, output](Model* model) {
hidl_vec_removeAt(&model->operations[operation].outputs, output);
});
}
}
}
///////////////////////// MODEL VALIDATION /////////////////////////
// TODO: remove model input
// TODO: remove model output
// TODO: add unused operation
///////////////////////// ADD OPERATION INPUT /////////////////////////
static void addOperationInputTest(const sp<IDevice>& device, const V1_1::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
validate(device, message, model, [operation](Model* model) {
uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
hidl_vec_push_back(&model->operations[operation].inputs, index);
hidl_vec_push_back(&model->inputIndexes, index);
});
}
}
///////////////////////// ADD OPERATION OUTPUT /////////////////////////
static void addOperationOutputTest(const sp<IDevice>& device, const V1_1::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const std::string message =
"addOperationOutputTest: operation " + std::to_string(operation);
validate(device, message, model, [operation](Model* model) {
uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
hidl_vec_push_back(&model->operations[operation].outputs, index);
hidl_vec_push_back(&model->outputIndexes, index);
});
}
}
////////////////////////// ENTRY POINT //////////////////////////////
void ValidationTest::validateModel(const V1_1::Model& model) {
mutateOperandTypeTest(device, model);
mutateOperandRankTest(device, model);
mutateOperandScaleTest(device, model);
mutateOperandZeroPointTest(device, model);
mutateOperationOperandTypeTest(device, model);
mutateOperationTypeTest(device, model);
mutateOperationInputOperandIndexTest(device, model);
mutateOperationOutputOperandIndexTest(device, model);
removeOperandTest(device, model);
removeOperationTest(device, model);
removeOperationInputTest(device, model);
removeOperationOutputTest(device, model);
addOperationInputTest(device, model);
addOperationOutputTest(device, model);
}
} // namespace functional
} // namespace vts
} // namespace V1_1
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View File

@@ -0,0 +1,262 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworks.h"
#include "Callbacks.h"
#include "TestHarness.h"
#include "Utils.h"
#include <android-base/logging.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_1 {
namespace vts {
namespace functional {
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
using ::android::hidl::memory::V1_0::IMemory;
using generated_tests::MixedTyped;
using generated_tests::MixedTypedExampleType;
using generated_tests::for_all;
///////////////////////// UTILITY FUNCTIONS /////////////////////////
static void createPreparedModel(const sp<IDevice>& device, const V1_1::Model& model,
sp<IPreparedModel>* preparedModel) {
ASSERT_NE(nullptr, preparedModel);
// see if service can handle model
bool fullySupportsModel = false;
Return<void> supportedOpsLaunchStatus = device->getSupportedOperations_1_1(
model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
ASSERT_EQ(ErrorStatus::NONE, status);
ASSERT_NE(0ul, supported.size());
fullySupportsModel =
std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
});
ASSERT_TRUE(supportedOpsLaunchStatus.isOk());
// launch prepare model
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus =
device->prepareModel_1_1(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
// retrieve prepared model
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
*preparedModel = preparedModelCallback->getPreparedModel();
// The getSupportedOperations_1_1 call returns a list of operations that are
// guaranteed not to fail if prepareModel_1_1 is called, and
// 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
// If a driver has any doubt that it can prepare an operation, it must
// return false. So here, if a driver isn't sure if it can support an
// operation, but reports that it successfully prepared the model, the test
// can continue.
if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
ASSERT_EQ(nullptr, preparedModel->get());
LOG(INFO) << "NN VTS: Unable to test Request validation because vendor service cannot "
"prepare model that it does not support.";
std::cout << "[ ] Unable to test Request validation because vendor service "
"cannot prepare model that it does not support."
<< std::endl;
return;
}
ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
ASSERT_NE(nullptr, preparedModel->get());
}
// Primary validation function. This function will take a valid request, apply a
// mutation to it to invalidate the request, then pass it to interface calls
// that use the request. Note that the request here is passed by value, and any
// mutation to the request does not leave this function.
static void validate(const sp<IPreparedModel>& preparedModel, const std::string& message,
Request request, const std::function<void(Request*)>& mutation) {
mutation(&request);
SCOPED_TRACE(message + " [execute]");
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
ASSERT_NE(nullptr, executionCallback.get());
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
ASSERT_TRUE(executeLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
executionCallback->wait();
ErrorStatus executionReturnStatus = executionCallback->getStatus();
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
}
// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
// so this is efficiently accomplished by moving the element to the end and
// resizing the hidl_vec to one less.
template <typename Type>
static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
if (vec) {
std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
vec->resize(vec->size() - 1);
}
}
template <typename Type>
static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
// assume vec is valid
const uint32_t index = vec->size();
vec->resize(index + 1);
(*vec)[index] = value;
return index;
}
///////////////////////// REMOVE INPUT ////////////////////////////////////
static void removeInputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
for (size_t input = 0; input < request.inputs.size(); ++input) {
const std::string message = "removeInput: removed input " + std::to_string(input);
validate(preparedModel, message, request,
[input](Request* request) { hidl_vec_removeAt(&request->inputs, input); });
}
}
///////////////////////// REMOVE OUTPUT ////////////////////////////////////
static void removeOutputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
for (size_t output = 0; output < request.outputs.size(); ++output) {
const std::string message = "removeOutput: removed Output " + std::to_string(output);
validate(preparedModel, message, request,
[output](Request* request) { hidl_vec_removeAt(&request->outputs, output); });
}
}
///////////////////////////// ENTRY POINT //////////////////////////////////
std::vector<Request> createRequests(const std::vector<MixedTypedExampleType>& examples) {
const uint32_t INPUT = 0;
const uint32_t OUTPUT = 1;
std::vector<Request> requests;
for (auto& example : examples) {
const MixedTyped& inputs = example.first;
const MixedTyped& outputs = example.second;
std::vector<RequestArgument> inputs_info, outputs_info;
uint32_t inputSize = 0, outputSize = 0;
// This function only partially specifies the metadata (vector of RequestArguments).
// The contents are copied over below.
for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) {
if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1);
RequestArgument arg = {
.location = {.poolIndex = INPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
.dimensions = {},
};
RequestArgument arg_empty = {
.hasNoValue = true,
};
inputs_info[index] = s ? arg : arg_empty;
inputSize += s;
});
// Compute offset for inputs 1 and so on
{
size_t offset = 0;
for (auto& i : inputs_info) {
if (!i.hasNoValue) i.location.offset = offset;
offset += i.location.length;
}
}
// Go through all outputs, initialize RequestArgument descriptors
for_all(outputs, [&outputs_info, &outputSize](int index, auto, auto s) {
if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
RequestArgument arg = {
.location = {.poolIndex = OUTPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
.dimensions = {},
};
outputs_info[index] = arg;
outputSize += s;
});
// Compute offset for outputs 1 and so on
{
size_t offset = 0;
for (auto& i : outputs_info) {
i.location.offset = offset;
offset += i.location.length;
}
}
std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
nn::allocateSharedMemory(outputSize)};
if (pools[INPUT].size() == 0 || pools[OUTPUT].size() == 0) {
return {};
}
// map pool
sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
if (inputMemory == nullptr) {
return {};
}
char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer()));
if (inputPtr == nullptr) {
return {};
}
// initialize pool
inputMemory->update();
for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) {
char* begin = (char*)p;
char* end = begin + s;
// TODO: handle more than one input
std::copy(begin, end, inputPtr + inputs_info[index].location.offset);
});
inputMemory->commit();
requests.push_back({.inputs = inputs_info, .outputs = outputs_info, .pools = pools});
}
return requests;
}
void ValidationTest::validateRequests(const V1_1::Model& model,
const std::vector<Request>& requests) {
// create IPreparedModel
sp<IPreparedModel> preparedModel;
ASSERT_NO_FATAL_FAILURE(createPreparedModel(device, model, &preparedModel));
if (preparedModel == nullptr) {
return;
}
// validate each request
for (const Request& request : requests) {
removeInputTest(preparedModel, request);
removeOutputTest(preparedModel, request);
}
}
} // namespace functional
} // namespace vts
} // namespace V1_1
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View File

@@ -0,0 +1,50 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "Models.h"
#include "VtsHalNeuralnetworks.h"
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_1 {
namespace vts {
namespace functional {
// forward declarations
std::vector<Request> createRequests(const std::vector<MixedTypedExample>& examples);
// generate validation tests
#define VTS_CURRENT_TEST_CASE(TestName) \
TEST_F(ValidationTest, TestName) { \
const Model model = TestName::createTestModel(); \
const std::vector<Request> requests = createRequests(TestName::examples); \
validateModel(model); \
validateRequests(model, requests); \
}
FOR_EACH_TEST_MODEL(VTS_CURRENT_TEST_CASE)
#undef VTS_CURRENT_TEST_CASE
} // namespace functional
} // namespace vts
} // namespace V1_1
} // namespace neuralnetworks
} // namespace hardware
} // namespace android

View File

@@ -16,16 +16,7 @@
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworksV1_1.h"
#include "Utils.h"
#include <android-base/logging.h>
#include <hidlmemory/mapping.h>
using ::android::hardware::hidl_memory;
using ::android::hidl::allocator::V1_0::IAllocator;
using ::android::hidl::memory::V1_0::IMemory;
using ::android::sp;
#include "VtsHalNeuralnetworks.h"
namespace android {
namespace hardware {
@@ -34,11 +25,6 @@ namespace V1_1 {
namespace vts {
namespace functional {
// allocator helper
hidl_memory allocateSharedMemory(int64_t size) {
return nn::allocateSharedMemory(size);
}
// A class for test environment setup
NeuralnetworksHidlEnvironment::NeuralnetworksHidlEnvironment() {}
@@ -52,23 +38,49 @@ NeuralnetworksHidlEnvironment* NeuralnetworksHidlEnvironment::getInstance() {
}
void NeuralnetworksHidlEnvironment::registerTestServices() {
registerTestService<V1_1::IDevice>();
registerTestService<IDevice>();
}
// The main test class for NEURALNETWORK HIDL HAL.
NeuralnetworksHidlTest::NeuralnetworksHidlTest() {}
NeuralnetworksHidlTest::~NeuralnetworksHidlTest() {}
void NeuralnetworksHidlTest::SetUp() {
device = ::testing::VtsHalHidlTargetTestBase::getService<V1_1::IDevice>(
::testing::VtsHalHidlTargetTestBase::SetUp();
device = ::testing::VtsHalHidlTargetTestBase::getService<IDevice>(
NeuralnetworksHidlEnvironment::getInstance());
ASSERT_NE(nullptr, device.get());
}
void NeuralnetworksHidlTest::TearDown() {}
void NeuralnetworksHidlTest::TearDown() {
device = nullptr;
::testing::VtsHalHidlTargetTestBase::TearDown();
}
} // namespace functional
} // namespace vts
::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus) {
return os << toString(errorStatus);
}
::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus) {
return os << toString(deviceStatus);
}
} // namespace V1_1
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
using android::hardware::neuralnetworks::V1_1::vts::functional::NeuralnetworksHidlEnvironment;
int main(int argc, char** argv) {
::testing::AddGlobalTestEnvironment(NeuralnetworksHidlEnvironment::getInstance());
::testing::InitGoogleTest(&argc, argv);
NeuralnetworksHidlEnvironment::getInstance()->init(&argc, argv);
int status = RUN_ALL_TESTS();
return status;
}

View File

@@ -17,65 +17,71 @@
#ifndef VTS_HAL_NEURALNETWORKS_V1_1_H
#define VTS_HAL_NEURALNETWORKS_V1_1_H
#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/IDevice.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hidl/allocator/1.0/IAllocator.h>
#include <VtsHalHidlTargetTestBase.h>
#include <VtsHalHidlTargetTestEnvBase.h>
#include <android-base/macros.h>
#include <gtest/gtest.h>
#include <string>
#include <iostream>
#include <vector>
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_1 {
using V1_0::Request;
using V1_0::DeviceStatus;
using V1_0::ErrorStatus;
namespace vts {
namespace functional {
hidl_memory allocateSharedMemory(int64_t size);
// A class for test environment setup
class NeuralnetworksHidlEnvironment : public ::testing::VtsHalHidlTargetTestEnvBase {
DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlEnvironment);
NeuralnetworksHidlEnvironment();
NeuralnetworksHidlEnvironment(const NeuralnetworksHidlEnvironment&) = delete;
NeuralnetworksHidlEnvironment(NeuralnetworksHidlEnvironment&&) = delete;
NeuralnetworksHidlEnvironment& operator=(const NeuralnetworksHidlEnvironment&) = delete;
NeuralnetworksHidlEnvironment& operator=(NeuralnetworksHidlEnvironment&&) = delete;
~NeuralnetworksHidlEnvironment() override;
public:
~NeuralnetworksHidlEnvironment() override;
static NeuralnetworksHidlEnvironment* getInstance();
void registerTestServices() override;
};
// The main test class for NEURALNETWORKS HIDL HAL.
class NeuralnetworksHidlTest : public ::testing::VtsHalHidlTargetTestBase {
DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlTest);
public:
NeuralnetworksHidlTest();
~NeuralnetworksHidlTest() override;
void SetUp() override;
void TearDown() override;
sp<V1_1::IDevice> device;
protected:
sp<IDevice> device;
};
// Tag for the validation tests
class ValidationTest : public NeuralnetworksHidlTest {
protected:
void validateModel(const Model& model);
void validateRequests(const Model& model, const std::vector<Request>& request);
};
// Tag for the generated tests
class GeneratedTest : public NeuralnetworksHidlTest {};
} // namespace functional
} // namespace vts
// pretty-print values for error messages
template <typename CharT, typename Traits>
::std::basic_ostream<CharT, Traits>& operator<<(::std::basic_ostream<CharT, Traits>& os,
V1_0::ErrorStatus errorStatus) {
return os << toString(errorStatus);
}
template <typename CharT, typename Traits>
::std::basic_ostream<CharT, Traits>& operator<<(::std::basic_ostream<CharT, Traits>& os,
V1_0::DeviceStatus deviceStatus) {
return os << toString(deviceStatus);
}
::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus);
::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus);
} // namespace V1_1
} // namespace neuralnetworks

View File

@@ -1,468 +0,0 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "VtsHalNeuralnetworksV1_1.h"
#include "Callbacks.h"
#include "Models.h"
#include "TestHarness.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.1/IDevice.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <hidlmemory/mapping.h>
using ::android::hardware::neuralnetworks::V1_0::IPreparedModel;
using ::android::hardware::neuralnetworks::V1_0::DeviceStatus;
using ::android::hardware::neuralnetworks::V1_0::ErrorStatus;
using ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc;
using ::android::hardware::neuralnetworks::V1_0::Operand;
using ::android::hardware::neuralnetworks::V1_0::OperandLifeTime;
using ::android::hardware::neuralnetworks::V1_0::OperandType;
using ::android::hardware::neuralnetworks::V1_0::Request;
using ::android::hardware::neuralnetworks::V1_1::Capabilities;
using ::android::hardware::neuralnetworks::V1_1::IDevice;
using ::android::hardware::neuralnetworks::V1_1::Model;
using ::android::hardware::neuralnetworks::V1_1::Operation;
using ::android::hardware::neuralnetworks::V1_1::OperationType;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::hardware::hidl_memory;
using ::android::hardware::hidl_string;
using ::android::hardware::hidl_vec;
using ::android::hidl::allocator::V1_0::IAllocator;
using ::android::hidl::memory::V1_0::IMemory;
using ::android::sp;
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_1 {
namespace vts {
namespace functional {
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
static void doPrepareModelShortcut(const sp<IDevice>& device, sp<IPreparedModel>* preparedModel) {
ASSERT_NE(nullptr, preparedModel);
Model model = createValidTestModel_1_1();
// see if service can handle model
bool fullySupportsModel = false;
Return<void> supportedOpsLaunchStatus = device->getSupportedOperations_1_1(
model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
ASSERT_EQ(ErrorStatus::NONE, status);
ASSERT_NE(0ul, supported.size());
fullySupportsModel =
std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
});
ASSERT_TRUE(supportedOpsLaunchStatus.isOk());
// launch prepare model
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus =
device->prepareModel_1_1(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
// retrieve prepared model
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
*preparedModel = preparedModelCallback->getPreparedModel();
// The getSupportedOperations call returns a list of operations that are
// guaranteed not to fail if prepareModel is called, and
// 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
// If a driver has any doubt that it can prepare an operation, it must
// return false. So here, if a driver isn't sure if it can support an
// operation, but reports that it successfully prepared the model, the test
// can continue.
if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
ASSERT_EQ(nullptr, preparedModel->get());
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"prepare model that it does not support.";
std::cout << "[ ] Early termination of test because vendor service cannot "
"prepare model that it does not support."
<< std::endl;
return;
}
ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
ASSERT_NE(nullptr, preparedModel->get());
}
// create device test
TEST_F(NeuralnetworksHidlTest, CreateDevice) {}
// status test
TEST_F(NeuralnetworksHidlTest, StatusTest) {
Return<DeviceStatus> status = device->getStatus();
ASSERT_TRUE(status.isOk());
EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
}
// initialization
TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) {
Return<void> ret =
device->getCapabilities_1_1([](ErrorStatus status, const Capabilities& capabilities) {
EXPECT_EQ(ErrorStatus::NONE, status);
EXPECT_LT(0.0f, capabilities.float32Performance.execTime);
EXPECT_LT(0.0f, capabilities.float32Performance.powerUsage);
EXPECT_LT(0.0f, capabilities.quantized8Performance.execTime);
EXPECT_LT(0.0f, capabilities.quantized8Performance.powerUsage);
EXPECT_LT(0.0f, capabilities.relaxedFloat32toFloat16Performance.execTime);
EXPECT_LT(0.0f, capabilities.relaxedFloat32toFloat16Performance.powerUsage);
});
EXPECT_TRUE(ret.isOk());
}
// supported operations positive test
TEST_F(NeuralnetworksHidlTest, SupportedOperationsPositiveTest) {
Model model = createValidTestModel_1_1();
Return<void> ret = device->getSupportedOperations_1_1(
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
EXPECT_EQ(ErrorStatus::NONE, status);
EXPECT_EQ(model.operations.size(), supported.size());
});
EXPECT_TRUE(ret.isOk());
}
// supported operations negative test 1
TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest1) {
Model model = createInvalidTestModel1_1_1();
Return<void> ret = device->getSupportedOperations_1_1(
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
(void)supported;
});
EXPECT_TRUE(ret.isOk());
}
// supported operations negative test 2
TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest2) {
Model model = createInvalidTestModel2_1_1();
Return<void> ret = device->getSupportedOperations_1_1(
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
(void)supported;
});
EXPECT_TRUE(ret.isOk());
}
// prepare simple model positive test
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelPositiveTest) {
sp<IPreparedModel> preparedModel;
doPrepareModelShortcut(device, &preparedModel);
}
// prepare simple model negative test 1
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest1) {
Model model = createInvalidTestModel1_1_1();
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus =
device->prepareModel_1_1(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
EXPECT_EQ(nullptr, preparedModel.get());
}
// prepare simple model negative test 2
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest2) {
Model model = createInvalidTestModel2_1_1();
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
ASSERT_NE(nullptr, preparedModelCallback.get());
Return<ErrorStatus> prepareLaunchStatus =
device->prepareModel_1_1(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
EXPECT_EQ(nullptr, preparedModel.get());
}
// execute simple graph positive test
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphPositiveTest) {
std::vector<float> outputData = {-1.0f, -1.0f, -1.0f, -1.0f};
std::vector<float> expectedData = {6.0f, 8.0f, 10.0f, 12.0f};
const uint32_t OUTPUT = 1;
sp<IPreparedModel> preparedModel;
ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
if (preparedModel == nullptr) {
return;
}
Request request = createValidTestRequest();
auto postWork = [&] {
sp<IMemory> outputMemory = mapMemory(request.pools[OUTPUT]);
if (outputMemory == nullptr) {
return false;
}
float* outputPtr = reinterpret_cast<float*>(static_cast<void*>(outputMemory->getPointer()));
if (outputPtr == nullptr) {
return false;
}
outputMemory->read();
std::copy(outputPtr, outputPtr + outputData.size(), outputData.begin());
outputMemory->commit();
return true;
};
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
ASSERT_NE(nullptr, executionCallback.get());
executionCallback->on_finish(postWork);
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
ASSERT_TRUE(executeLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executeLaunchStatus));
executionCallback->wait();
ErrorStatus executionReturnStatus = executionCallback->getStatus();
EXPECT_EQ(ErrorStatus::NONE, executionReturnStatus);
EXPECT_EQ(expectedData, outputData);
}
// execute simple graph negative test 1
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest1) {
sp<IPreparedModel> preparedModel;
ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
if (preparedModel == nullptr) {
return;
}
Request request = createInvalidTestRequest1();
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
ASSERT_NE(nullptr, executionCallback.get());
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
ASSERT_TRUE(executeLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
executionCallback->wait();
ErrorStatus executionReturnStatus = executionCallback->getStatus();
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
}
// execute simple graph negative test 2
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest2) {
sp<IPreparedModel> preparedModel;
ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
if (preparedModel == nullptr) {
return;
}
Request request = createInvalidTestRequest2();
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
ASSERT_NE(nullptr, executionCallback.get());
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
ASSERT_TRUE(executeLaunchStatus.isOk());
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
executionCallback->wait();
ErrorStatus executionReturnStatus = executionCallback->getStatus();
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
}
class NeuralnetworksInputsOutputsTest
: public NeuralnetworksHidlTest,
public ::testing::WithParamInterface<std::tuple<bool, bool>> {
protected:
virtual void SetUp() { NeuralnetworksHidlTest::SetUp(); }
virtual void TearDown() { NeuralnetworksHidlTest::TearDown(); }
V1_1::Model createModel(const std::vector<uint32_t>& inputs,
const std::vector<uint32_t>& outputs) {
// We set up the operands as floating-point with no designated
// model inputs and outputs, and then patch type and lifetime
// later on in this function.
std::vector<Operand> operands = {
{
.type = OperandType::TENSOR_FLOAT32,
.dimensions = {1},
.numberOfConsumers = 1,
.scale = 0.0f,
.zeroPoint = 0,
.lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
.location = {.poolIndex = 0, .offset = 0, .length = 0},
},
{
.type = OperandType::TENSOR_FLOAT32,
.dimensions = {1},
.numberOfConsumers = 1,
.scale = 0.0f,
.zeroPoint = 0,
.lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
.location = {.poolIndex = 0, .offset = 0, .length = 0},
},
{
.type = OperandType::INT32,
.dimensions = {},
.numberOfConsumers = 1,
.scale = 0.0f,
.zeroPoint = 0,
.lifetime = OperandLifeTime::CONSTANT_COPY,
.location = {.poolIndex = 0, .offset = 0, .length = sizeof(int32_t)},
},
{
.type = OperandType::TENSOR_FLOAT32,
.dimensions = {1},
.numberOfConsumers = 0,
.scale = 0.0f,
.zeroPoint = 0,
.lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
.location = {.poolIndex = 0, .offset = 0, .length = 0},
},
};
const std::vector<Operation> operations = {{
.type = OperationType::ADD, .inputs = {0, 1, 2}, .outputs = {3},
}};
std::vector<uint8_t> operandValues;
int32_t activation[1] = {static_cast<int32_t>(FusedActivationFunc::NONE)};
operandValues.insert(operandValues.end(), reinterpret_cast<const uint8_t*>(&activation[0]),
reinterpret_cast<const uint8_t*>(&activation[1]));
if (kQuantized) {
for (auto& operand : operands) {
if (operand.type == OperandType::TENSOR_FLOAT32) {
operand.type = OperandType::TENSOR_QUANT8_ASYMM;
operand.scale = 1.0f;
operand.zeroPoint = 0;
}
}
}
auto patchLifetime = [&operands](const std::vector<uint32_t>& operandIndexes,
OperandLifeTime lifetime) {
for (uint32_t index : operandIndexes) {
operands[index].lifetime = lifetime;
}
};
if (kInputHasPrecedence) {
patchLifetime(outputs, OperandLifeTime::MODEL_OUTPUT);
patchLifetime(inputs, OperandLifeTime::MODEL_INPUT);
} else {
patchLifetime(inputs, OperandLifeTime::MODEL_INPUT);
patchLifetime(outputs, OperandLifeTime::MODEL_OUTPUT);
}
return {
.operands = operands,
.operations = operations,
.inputIndexes = inputs,
.outputIndexes = outputs,
.operandValues = operandValues,
.pools = {},
};
}
void check(const std::string& name,
bool expectation, // true = success
const std::vector<uint32_t>& inputs, const std::vector<uint32_t>& outputs) {
SCOPED_TRACE(name + " (HAL calls should " + (expectation ? "succeed" : "fail") + ", " +
(kInputHasPrecedence ? "input" : "output") + " precedence, " +
(kQuantized ? "quantized" : "float"));
V1_1::Model model = createModel(inputs, outputs);
// ensure that getSupportedOperations_1_1() checks model validity
ErrorStatus supportedOpsErrorStatus = ErrorStatus::GENERAL_FAILURE;
Return<void> supportedOpsReturn = device->getSupportedOperations_1_1(
model, [&model, &supportedOpsErrorStatus](ErrorStatus status,
const hidl_vec<bool>& supported) {
supportedOpsErrorStatus = status;
if (status == ErrorStatus::NONE) {
ASSERT_EQ(supported.size(), model.operations.size());
}
});
ASSERT_TRUE(supportedOpsReturn.isOk());
ASSERT_EQ(supportedOpsErrorStatus,
(expectation ? ErrorStatus::NONE : ErrorStatus::INVALID_ARGUMENT));
// ensure that prepareModel_1_1() checks model validity
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback;
ASSERT_NE(preparedModelCallback.get(), nullptr);
Return<ErrorStatus> prepareLaunchReturn =
device->prepareModel_1_1(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchReturn.isOk());
ASSERT_TRUE(prepareLaunchReturn == ErrorStatus::NONE ||
prepareLaunchReturn == ErrorStatus::INVALID_ARGUMENT);
bool preparationOk = (prepareLaunchReturn == ErrorStatus::NONE);
if (preparationOk) {
preparedModelCallback->wait();
preparationOk = (preparedModelCallback->getStatus() == ErrorStatus::NONE);
}
if (preparationOk) {
ASSERT_TRUE(expectation);
} else {
// Preparation can fail for reasons other than an invalid model --
// for example, perhaps not all operations are supported, or perhaps
// the device hit some kind of capacity limit.
bool invalid = prepareLaunchReturn == ErrorStatus::INVALID_ARGUMENT ||
preparedModelCallback->getStatus() == ErrorStatus::INVALID_ARGUMENT;
ASSERT_NE(expectation, invalid);
}
}
// Indicates whether an operand that appears in both the inputs
// and outputs vector should have lifetime appropriate for input
// rather than for output.
const bool kInputHasPrecedence = std::get<0>(GetParam());
// Indicates whether we should test TENSOR_QUANT8_ASYMM rather
// than TENSOR_FLOAT32.
const bool kQuantized = std::get<1>(GetParam());
};
TEST_P(NeuralnetworksInputsOutputsTest, Validate) {
check("Ok", true, {0, 1}, {3});
check("InputIsOutput", false, {0, 1}, {3, 0});
check("OutputIsInput", false, {0, 1, 3}, {3});
check("DuplicateInputs", false, {0, 1, 0}, {3});
check("DuplicateOutputs", false, {0, 1}, {3, 3});
}
INSTANTIATE_TEST_CASE_P(Flavor, NeuralnetworksInputsOutputsTest,
::testing::Combine(::testing::Bool(), ::testing::Bool()));
} // namespace functional
} // namespace vts
} // namespace V1_1
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
using android::hardware::neuralnetworks::V1_1::vts::functional::NeuralnetworksHidlEnvironment;
int main(int argc, char** argv) {
::testing::AddGlobalTestEnvironment(NeuralnetworksHidlEnvironment::getInstance());
::testing::InitGoogleTest(&argc, argv);
NeuralnetworksHidlEnvironment::getInstance()->init(&argc, argv);
int status = RUN_ALL_TESTS();
return status;
}