mirror of
https://github.com/Evolution-X/hardware_interfaces
synced 2026-02-01 11:36:00 +00:00
Merge "NN validation tests" into pi-dev
This commit is contained in:
committed by
Android (Google) Code Review
commit
dec4a73d2c
@@ -18,7 +18,6 @@ cc_library_static {
|
||||
name: "VtsHalNeuralnetworksTest_utils",
|
||||
srcs: [
|
||||
"Callbacks.cpp",
|
||||
"Models.cpp",
|
||||
"GeneratedTestHarness.cpp",
|
||||
],
|
||||
defaults: ["VtsHalTargetTestDefaults"],
|
||||
@@ -41,14 +40,17 @@ cc_library_static {
|
||||
cc_test {
|
||||
name: "VtsHalNeuralnetworksV1_0TargetTest",
|
||||
srcs: [
|
||||
"VtsHalNeuralnetworksV1_0.cpp",
|
||||
"VtsHalNeuralnetworksV1_0BasicTest.cpp",
|
||||
"VtsHalNeuralnetworksV1_0GeneratedTest.cpp",
|
||||
"BasicTests.cpp",
|
||||
"GeneratedTests.cpp",
|
||||
"ValidateModel.cpp",
|
||||
"ValidateRequest.cpp",
|
||||
"ValidationTests.cpp",
|
||||
"VtsHalNeuralnetworks.cpp",
|
||||
],
|
||||
defaults: ["VtsHalTargetTestDefaults"],
|
||||
static_libs: [
|
||||
"android.hardware.neuralnetworks@1.0",
|
||||
"android.hardware.neuralnetworks@1.1",
|
||||
"android.hardware.neuralnetworks@1.0",
|
||||
"android.hidl.allocator@1.0",
|
||||
"android.hidl.memory@1.0",
|
||||
"libhidlmemory",
|
||||
|
||||
56
neuralnetworks/1.0/vts/functional/BasicTests.cpp
Normal file
56
neuralnetworks/1.0/vts/functional/BasicTests.cpp
Normal file
@@ -0,0 +1,56 @@
|
||||
/*
|
||||
* Copyright (C) 2018 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
||||
|
||||
#include "VtsHalNeuralnetworks.h"
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
namespace neuralnetworks {
|
||||
namespace V1_0 {
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
|
||||
// create device test
|
||||
TEST_F(NeuralnetworksHidlTest, CreateDevice) {}
|
||||
|
||||
// status test
|
||||
TEST_F(NeuralnetworksHidlTest, StatusTest) {
|
||||
Return<DeviceStatus> status = device->getStatus();
|
||||
ASSERT_TRUE(status.isOk());
|
||||
EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
|
||||
}
|
||||
|
||||
// initialization
|
||||
TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) {
|
||||
Return<void> ret =
|
||||
device->getCapabilities([](ErrorStatus status, const Capabilities& capabilities) {
|
||||
EXPECT_EQ(ErrorStatus::NONE, status);
|
||||
EXPECT_LT(0.0f, capabilities.float32Performance.execTime);
|
||||
EXPECT_LT(0.0f, capabilities.float32Performance.powerUsage);
|
||||
EXPECT_LT(0.0f, capabilities.quantized8Performance.execTime);
|
||||
EXPECT_LT(0.0f, capabilities.quantized8Performance.powerUsage);
|
||||
});
|
||||
EXPECT_TRUE(ret.isOk());
|
||||
}
|
||||
|
||||
} // namespace functional
|
||||
} // namespace vts
|
||||
} // namespace V1_0
|
||||
} // namespace neuralnetworks
|
||||
} // namespace hardware
|
||||
} // namespace android
|
||||
@@ -17,14 +17,6 @@ namespace neuralnetworks {
|
||||
namespace V1_0 {
|
||||
namespace implementation {
|
||||
|
||||
using ::android::hardware::hidl_array;
|
||||
using ::android::hardware::hidl_memory;
|
||||
using ::android::hardware::hidl_string;
|
||||
using ::android::hardware::hidl_vec;
|
||||
using ::android::hardware::Return;
|
||||
using ::android::hardware::Void;
|
||||
using ::android::sp;
|
||||
|
||||
/**
|
||||
* The CallbackBase class is used internally by the NeuralNetworks runtime to
|
||||
* synchronize between different threads. An asynchronous task is launched
|
||||
|
||||
@@ -179,7 +179,7 @@ void EvaluatePreparedModel(sp<IPreparedModel>& preparedModel, std::function<bool
|
||||
}
|
||||
}
|
||||
|
||||
void Execute(sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> create_model,
|
||||
void Execute(const sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> create_model,
|
||||
std::function<bool(int)> is_ignored,
|
||||
const std::vector<MixedTypedExampleType>& examples) {
|
||||
V1_0::Model model = create_model();
|
||||
@@ -223,7 +223,7 @@ void Execute(sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> create_
|
||||
EvaluatePreparedModel(preparedModel, is_ignored, examples);
|
||||
}
|
||||
|
||||
void Execute(sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> create_model,
|
||||
void Execute(const sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> create_model,
|
||||
std::function<bool(int)> is_ignored,
|
||||
const std::vector<MixedTypedExampleType>& examples) {
|
||||
V1_1::Model model = create_model();
|
||||
|
||||
@@ -16,47 +16,33 @@
|
||||
|
||||
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
||||
|
||||
#include "VtsHalNeuralnetworksV1_0.h"
|
||||
#include "VtsHalNeuralnetworks.h"
|
||||
|
||||
#include "Callbacks.h"
|
||||
#include "TestHarness.h"
|
||||
#include "Utils.h"
|
||||
|
||||
#include <android-base/logging.h>
|
||||
#include <android/hidl/memory/1.0/IMemory.h>
|
||||
#include <hidlmemory/mapping.h>
|
||||
|
||||
using ::android::hardware::neuralnetworks::V1_0::IDevice;
|
||||
using ::android::hardware::neuralnetworks::V1_0::IPreparedModel;
|
||||
using ::android::hardware::neuralnetworks::V1_0::Capabilities;
|
||||
using ::android::hardware::neuralnetworks::V1_0::DeviceStatus;
|
||||
using ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc;
|
||||
using ::android::hardware::neuralnetworks::V1_0::Model;
|
||||
using ::android::hardware::neuralnetworks::V1_0::OperationType;
|
||||
using ::android::hardware::neuralnetworks::V1_0::PerformanceInfo;
|
||||
using ::android::hardware::Return;
|
||||
using ::android::hardware::Void;
|
||||
using ::android::hardware::hidl_memory;
|
||||
using ::android::hardware::hidl_string;
|
||||
using ::android::hardware::hidl_vec;
|
||||
using ::android::hidl::allocator::V1_0::IAllocator;
|
||||
using ::android::hidl::memory::V1_0::IMemory;
|
||||
using ::android::sp;
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
namespace neuralnetworks {
|
||||
|
||||
namespace generated_tests {
|
||||
using ::generated_tests::MixedTypedExampleType;
|
||||
extern void Execute(sp<IDevice>&, std::function<Model(void)>, std::function<bool(int)>,
|
||||
const std::vector<MixedTypedExampleType>&);
|
||||
extern void Execute(const sp<V1_0::IDevice>&, std::function<V1_0::Model(void)>,
|
||||
std::function<bool(int)>, const std::vector<MixedTypedExampleType>&);
|
||||
} // namespace generated_tests
|
||||
|
||||
namespace V1_0 {
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
|
||||
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
|
||||
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
|
||||
using ::android::nn::allocateSharedMemory;
|
||||
|
||||
// Mixed-typed examples
|
||||
typedef generated_tests::MixedTypedExampleType MixedTypedExample;
|
||||
@@ -1,202 +0,0 @@
|
||||
/*
|
||||
* Copyright (C) 2017 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
||||
|
||||
#include "Models.h"
|
||||
#include "Utils.h"
|
||||
|
||||
#include <android-base/logging.h>
|
||||
#include <android/hidl/allocator/1.0/IAllocator.h>
|
||||
#include <android/hidl/memory/1.0/IMemory.h>
|
||||
#include <hidlmemory/mapping.h>
|
||||
#include <vector>
|
||||
|
||||
using ::android::sp;
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
namespace neuralnetworks {
|
||||
|
||||
// create a valid model
|
||||
V1_1::Model createValidTestModel_1_1() {
|
||||
const std::vector<float> operand2Data = {5.0f, 6.0f, 7.0f, 8.0f};
|
||||
const uint32_t size = operand2Data.size() * sizeof(float);
|
||||
|
||||
const uint32_t operand1 = 0;
|
||||
const uint32_t operand2 = 1;
|
||||
const uint32_t operand3 = 2;
|
||||
const uint32_t operand4 = 3;
|
||||
|
||||
const std::vector<Operand> operands = {
|
||||
{
|
||||
.type = OperandType::TENSOR_FLOAT32,
|
||||
.dimensions = {1, 2, 2, 1},
|
||||
.numberOfConsumers = 1,
|
||||
.scale = 0.0f,
|
||||
.zeroPoint = 0,
|
||||
.lifetime = OperandLifeTime::MODEL_INPUT,
|
||||
.location = {.poolIndex = 0, .offset = 0, .length = 0},
|
||||
},
|
||||
{
|
||||
.type = OperandType::TENSOR_FLOAT32,
|
||||
.dimensions = {1, 2, 2, 1},
|
||||
.numberOfConsumers = 1,
|
||||
.scale = 0.0f,
|
||||
.zeroPoint = 0,
|
||||
.lifetime = OperandLifeTime::CONSTANT_COPY,
|
||||
.location = {.poolIndex = 0, .offset = 0, .length = size},
|
||||
},
|
||||
{
|
||||
.type = OperandType::INT32,
|
||||
.dimensions = {},
|
||||
.numberOfConsumers = 1,
|
||||
.scale = 0.0f,
|
||||
.zeroPoint = 0,
|
||||
.lifetime = OperandLifeTime::CONSTANT_COPY,
|
||||
.location = {.poolIndex = 0, .offset = size, .length = sizeof(int32_t)},
|
||||
},
|
||||
{
|
||||
.type = OperandType::TENSOR_FLOAT32,
|
||||
.dimensions = {1, 2, 2, 1},
|
||||
.numberOfConsumers = 0,
|
||||
.scale = 0.0f,
|
||||
.zeroPoint = 0,
|
||||
.lifetime = OperandLifeTime::MODEL_OUTPUT,
|
||||
.location = {.poolIndex = 0, .offset = 0, .length = 0},
|
||||
},
|
||||
};
|
||||
|
||||
const std::vector<Operation> operations = {{
|
||||
.type = OperationType::ADD, .inputs = {operand1, operand2, operand3}, .outputs = {operand4},
|
||||
}};
|
||||
|
||||
const std::vector<uint32_t> inputIndexes = {operand1};
|
||||
const std::vector<uint32_t> outputIndexes = {operand4};
|
||||
std::vector<uint8_t> operandValues(
|
||||
reinterpret_cast<const uint8_t*>(operand2Data.data()),
|
||||
reinterpret_cast<const uint8_t*>(operand2Data.data()) + size);
|
||||
int32_t activation[1] = {static_cast<int32_t>(FusedActivationFunc::NONE)};
|
||||
operandValues.insert(operandValues.end(), reinterpret_cast<const uint8_t*>(&activation[0]),
|
||||
reinterpret_cast<const uint8_t*>(&activation[1]));
|
||||
|
||||
const std::vector<hidl_memory> pools = {};
|
||||
|
||||
return {
|
||||
.operands = operands,
|
||||
.operations = operations,
|
||||
.inputIndexes = inputIndexes,
|
||||
.outputIndexes = outputIndexes,
|
||||
.operandValues = operandValues,
|
||||
.pools = pools,
|
||||
};
|
||||
}
|
||||
|
||||
// create first invalid model
|
||||
V1_1::Model createInvalidTestModel1_1_1() {
|
||||
Model model = createValidTestModel_1_1();
|
||||
model.operations[0].type = static_cast<OperationType>(0xDEADBEEF); /* INVALID */
|
||||
return model;
|
||||
}
|
||||
|
||||
// create second invalid model
|
||||
V1_1::Model createInvalidTestModel2_1_1() {
|
||||
Model model = createValidTestModel_1_1();
|
||||
const uint32_t operand1 = 0;
|
||||
const uint32_t operand5 = 4; // INVALID OPERAND
|
||||
model.inputIndexes = std::vector<uint32_t>({operand1, operand5 /* INVALID OPERAND */});
|
||||
return model;
|
||||
}
|
||||
|
||||
V1_0::Model createValidTestModel_1_0() {
|
||||
V1_1::Model model = createValidTestModel_1_1();
|
||||
return nn::convertToV1_0(model);
|
||||
}
|
||||
|
||||
V1_0::Model createInvalidTestModel1_1_0() {
|
||||
V1_1::Model model = createInvalidTestModel1_1_1();
|
||||
return nn::convertToV1_0(model);
|
||||
}
|
||||
|
||||
V1_0::Model createInvalidTestModel2_1_0() {
|
||||
V1_1::Model model = createInvalidTestModel2_1_1();
|
||||
return nn::convertToV1_0(model);
|
||||
}
|
||||
|
||||
// create a valid request
|
||||
Request createValidTestRequest() {
|
||||
std::vector<float> inputData = {1.0f, 2.0f, 3.0f, 4.0f};
|
||||
std::vector<float> outputData = {-1.0f, -1.0f, -1.0f, -1.0f};
|
||||
const uint32_t INPUT = 0;
|
||||
const uint32_t OUTPUT = 1;
|
||||
|
||||
// prepare inputs
|
||||
uint32_t inputSize = static_cast<uint32_t>(inputData.size() * sizeof(float));
|
||||
uint32_t outputSize = static_cast<uint32_t>(outputData.size() * sizeof(float));
|
||||
std::vector<RequestArgument> inputs = {{
|
||||
.location = {.poolIndex = INPUT, .offset = 0, .length = inputSize}, .dimensions = {},
|
||||
}};
|
||||
std::vector<RequestArgument> outputs = {{
|
||||
.location = {.poolIndex = OUTPUT, .offset = 0, .length = outputSize}, .dimensions = {},
|
||||
}};
|
||||
std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
|
||||
nn::allocateSharedMemory(outputSize)};
|
||||
if (pools[INPUT].size() == 0 || pools[OUTPUT].size() == 0) {
|
||||
return {};
|
||||
}
|
||||
|
||||
// load data
|
||||
sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
|
||||
sp<IMemory> outputMemory = mapMemory(pools[OUTPUT]);
|
||||
if (inputMemory.get() == nullptr || outputMemory.get() == nullptr) {
|
||||
return {};
|
||||
}
|
||||
float* inputPtr = reinterpret_cast<float*>(static_cast<void*>(inputMemory->getPointer()));
|
||||
float* outputPtr = reinterpret_cast<float*>(static_cast<void*>(outputMemory->getPointer()));
|
||||
if (inputPtr == nullptr || outputPtr == nullptr) {
|
||||
return {};
|
||||
}
|
||||
inputMemory->update();
|
||||
outputMemory->update();
|
||||
std::copy(inputData.begin(), inputData.end(), inputPtr);
|
||||
std::copy(outputData.begin(), outputData.end(), outputPtr);
|
||||
inputMemory->commit();
|
||||
outputMemory->commit();
|
||||
|
||||
return {.inputs = inputs, .outputs = outputs, .pools = pools};
|
||||
}
|
||||
|
||||
// create first invalid request
|
||||
Request createInvalidTestRequest1() {
|
||||
Request request = createValidTestRequest();
|
||||
const uint32_t INVALID = 2;
|
||||
std::vector<float> inputData = {1.0f, 2.0f, 3.0f, 4.0f};
|
||||
uint32_t inputSize = static_cast<uint32_t>(inputData.size() * sizeof(float));
|
||||
request.inputs[0].location = {
|
||||
.poolIndex = INVALID /* INVALID */, .offset = 0, .length = inputSize};
|
||||
return request;
|
||||
}
|
||||
|
||||
// create second invalid request
|
||||
Request createInvalidTestRequest2() {
|
||||
Request request = createValidTestRequest();
|
||||
request.inputs[0].dimensions = std::vector<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8} /* INVALID */);
|
||||
return request;
|
||||
}
|
||||
|
||||
} // namespace neuralnetworks
|
||||
} // namespace hardware
|
||||
} // namespace android
|
||||
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (C) 2017 The Android Open Source Project
|
||||
* Copyright (C) 2018 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
@@ -14,29 +14,187 @@
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef VTS_HAL_NEURALNETWORKS_V1_0_VTS_FUNCTIONAL_MODELS_H
|
||||
#define VTS_HAL_NEURALNETWORKS_V1_0_VTS_FUNCTIONAL_MODELS_H
|
||||
|
||||
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
||||
|
||||
#include <android/hardware/neuralnetworks/1.1/types.h>
|
||||
#include "TestHarness.h"
|
||||
|
||||
#include <android/hardware/neuralnetworks/1.0/types.h>
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
namespace neuralnetworks {
|
||||
namespace V1_0 {
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
|
||||
// create V1_1 model
|
||||
V1_1::Model createValidTestModel_1_1();
|
||||
V1_1::Model createInvalidTestModel1_1_1();
|
||||
V1_1::Model createInvalidTestModel2_1_1();
|
||||
using MixedTypedExample = generated_tests::MixedTypedExampleType;
|
||||
|
||||
// create V1_0 model
|
||||
V1_0::Model createValidTestModel_1_0();
|
||||
V1_0::Model createInvalidTestModel1_1_0();
|
||||
V1_0::Model createInvalidTestModel2_1_0();
|
||||
#define FOR_EACH_TEST_MODEL(FN) \
|
||||
FN(add_broadcast_quant8) \
|
||||
FN(add) \
|
||||
FN(add_quant8) \
|
||||
FN(avg_pool_float_1) \
|
||||
FN(avg_pool_float_2) \
|
||||
FN(avg_pool_float_3) \
|
||||
FN(avg_pool_float_4) \
|
||||
FN(avg_pool_float_5) \
|
||||
FN(avg_pool_quant8_1) \
|
||||
FN(avg_pool_quant8_2) \
|
||||
FN(avg_pool_quant8_3) \
|
||||
FN(avg_pool_quant8_4) \
|
||||
FN(avg_pool_quant8_5) \
|
||||
FN(concat_float_1) \
|
||||
FN(concat_float_2) \
|
||||
FN(concat_float_3) \
|
||||
FN(concat_quant8_1) \
|
||||
FN(concat_quant8_2) \
|
||||
FN(concat_quant8_3) \
|
||||
FN(conv_1_h3_w2_SAME) \
|
||||
FN(conv_1_h3_w2_VALID) \
|
||||
FN(conv_3_h3_w2_SAME) \
|
||||
FN(conv_3_h3_w2_VALID) \
|
||||
FN(conv_float_2) \
|
||||
FN(conv_float_channels) \
|
||||
FN(conv_float_channels_weights_as_inputs) \
|
||||
FN(conv_float_large) \
|
||||
FN(conv_float_large_weights_as_inputs) \
|
||||
FN(conv_float) \
|
||||
FN(conv_float_weights_as_inputs) \
|
||||
FN(conv_quant8_2) \
|
||||
FN(conv_quant8_channels) \
|
||||
FN(conv_quant8_channels_weights_as_inputs) \
|
||||
FN(conv_quant8_large) \
|
||||
FN(conv_quant8_large_weights_as_inputs) \
|
||||
FN(conv_quant8) \
|
||||
FN(conv_quant8_overflow) \
|
||||
FN(conv_quant8_overflow_weights_as_inputs) \
|
||||
FN(conv_quant8_weights_as_inputs) \
|
||||
FN(depth_to_space_float_1) \
|
||||
FN(depth_to_space_float_2) \
|
||||
FN(depth_to_space_float_3) \
|
||||
FN(depth_to_space_quant8_1) \
|
||||
FN(depth_to_space_quant8_2) \
|
||||
FN(depthwise_conv2d_float_2) \
|
||||
FN(depthwise_conv2d_float_large_2) \
|
||||
FN(depthwise_conv2d_float_large_2_weights_as_inputs) \
|
||||
FN(depthwise_conv2d_float_large) \
|
||||
FN(depthwise_conv2d_float_large_weights_as_inputs) \
|
||||
FN(depthwise_conv2d_float) \
|
||||
FN(depthwise_conv2d_float_weights_as_inputs) \
|
||||
FN(depthwise_conv2d_quant8_2) \
|
||||
FN(depthwise_conv2d_quant8_large) \
|
||||
FN(depthwise_conv2d_quant8_large_weights_as_inputs) \
|
||||
FN(depthwise_conv2d_quant8) \
|
||||
FN(depthwise_conv2d_quant8_weights_as_inputs) \
|
||||
FN(depthwise_conv) \
|
||||
FN(dequantize) \
|
||||
FN(embedding_lookup) \
|
||||
FN(floor) \
|
||||
FN(fully_connected_float_2) \
|
||||
FN(fully_connected_float_large) \
|
||||
FN(fully_connected_float_large_weights_as_inputs) \
|
||||
FN(fully_connected_float) \
|
||||
FN(fully_connected_float_weights_as_inputs) \
|
||||
FN(fully_connected_quant8_2) \
|
||||
FN(fully_connected_quant8_large) \
|
||||
FN(fully_connected_quant8_large_weights_as_inputs) \
|
||||
FN(fully_connected_quant8) \
|
||||
FN(fully_connected_quant8_weights_as_inputs) \
|
||||
FN(hashtable_lookup_float) \
|
||||
FN(hashtable_lookup_quant8) \
|
||||
FN(l2_normalization_2) \
|
||||
FN(l2_normalization_large) \
|
||||
FN(l2_normalization) \
|
||||
FN(l2_pool_float_2) \
|
||||
FN(l2_pool_float_large) \
|
||||
FN(l2_pool_float) \
|
||||
FN(local_response_norm_float_1) \
|
||||
FN(local_response_norm_float_2) \
|
||||
FN(local_response_norm_float_3) \
|
||||
FN(local_response_norm_float_4) \
|
||||
FN(logistic_float_1) \
|
||||
FN(logistic_float_2) \
|
||||
FN(logistic_quant8_1) \
|
||||
FN(logistic_quant8_2) \
|
||||
FN(lsh_projection_2) \
|
||||
FN(lsh_projection) \
|
||||
FN(lsh_projection_weights_as_inputs) \
|
||||
FN(lstm2) \
|
||||
FN(lstm2_state2) \
|
||||
FN(lstm2_state) \
|
||||
FN(lstm3) \
|
||||
FN(lstm3_state2) \
|
||||
FN(lstm3_state3) \
|
||||
FN(lstm3_state) \
|
||||
FN(lstm) \
|
||||
FN(lstm_state2) \
|
||||
FN(lstm_state) \
|
||||
FN(max_pool_float_1) \
|
||||
FN(max_pool_float_2) \
|
||||
FN(max_pool_float_3) \
|
||||
FN(max_pool_float_4) \
|
||||
FN(max_pool_quant8_1) \
|
||||
FN(max_pool_quant8_2) \
|
||||
FN(max_pool_quant8_3) \
|
||||
FN(max_pool_quant8_4) \
|
||||
FN(mobilenet_224_gender_basic_fixed) \
|
||||
FN(mobilenet_quantized) \
|
||||
FN(mul_broadcast_quant8) \
|
||||
FN(mul) \
|
||||
FN(mul_quant8) \
|
||||
FN(mul_relu) \
|
||||
FN(relu1_float_1) \
|
||||
FN(relu1_float_2) \
|
||||
FN(relu1_quant8_1) \
|
||||
FN(relu1_quant8_2) \
|
||||
FN(relu6_float_1) \
|
||||
FN(relu6_float_2) \
|
||||
FN(relu6_quant8_1) \
|
||||
FN(relu6_quant8_2) \
|
||||
FN(relu_float_1) \
|
||||
FN(relu_float_2) \
|
||||
FN(relu_quant8_1) \
|
||||
FN(relu_quant8_2) \
|
||||
FN(reshape) \
|
||||
FN(reshape_quant8) \
|
||||
FN(reshape_quant8_weights_as_inputs) \
|
||||
FN(reshape_weights_as_inputs) \
|
||||
FN(resize_bilinear_2) \
|
||||
FN(resize_bilinear) \
|
||||
FN(rnn) \
|
||||
FN(rnn_state) \
|
||||
FN(softmax_float_1) \
|
||||
FN(softmax_float_2) \
|
||||
FN(softmax_quant8_1) \
|
||||
FN(softmax_quant8_2) \
|
||||
FN(space_to_depth_float_1) \
|
||||
FN(space_to_depth_float_2) \
|
||||
FN(space_to_depth_float_3) \
|
||||
FN(space_to_depth_quant8_1) \
|
||||
FN(space_to_depth_quant8_2) \
|
||||
FN(svdf2) \
|
||||
FN(svdf) \
|
||||
FN(svdf_state) \
|
||||
FN(tanh)
|
||||
|
||||
// create the request
|
||||
V1_0::Request createValidTestRequest();
|
||||
V1_0::Request createInvalidTestRequest1();
|
||||
V1_0::Request createInvalidTestRequest2();
|
||||
#define FORWARD_DECLARE_GENERATED_OBJECTS(function) \
|
||||
namespace function { \
|
||||
extern std::vector<MixedTypedExample> examples; \
|
||||
Model createTestModel(); \
|
||||
}
|
||||
|
||||
FOR_EACH_TEST_MODEL(FORWARD_DECLARE_GENERATED_OBJECTS)
|
||||
|
||||
#undef FORWARD_DECLARE_GENERATED_OBJECTS
|
||||
|
||||
} // namespace functional
|
||||
} // namespace vts
|
||||
} // namespace V1_0
|
||||
} // namespace neuralnetworks
|
||||
} // namespace hardware
|
||||
} // namespace android
|
||||
|
||||
#endif // VTS_HAL_NEURALNETWORKS_V1_0_VTS_FUNCTIONAL_MODELS_H
|
||||
|
||||
506
neuralnetworks/1.0/vts/functional/ValidateModel.cpp
Normal file
506
neuralnetworks/1.0/vts/functional/ValidateModel.cpp
Normal file
@@ -0,0 +1,506 @@
|
||||
/*
|
||||
* Copyright (C) 2018 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
||||
|
||||
#include "VtsHalNeuralnetworks.h"
|
||||
|
||||
#include "Callbacks.h"
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
namespace neuralnetworks {
|
||||
namespace V1_0 {
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
|
||||
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
|
||||
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
|
||||
|
||||
///////////////////////// UTILITY FUNCTIONS /////////////////////////
|
||||
|
||||
static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
|
||||
const V1_0::Model& model) {
|
||||
SCOPED_TRACE(message + " [getSupportedOperations]");
|
||||
|
||||
Return<void> ret =
|
||||
device->getSupportedOperations(model, [&](ErrorStatus status, const hidl_vec<bool>&) {
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
|
||||
});
|
||||
EXPECT_TRUE(ret.isOk());
|
||||
}
|
||||
|
||||
static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
|
||||
const V1_0::Model& model) {
|
||||
SCOPED_TRACE(message + " [prepareModel]");
|
||||
|
||||
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
|
||||
ASSERT_NE(nullptr, preparedModelCallback.get());
|
||||
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
|
||||
ASSERT_TRUE(prepareLaunchStatus.isOk());
|
||||
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
|
||||
|
||||
preparedModelCallback->wait();
|
||||
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
|
||||
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
|
||||
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
|
||||
ASSERT_EQ(nullptr, preparedModel.get());
|
||||
}
|
||||
|
||||
// Primary validation function. This function will take a valid model, apply a
|
||||
// mutation to it to invalidate the model, then pass it to interface calls that
|
||||
// use the model. Note that the model here is passed by value, and any mutation
|
||||
// to the model does not leave this function.
|
||||
static void validate(const sp<IDevice>& device, const std::string& message, V1_0::Model model,
|
||||
const std::function<void(Model*)>& mutation) {
|
||||
mutation(&model);
|
||||
validateGetSupportedOperations(device, message, model);
|
||||
validatePrepareModel(device, message, model);
|
||||
}
|
||||
|
||||
// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
|
||||
// so this is efficiently accomplished by moving the element to the end and
|
||||
// resizing the hidl_vec to one less.
|
||||
template <typename Type>
|
||||
static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
|
||||
if (vec) {
|
||||
std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
|
||||
vec->resize(vec->size() - 1);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
|
||||
// assume vec is valid
|
||||
const uint32_t index = vec->size();
|
||||
vec->resize(index + 1);
|
||||
(*vec)[index] = value;
|
||||
return index;
|
||||
}
|
||||
|
||||
static uint32_t addOperand(Model* model) {
|
||||
return hidl_vec_push_back(&model->operands,
|
||||
{
|
||||
.type = OperandType::INT32,
|
||||
.dimensions = {},
|
||||
.numberOfConsumers = 0,
|
||||
.scale = 0.0f,
|
||||
.zeroPoint = 0,
|
||||
.lifetime = OperandLifeTime::MODEL_INPUT,
|
||||
.location = {.poolIndex = 0, .offset = 0, .length = 0},
|
||||
});
|
||||
}
|
||||
|
||||
static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
|
||||
uint32_t index = addOperand(model);
|
||||
model->operands[index].numberOfConsumers = 1;
|
||||
model->operands[index].lifetime = lifetime;
|
||||
return index;
|
||||
}
|
||||
|
||||
///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
|
||||
|
||||
static const int32_t invalidOperandTypes[] = {
|
||||
static_cast<int32_t>(OperandType::FLOAT32) - 1, // lower bound fundamental
|
||||
static_cast<int32_t>(OperandType::TENSOR_QUANT8_ASYMM) + 1, // upper bound fundamental
|
||||
static_cast<int32_t>(OperandType::OEM) - 1, // lower bound OEM
|
||||
static_cast<int32_t>(OperandType::TENSOR_OEM_BYTE) + 1, // upper bound OEM
|
||||
};
|
||||
|
||||
static void mutateOperandTypeTest(const sp<IDevice>& device, const V1_0::Model& model) {
|
||||
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
||||
for (int32_t invalidOperandType : invalidOperandTypes) {
|
||||
const std::string message = "mutateOperandTypeTest: operand " +
|
||||
std::to_string(operand) + " set to value " +
|
||||
std::to_string(invalidOperandType);
|
||||
validate(device, message, model, [operand, invalidOperandType](Model* model) {
|
||||
model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// VALIDATE OPERAND RANK /////////////////////////
|
||||
|
||||
static uint32_t getInvalidRank(OperandType type) {
|
||||
switch (type) {
|
||||
case OperandType::FLOAT32:
|
||||
case OperandType::INT32:
|
||||
case OperandType::UINT32:
|
||||
return 1;
|
||||
case OperandType::TENSOR_FLOAT32:
|
||||
case OperandType::TENSOR_INT32:
|
||||
case OperandType::TENSOR_QUANT8_ASYMM:
|
||||
return 0;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
static void mutateOperandRankTest(const sp<IDevice>& device, const V1_0::Model& model) {
|
||||
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
||||
const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
|
||||
const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
|
||||
" has rank of " + std::to_string(invalidRank);
|
||||
validate(device, message, model, [operand, invalidRank](Model* model) {
|
||||
model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
|
||||
|
||||
static float getInvalidScale(OperandType type) {
|
||||
switch (type) {
|
||||
case OperandType::FLOAT32:
|
||||
case OperandType::INT32:
|
||||
case OperandType::UINT32:
|
||||
case OperandType::TENSOR_FLOAT32:
|
||||
return 1.0f;
|
||||
case OperandType::TENSOR_INT32:
|
||||
return -1.0f;
|
||||
case OperandType::TENSOR_QUANT8_ASYMM:
|
||||
return 0.0f;
|
||||
default:
|
||||
return 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
static void mutateOperandScaleTest(const sp<IDevice>& device, const V1_0::Model& model) {
|
||||
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
||||
const float invalidScale = getInvalidScale(model.operands[operand].type);
|
||||
const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
|
||||
" has scale of " + std::to_string(invalidScale);
|
||||
validate(device, message, model, [operand, invalidScale](Model* model) {
|
||||
model->operands[operand].scale = invalidScale;
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
|
||||
|
||||
static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
|
||||
switch (type) {
|
||||
case OperandType::FLOAT32:
|
||||
case OperandType::INT32:
|
||||
case OperandType::UINT32:
|
||||
case OperandType::TENSOR_FLOAT32:
|
||||
case OperandType::TENSOR_INT32:
|
||||
return {1};
|
||||
case OperandType::TENSOR_QUANT8_ASYMM:
|
||||
return {-1, 256};
|
||||
default:
|
||||
return {};
|
||||
}
|
||||
}
|
||||
|
||||
static void mutateOperandZeroPointTest(const sp<IDevice>& device, const V1_0::Model& model) {
|
||||
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
||||
const std::vector<int32_t> invalidZeroPoints =
|
||||
getInvalidZeroPoints(model.operands[operand].type);
|
||||
for (int32_t invalidZeroPoint : invalidZeroPoints) {
|
||||
const std::string message = "mutateOperandZeroPointTest: operand " +
|
||||
std::to_string(operand) + " has zero point of " +
|
||||
std::to_string(invalidZeroPoint);
|
||||
validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
|
||||
model->operands[operand].zeroPoint = invalidZeroPoint;
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// VALIDATE EXTRA ??? /////////////////////////
|
||||
|
||||
// TODO: Operand::lifetime
|
||||
// TODO: Operand::location
|
||||
|
||||
///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
|
||||
|
||||
static void mutateOperand(Operand* operand, OperandType type) {
|
||||
Operand newOperand = *operand;
|
||||
newOperand.type = type;
|
||||
switch (type) {
|
||||
case OperandType::FLOAT32:
|
||||
case OperandType::INT32:
|
||||
case OperandType::UINT32:
|
||||
newOperand.dimensions = hidl_vec<uint32_t>();
|
||||
newOperand.scale = 0.0f;
|
||||
newOperand.zeroPoint = 0;
|
||||
break;
|
||||
case OperandType::TENSOR_FLOAT32:
|
||||
newOperand.dimensions =
|
||||
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
|
||||
newOperand.scale = 0.0f;
|
||||
newOperand.zeroPoint = 0;
|
||||
break;
|
||||
case OperandType::TENSOR_INT32:
|
||||
newOperand.dimensions =
|
||||
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
|
||||
newOperand.zeroPoint = 0;
|
||||
break;
|
||||
case OperandType::TENSOR_QUANT8_ASYMM:
|
||||
newOperand.dimensions =
|
||||
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
|
||||
newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
|
||||
break;
|
||||
case OperandType::OEM:
|
||||
case OperandType::TENSOR_OEM_BYTE:
|
||||
default:
|
||||
break;
|
||||
}
|
||||
*operand = newOperand;
|
||||
}
|
||||
|
||||
static bool mutateOperationOperandTypeSkip(size_t operand, const V1_0::Model& model) {
|
||||
// LSH_PROJECTION's second argument is allowed to have any type. This is the
|
||||
// only operation that currently has a type that can be anything independent
|
||||
// from any other type. Changing the operand type to any other type will
|
||||
// result in a valid model for LSH_PROJECTION. If this is the case, skip the
|
||||
// test.
|
||||
for (const Operation& operation : model.operations) {
|
||||
if (operation.type == OperationType::LSH_PROJECTION && operand == operation.inputs[1]) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const V1_0::Model& model) {
|
||||
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
||||
if (mutateOperationOperandTypeSkip(operand, model)) {
|
||||
continue;
|
||||
}
|
||||
for (OperandType invalidOperandType : hidl_enum_iterator<OperandType>{}) {
|
||||
// Do not test OEM types
|
||||
if (invalidOperandType == model.operands[operand].type ||
|
||||
invalidOperandType == OperandType::OEM ||
|
||||
invalidOperandType == OperandType::TENSOR_OEM_BYTE) {
|
||||
continue;
|
||||
}
|
||||
const std::string message = "mutateOperationOperandTypeTest: operand " +
|
||||
std::to_string(operand) + " set to type " +
|
||||
toString(invalidOperandType);
|
||||
validate(device, message, model, [operand, invalidOperandType](Model* model) {
|
||||
mutateOperand(&model->operands[operand], invalidOperandType);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
|
||||
|
||||
static const int32_t invalidOperationTypes[] = {
|
||||
static_cast<int32_t>(OperationType::ADD) - 1, // lower bound fundamental
|
||||
static_cast<int32_t>(OperationType::TANH) + 1, // upper bound fundamental
|
||||
static_cast<int32_t>(OperationType::OEM_OPERATION) - 1, // lower bound OEM
|
||||
static_cast<int32_t>(OperationType::OEM_OPERATION) + 1, // upper bound OEM
|
||||
};
|
||||
|
||||
static void mutateOperationTypeTest(const sp<IDevice>& device, const V1_0::Model& model) {
|
||||
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
||||
for (int32_t invalidOperationType : invalidOperationTypes) {
|
||||
const std::string message = "mutateOperationTypeTest: operation " +
|
||||
std::to_string(operation) + " set to value " +
|
||||
std::to_string(invalidOperationType);
|
||||
validate(device, message, model, [operation, invalidOperationType](Model* model) {
|
||||
model->operations[operation].type =
|
||||
static_cast<OperationType>(invalidOperationType);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
|
||||
|
||||
static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device,
|
||||
const V1_0::Model& model) {
|
||||
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
||||
const uint32_t invalidOperand = model.operands.size();
|
||||
for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
|
||||
const std::string message = "mutateOperationInputOperandIndexTest: operation " +
|
||||
std::to_string(operation) + " input " +
|
||||
std::to_string(input);
|
||||
validate(device, message, model, [operation, input, invalidOperand](Model* model) {
|
||||
model->operations[operation].inputs[input] = invalidOperand;
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
|
||||
|
||||
static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device,
|
||||
const V1_0::Model& model) {
|
||||
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
||||
const uint32_t invalidOperand = model.operands.size();
|
||||
for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
|
||||
const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
|
||||
std::to_string(operation) + " output " +
|
||||
std::to_string(output);
|
||||
validate(device, message, model, [operation, output, invalidOperand](Model* model) {
|
||||
model->operations[operation].outputs[output] = invalidOperand;
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
|
||||
|
||||
static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
|
||||
if (vec) {
|
||||
// remove elements matching "value"
|
||||
auto last = std::remove(vec->begin(), vec->end(), value);
|
||||
vec->resize(std::distance(vec->begin(), last));
|
||||
|
||||
// decrement elements exceeding "value"
|
||||
std::transform(vec->begin(), vec->end(), vec->begin(),
|
||||
[value](uint32_t v) { return v > value ? v-- : v; });
|
||||
}
|
||||
}
|
||||
|
||||
static void removeOperand(Model* model, uint32_t index) {
|
||||
hidl_vec_removeAt(&model->operands, index);
|
||||
for (Operation& operation : model->operations) {
|
||||
removeValueAndDecrementGreaterValues(&operation.inputs, index);
|
||||
removeValueAndDecrementGreaterValues(&operation.outputs, index);
|
||||
}
|
||||
removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
|
||||
removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
|
||||
}
|
||||
|
||||
static void removeOperandTest(const sp<IDevice>& device, const V1_0::Model& model) {
|
||||
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
||||
const std::string message = "removeOperandTest: operand " + std::to_string(operand);
|
||||
validate(device, message, model,
|
||||
[operand](Model* model) { removeOperand(model, operand); });
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// REMOVE OPERATION /////////////////////////
|
||||
|
||||
static void removeOperation(Model* model, uint32_t index) {
|
||||
for (uint32_t operand : model->operations[index].inputs) {
|
||||
model->operands[operand].numberOfConsumers--;
|
||||
}
|
||||
hidl_vec_removeAt(&model->operations, index);
|
||||
}
|
||||
|
||||
static void removeOperationTest(const sp<IDevice>& device, const V1_0::Model& model) {
|
||||
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
||||
const std::string message = "removeOperationTest: operation " + std::to_string(operation);
|
||||
validate(device, message, model,
|
||||
[operation](Model* model) { removeOperation(model, operation); });
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// REMOVE OPERATION INPUT /////////////////////////
|
||||
|
||||
static void removeOperationInputTest(const sp<IDevice>& device, const V1_0::Model& model) {
|
||||
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
||||
for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
|
||||
const V1_0::Operation& op = model.operations[operation];
|
||||
// CONCATENATION has at least 2 inputs, with the last element being
|
||||
// INT32. Skip this test if removing one of CONCATENATION's
|
||||
// inputs still produces a valid model.
|
||||
if (op.type == V1_0::OperationType::CONCATENATION && op.inputs.size() > 2 &&
|
||||
input != op.inputs.size() - 1) {
|
||||
continue;
|
||||
}
|
||||
const std::string message = "removeOperationInputTest: operation " +
|
||||
std::to_string(operation) + ", input " +
|
||||
std::to_string(input);
|
||||
validate(device, message, model, [operation, input](Model* model) {
|
||||
uint32_t operand = model->operations[operation].inputs[input];
|
||||
model->operands[operand].numberOfConsumers--;
|
||||
hidl_vec_removeAt(&model->operations[operation].inputs, input);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
|
||||
|
||||
static void removeOperationOutputTest(const sp<IDevice>& device, const V1_0::Model& model) {
|
||||
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
||||
for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
|
||||
const std::string message = "removeOperationOutputTest: operation " +
|
||||
std::to_string(operation) + ", output " +
|
||||
std::to_string(output);
|
||||
validate(device, message, model, [operation, output](Model* model) {
|
||||
hidl_vec_removeAt(&model->operations[operation].outputs, output);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// MODEL VALIDATION /////////////////////////
|
||||
|
||||
// TODO: remove model input
|
||||
// TODO: remove model output
|
||||
// TODO: add unused operation
|
||||
|
||||
///////////////////////// ADD OPERATION INPUT /////////////////////////
|
||||
|
||||
static void addOperationInputTest(const sp<IDevice>& device, const V1_0::Model& model) {
|
||||
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
||||
const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
|
||||
validate(device, message, model, [operation](Model* model) {
|
||||
uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
|
||||
hidl_vec_push_back(&model->operations[operation].inputs, index);
|
||||
hidl_vec_push_back(&model->inputIndexes, index);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// ADD OPERATION OUTPUT /////////////////////////
|
||||
|
||||
static void addOperationOutputTest(const sp<IDevice>& device, const V1_0::Model& model) {
|
||||
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
||||
const std::string message =
|
||||
"addOperationOutputTest: operation " + std::to_string(operation);
|
||||
validate(device, message, model, [operation](Model* model) {
|
||||
uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
|
||||
hidl_vec_push_back(&model->operations[operation].outputs, index);
|
||||
hidl_vec_push_back(&model->outputIndexes, index);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////// ENTRY POINT //////////////////////////////
|
||||
|
||||
void ValidationTest::validateModel(const V1_0::Model& model) {
|
||||
mutateOperandTypeTest(device, model);
|
||||
mutateOperandRankTest(device, model);
|
||||
mutateOperandScaleTest(device, model);
|
||||
mutateOperandZeroPointTest(device, model);
|
||||
mutateOperationOperandTypeTest(device, model);
|
||||
mutateOperationTypeTest(device, model);
|
||||
mutateOperationInputOperandIndexTest(device, model);
|
||||
mutateOperationOutputOperandIndexTest(device, model);
|
||||
removeOperandTest(device, model);
|
||||
removeOperationTest(device, model);
|
||||
removeOperationInputTest(device, model);
|
||||
removeOperationOutputTest(device, model);
|
||||
addOperationInputTest(device, model);
|
||||
addOperationOutputTest(device, model);
|
||||
}
|
||||
|
||||
} // namespace functional
|
||||
} // namespace vts
|
||||
} // namespace V1_0
|
||||
} // namespace neuralnetworks
|
||||
} // namespace hardware
|
||||
} // namespace android
|
||||
261
neuralnetworks/1.0/vts/functional/ValidateRequest.cpp
Normal file
261
neuralnetworks/1.0/vts/functional/ValidateRequest.cpp
Normal file
@@ -0,0 +1,261 @@
|
||||
/*
|
||||
* Copyright (C) 2018 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
||||
|
||||
#include "VtsHalNeuralnetworks.h"
|
||||
|
||||
#include "Callbacks.h"
|
||||
#include "TestHarness.h"
|
||||
#include "Utils.h"
|
||||
|
||||
#include <android-base/logging.h>
|
||||
#include <android/hidl/memory/1.0/IMemory.h>
|
||||
#include <hidlmemory/mapping.h>
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
namespace neuralnetworks {
|
||||
namespace V1_0 {
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
|
||||
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
|
||||
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
|
||||
using ::android::hidl::memory::V1_0::IMemory;
|
||||
using generated_tests::MixedTyped;
|
||||
using generated_tests::MixedTypedExampleType;
|
||||
using generated_tests::for_all;
|
||||
|
||||
///////////////////////// UTILITY FUNCTIONS /////////////////////////
|
||||
|
||||
static void createPreparedModel(const sp<IDevice>& device, const V1_0::Model& model,
|
||||
sp<IPreparedModel>* preparedModel) {
|
||||
ASSERT_NE(nullptr, preparedModel);
|
||||
|
||||
// see if service can handle model
|
||||
bool fullySupportsModel = false;
|
||||
Return<void> supportedOpsLaunchStatus = device->getSupportedOperations(
|
||||
model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
|
||||
ASSERT_EQ(ErrorStatus::NONE, status);
|
||||
ASSERT_NE(0ul, supported.size());
|
||||
fullySupportsModel =
|
||||
std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
|
||||
});
|
||||
ASSERT_TRUE(supportedOpsLaunchStatus.isOk());
|
||||
|
||||
// launch prepare model
|
||||
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
|
||||
ASSERT_NE(nullptr, preparedModelCallback.get());
|
||||
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
|
||||
ASSERT_TRUE(prepareLaunchStatus.isOk());
|
||||
ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
|
||||
|
||||
// retrieve prepared model
|
||||
preparedModelCallback->wait();
|
||||
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
|
||||
*preparedModel = preparedModelCallback->getPreparedModel();
|
||||
|
||||
// The getSupportedOperations call returns a list of operations that are
|
||||
// guaranteed not to fail if prepareModel is called, and
|
||||
// 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
|
||||
// If a driver has any doubt that it can prepare an operation, it must
|
||||
// return false. So here, if a driver isn't sure if it can support an
|
||||
// operation, but reports that it successfully prepared the model, the test
|
||||
// can continue.
|
||||
if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
|
||||
ASSERT_EQ(nullptr, preparedModel->get());
|
||||
LOG(INFO) << "NN VTS: Unable to test Request validation because vendor service cannot "
|
||||
"prepare model that it does not support.";
|
||||
std::cout << "[ ] Unable to test Request validation because vendor service "
|
||||
"cannot prepare model that it does not support."
|
||||
<< std::endl;
|
||||
return;
|
||||
}
|
||||
ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
|
||||
ASSERT_NE(nullptr, preparedModel->get());
|
||||
}
|
||||
|
||||
// Primary validation function. This function will take a valid request, apply a
|
||||
// mutation to it to invalidate the request, then pass it to interface calls
|
||||
// that use the request. Note that the request here is passed by value, and any
|
||||
// mutation to the request does not leave this function.
|
||||
static void validate(const sp<IPreparedModel>& preparedModel, const std::string& message,
|
||||
Request request, const std::function<void(Request*)>& mutation) {
|
||||
mutation(&request);
|
||||
SCOPED_TRACE(message + " [execute]");
|
||||
|
||||
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
|
||||
ASSERT_NE(nullptr, executionCallback.get());
|
||||
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
|
||||
ASSERT_TRUE(executeLaunchStatus.isOk());
|
||||
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
|
||||
|
||||
executionCallback->wait();
|
||||
ErrorStatus executionReturnStatus = executionCallback->getStatus();
|
||||
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
|
||||
}
|
||||
|
||||
// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
|
||||
// so this is efficiently accomplished by moving the element to the end and
|
||||
// resizing the hidl_vec to one less.
|
||||
template <typename Type>
|
||||
static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
|
||||
if (vec) {
|
||||
std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
|
||||
vec->resize(vec->size() - 1);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
|
||||
// assume vec is valid
|
||||
const uint32_t index = vec->size();
|
||||
vec->resize(index + 1);
|
||||
(*vec)[index] = value;
|
||||
return index;
|
||||
}
|
||||
|
||||
///////////////////////// REMOVE INPUT ////////////////////////////////////
|
||||
|
||||
static void removeInputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
|
||||
for (size_t input = 0; input < request.inputs.size(); ++input) {
|
||||
const std::string message = "removeInput: removed input " + std::to_string(input);
|
||||
validate(preparedModel, message, request,
|
||||
[input](Request* request) { hidl_vec_removeAt(&request->inputs, input); });
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// REMOVE OUTPUT ////////////////////////////////////
|
||||
|
||||
static void removeOutputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
|
||||
for (size_t output = 0; output < request.outputs.size(); ++output) {
|
||||
const std::string message = "removeOutput: removed Output " + std::to_string(output);
|
||||
validate(preparedModel, message, request,
|
||||
[output](Request* request) { hidl_vec_removeAt(&request->outputs, output); });
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////// ENTRY POINT //////////////////////////////////
|
||||
|
||||
std::vector<Request> createRequests(const std::vector<MixedTypedExampleType>& examples) {
|
||||
const uint32_t INPUT = 0;
|
||||
const uint32_t OUTPUT = 1;
|
||||
|
||||
std::vector<Request> requests;
|
||||
|
||||
for (auto& example : examples) {
|
||||
const MixedTyped& inputs = example.first;
|
||||
const MixedTyped& outputs = example.second;
|
||||
|
||||
std::vector<RequestArgument> inputs_info, outputs_info;
|
||||
uint32_t inputSize = 0, outputSize = 0;
|
||||
|
||||
// This function only partially specifies the metadata (vector of RequestArguments).
|
||||
// The contents are copied over below.
|
||||
for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) {
|
||||
if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1);
|
||||
RequestArgument arg = {
|
||||
.location = {.poolIndex = INPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
|
||||
.dimensions = {},
|
||||
};
|
||||
RequestArgument arg_empty = {
|
||||
.hasNoValue = true,
|
||||
};
|
||||
inputs_info[index] = s ? arg : arg_empty;
|
||||
inputSize += s;
|
||||
});
|
||||
// Compute offset for inputs 1 and so on
|
||||
{
|
||||
size_t offset = 0;
|
||||
for (auto& i : inputs_info) {
|
||||
if (!i.hasNoValue) i.location.offset = offset;
|
||||
offset += i.location.length;
|
||||
}
|
||||
}
|
||||
|
||||
// Go through all outputs, initialize RequestArgument descriptors
|
||||
for_all(outputs, [&outputs_info, &outputSize](int index, auto, auto s) {
|
||||
if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
|
||||
RequestArgument arg = {
|
||||
.location = {.poolIndex = OUTPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
|
||||
.dimensions = {},
|
||||
};
|
||||
outputs_info[index] = arg;
|
||||
outputSize += s;
|
||||
});
|
||||
// Compute offset for outputs 1 and so on
|
||||
{
|
||||
size_t offset = 0;
|
||||
for (auto& i : outputs_info) {
|
||||
i.location.offset = offset;
|
||||
offset += i.location.length;
|
||||
}
|
||||
}
|
||||
std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
|
||||
nn::allocateSharedMemory(outputSize)};
|
||||
if (pools[INPUT].size() == 0 || pools[OUTPUT].size() == 0) {
|
||||
return {};
|
||||
}
|
||||
|
||||
// map pool
|
||||
sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
|
||||
if (inputMemory == nullptr) {
|
||||
return {};
|
||||
}
|
||||
char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer()));
|
||||
if (inputPtr == nullptr) {
|
||||
return {};
|
||||
}
|
||||
|
||||
// initialize pool
|
||||
inputMemory->update();
|
||||
for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) {
|
||||
char* begin = (char*)p;
|
||||
char* end = begin + s;
|
||||
// TODO: handle more than one input
|
||||
std::copy(begin, end, inputPtr + inputs_info[index].location.offset);
|
||||
});
|
||||
inputMemory->commit();
|
||||
|
||||
requests.push_back({.inputs = inputs_info, .outputs = outputs_info, .pools = pools});
|
||||
}
|
||||
|
||||
return requests;
|
||||
}
|
||||
|
||||
void ValidationTest::validateRequests(const V1_0::Model& model,
|
||||
const std::vector<Request>& requests) {
|
||||
// create IPreparedModel
|
||||
sp<IPreparedModel> preparedModel;
|
||||
ASSERT_NO_FATAL_FAILURE(createPreparedModel(device, model, &preparedModel));
|
||||
if (preparedModel == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
// validate each request
|
||||
for (const Request& request : requests) {
|
||||
removeInputTest(preparedModel, request);
|
||||
removeOutputTest(preparedModel, request);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace functional
|
||||
} // namespace vts
|
||||
} // namespace V1_0
|
||||
} // namespace neuralnetworks
|
||||
} // namespace hardware
|
||||
} // namespace android
|
||||
50
neuralnetworks/1.0/vts/functional/ValidationTests.cpp
Normal file
50
neuralnetworks/1.0/vts/functional/ValidationTests.cpp
Normal file
@@ -0,0 +1,50 @@
|
||||
/*
|
||||
* Copyright (C) 2018 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
||||
|
||||
#include "Models.h"
|
||||
#include "VtsHalNeuralnetworks.h"
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
namespace neuralnetworks {
|
||||
namespace V1_0 {
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
|
||||
// forward declarations
|
||||
std::vector<Request> createRequests(const std::vector<MixedTypedExample>& examples);
|
||||
|
||||
// generate validation tests
|
||||
#define VTS_CURRENT_TEST_CASE(TestName) \
|
||||
TEST_F(ValidationTest, TestName) { \
|
||||
const Model model = TestName::createTestModel(); \
|
||||
const std::vector<Request> requests = createRequests(TestName::examples); \
|
||||
validateModel(model); \
|
||||
validateRequests(model, requests); \
|
||||
}
|
||||
|
||||
FOR_EACH_TEST_MODEL(VTS_CURRENT_TEST_CASE)
|
||||
|
||||
#undef VTS_CURRENT_TEST_CASE
|
||||
|
||||
} // namespace functional
|
||||
} // namespace vts
|
||||
} // namespace V1_0
|
||||
} // namespace neuralnetworks
|
||||
} // namespace hardware
|
||||
} // namespace android
|
||||
@@ -16,15 +16,7 @@
|
||||
|
||||
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
||||
|
||||
#include "VtsHalNeuralnetworksV1_0.h"
|
||||
#include "Utils.h"
|
||||
|
||||
#include <android-base/logging.h>
|
||||
|
||||
using ::android::hardware::hidl_memory;
|
||||
using ::android::hidl::allocator::V1_0::IAllocator;
|
||||
using ::android::hidl::memory::V1_0::IMemory;
|
||||
using ::android::sp;
|
||||
#include "VtsHalNeuralnetworks.h"
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
@@ -33,11 +25,6 @@ namespace V1_0 {
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
|
||||
// allocator helper
|
||||
hidl_memory allocateSharedMemory(int64_t size) {
|
||||
return nn::allocateSharedMemory(size);
|
||||
}
|
||||
|
||||
// A class for test environment setup
|
||||
NeuralnetworksHidlEnvironment::NeuralnetworksHidlEnvironment() {}
|
||||
|
||||
@@ -51,23 +38,49 @@ NeuralnetworksHidlEnvironment* NeuralnetworksHidlEnvironment::getInstance() {
|
||||
}
|
||||
|
||||
void NeuralnetworksHidlEnvironment::registerTestServices() {
|
||||
registerTestService<V1_0::IDevice>();
|
||||
registerTestService<IDevice>();
|
||||
}
|
||||
|
||||
// The main test class for NEURALNETWORK HIDL HAL.
|
||||
NeuralnetworksHidlTest::NeuralnetworksHidlTest() {}
|
||||
|
||||
NeuralnetworksHidlTest::~NeuralnetworksHidlTest() {}
|
||||
|
||||
void NeuralnetworksHidlTest::SetUp() {
|
||||
device = ::testing::VtsHalHidlTargetTestBase::getService<V1_0::IDevice>(
|
||||
::testing::VtsHalHidlTargetTestBase::SetUp();
|
||||
device = ::testing::VtsHalHidlTargetTestBase::getService<IDevice>(
|
||||
NeuralnetworksHidlEnvironment::getInstance());
|
||||
ASSERT_NE(nullptr, device.get());
|
||||
}
|
||||
|
||||
void NeuralnetworksHidlTest::TearDown() {}
|
||||
void NeuralnetworksHidlTest::TearDown() {
|
||||
device = nullptr;
|
||||
::testing::VtsHalHidlTargetTestBase::TearDown();
|
||||
}
|
||||
|
||||
} // namespace functional
|
||||
} // namespace vts
|
||||
|
||||
::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus) {
|
||||
return os << toString(errorStatus);
|
||||
}
|
||||
|
||||
::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus) {
|
||||
return os << toString(deviceStatus);
|
||||
}
|
||||
|
||||
} // namespace V1_0
|
||||
} // namespace neuralnetworks
|
||||
} // namespace hardware
|
||||
} // namespace android
|
||||
|
||||
using android::hardware::neuralnetworks::V1_0::vts::functional::NeuralnetworksHidlEnvironment;
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
::testing::AddGlobalTestEnvironment(NeuralnetworksHidlEnvironment::getInstance());
|
||||
::testing::InitGoogleTest(&argc, argv);
|
||||
NeuralnetworksHidlEnvironment::getInstance()->init(&argc, argv);
|
||||
|
||||
int status = RUN_ALL_TESTS();
|
||||
return status;
|
||||
}
|
||||
@@ -18,16 +18,15 @@
|
||||
#define VTS_HAL_NEURALNETWORKS_V1_0_TARGET_TESTS_H
|
||||
|
||||
#include <android/hardware/neuralnetworks/1.0/IDevice.h>
|
||||
#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
|
||||
#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
|
||||
#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
|
||||
#include <android/hardware/neuralnetworks/1.0/types.h>
|
||||
#include <android/hidl/allocator/1.0/IAllocator.h>
|
||||
|
||||
#include <VtsHalHidlTargetTestBase.h>
|
||||
#include <VtsHalHidlTargetTestEnvBase.h>
|
||||
|
||||
#include <android-base/macros.h>
|
||||
#include <gtest/gtest.h>
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
@@ -36,47 +35,47 @@ namespace V1_0 {
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
|
||||
hidl_memory allocateSharedMemory(int64_t size);
|
||||
|
||||
// A class for test environment setup
|
||||
class NeuralnetworksHidlEnvironment : public ::testing::VtsHalHidlTargetTestEnvBase {
|
||||
DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlEnvironment);
|
||||
NeuralnetworksHidlEnvironment();
|
||||
NeuralnetworksHidlEnvironment(const NeuralnetworksHidlEnvironment&) = delete;
|
||||
NeuralnetworksHidlEnvironment(NeuralnetworksHidlEnvironment&&) = delete;
|
||||
NeuralnetworksHidlEnvironment& operator=(const NeuralnetworksHidlEnvironment&) = delete;
|
||||
NeuralnetworksHidlEnvironment& operator=(NeuralnetworksHidlEnvironment&&) = delete;
|
||||
~NeuralnetworksHidlEnvironment() override;
|
||||
|
||||
public:
|
||||
~NeuralnetworksHidlEnvironment() override;
|
||||
static NeuralnetworksHidlEnvironment* getInstance();
|
||||
void registerTestServices() override;
|
||||
};
|
||||
|
||||
// The main test class for NEURALNETWORKS HIDL HAL.
|
||||
class NeuralnetworksHidlTest : public ::testing::VtsHalHidlTargetTestBase {
|
||||
DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlTest);
|
||||
|
||||
public:
|
||||
NeuralnetworksHidlTest();
|
||||
~NeuralnetworksHidlTest() override;
|
||||
void SetUp() override;
|
||||
void TearDown() override;
|
||||
|
||||
sp<V1_0::IDevice> device;
|
||||
protected:
|
||||
sp<IDevice> device;
|
||||
};
|
||||
|
||||
// Tag for the validation tests
|
||||
class ValidationTest : public NeuralnetworksHidlTest {
|
||||
protected:
|
||||
void validateModel(const Model& model);
|
||||
void validateRequests(const Model& model, const std::vector<Request>& request);
|
||||
};
|
||||
|
||||
// Tag for the generated tests
|
||||
class GeneratedTest : public NeuralnetworksHidlTest {};
|
||||
|
||||
} // namespace functional
|
||||
} // namespace vts
|
||||
|
||||
// pretty-print values for error messages
|
||||
|
||||
template <typename CharT, typename Traits>
|
||||
::std::basic_ostream<CharT, Traits>& operator<<(::std::basic_ostream<CharT, Traits>& os,
|
||||
V1_0::ErrorStatus errorStatus) {
|
||||
return os << toString(errorStatus);
|
||||
}
|
||||
|
||||
template <typename CharT, typename Traits>
|
||||
::std::basic_ostream<CharT, Traits>& operator<<(::std::basic_ostream<CharT, Traits>& os,
|
||||
V1_0::DeviceStatus deviceStatus) {
|
||||
return os << toString(deviceStatus);
|
||||
}
|
||||
::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus);
|
||||
::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus);
|
||||
|
||||
} // namespace V1_0
|
||||
} // namespace neuralnetworks
|
||||
@@ -1,293 +0,0 @@
|
||||
/*
|
||||
* Copyright (C) 2018 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
||||
|
||||
#include "VtsHalNeuralnetworksV1_0.h"
|
||||
|
||||
#include "Callbacks.h"
|
||||
#include "Models.h"
|
||||
#include "TestHarness.h"
|
||||
|
||||
#include <android-base/logging.h>
|
||||
#include <android/hidl/memory/1.0/IMemory.h>
|
||||
#include <hidlmemory/mapping.h>
|
||||
|
||||
using ::android::hardware::neuralnetworks::V1_0::IDevice;
|
||||
using ::android::hardware::neuralnetworks::V1_0::IPreparedModel;
|
||||
using ::android::hardware::neuralnetworks::V1_0::Capabilities;
|
||||
using ::android::hardware::neuralnetworks::V1_0::DeviceStatus;
|
||||
using ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc;
|
||||
using ::android::hardware::neuralnetworks::V1_0::Model;
|
||||
using ::android::hardware::neuralnetworks::V1_0::OperationType;
|
||||
using ::android::hardware::neuralnetworks::V1_0::PerformanceInfo;
|
||||
using ::android::hardware::Return;
|
||||
using ::android::hardware::Void;
|
||||
using ::android::hardware::hidl_memory;
|
||||
using ::android::hardware::hidl_string;
|
||||
using ::android::hardware::hidl_vec;
|
||||
using ::android::hidl::allocator::V1_0::IAllocator;
|
||||
using ::android::hidl::memory::V1_0::IMemory;
|
||||
using ::android::sp;
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
namespace neuralnetworks {
|
||||
namespace V1_0 {
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
|
||||
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
|
||||
|
||||
static void doPrepareModelShortcut(const sp<IDevice>& device, sp<IPreparedModel>* preparedModel) {
|
||||
ASSERT_NE(nullptr, preparedModel);
|
||||
Model model = createValidTestModel_1_0();
|
||||
|
||||
// see if service can handle model
|
||||
bool fullySupportsModel = false;
|
||||
Return<void> supportedOpsLaunchStatus = device->getSupportedOperations(
|
||||
model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
|
||||
ASSERT_EQ(ErrorStatus::NONE, status);
|
||||
ASSERT_NE(0ul, supported.size());
|
||||
fullySupportsModel =
|
||||
std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
|
||||
});
|
||||
ASSERT_TRUE(supportedOpsLaunchStatus.isOk());
|
||||
|
||||
// launch prepare model
|
||||
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
|
||||
ASSERT_NE(nullptr, preparedModelCallback.get());
|
||||
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
|
||||
ASSERT_TRUE(prepareLaunchStatus.isOk());
|
||||
ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
|
||||
|
||||
// retrieve prepared model
|
||||
preparedModelCallback->wait();
|
||||
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
|
||||
*preparedModel = preparedModelCallback->getPreparedModel();
|
||||
|
||||
// The getSupportedOperations call returns a list of operations that are
|
||||
// guaranteed not to fail if prepareModel is called, and
|
||||
// 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
|
||||
// If a driver has any doubt that it can prepare an operation, it must
|
||||
// return false. So here, if a driver isn't sure if it can support an
|
||||
// operation, but reports that it successfully prepared the model, the test
|
||||
// can continue.
|
||||
if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
|
||||
ASSERT_EQ(nullptr, preparedModel->get());
|
||||
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
|
||||
"prepare model that it does not support.";
|
||||
std::cout << "[ ] Early termination of test because vendor service cannot "
|
||||
"prepare model that it does not support."
|
||||
<< std::endl;
|
||||
return;
|
||||
}
|
||||
ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
|
||||
ASSERT_NE(nullptr, preparedModel->get());
|
||||
}
|
||||
|
||||
// create device test
|
||||
TEST_F(NeuralnetworksHidlTest, CreateDevice) {}
|
||||
|
||||
// status test
|
||||
TEST_F(NeuralnetworksHidlTest, StatusTest) {
|
||||
Return<DeviceStatus> status = device->getStatus();
|
||||
ASSERT_TRUE(status.isOk());
|
||||
EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
|
||||
}
|
||||
|
||||
// initialization
|
||||
TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) {
|
||||
Return<void> ret =
|
||||
device->getCapabilities([](ErrorStatus status, const Capabilities& capabilities) {
|
||||
EXPECT_EQ(ErrorStatus::NONE, status);
|
||||
EXPECT_LT(0.0f, capabilities.float32Performance.execTime);
|
||||
EXPECT_LT(0.0f, capabilities.float32Performance.powerUsage);
|
||||
EXPECT_LT(0.0f, capabilities.quantized8Performance.execTime);
|
||||
EXPECT_LT(0.0f, capabilities.quantized8Performance.powerUsage);
|
||||
});
|
||||
EXPECT_TRUE(ret.isOk());
|
||||
}
|
||||
|
||||
// supported operations positive test
|
||||
TEST_F(NeuralnetworksHidlTest, SupportedOperationsPositiveTest) {
|
||||
Model model = createValidTestModel_1_0();
|
||||
Return<void> ret = device->getSupportedOperations(
|
||||
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
|
||||
EXPECT_EQ(ErrorStatus::NONE, status);
|
||||
EXPECT_EQ(model.operations.size(), supported.size());
|
||||
});
|
||||
EXPECT_TRUE(ret.isOk());
|
||||
}
|
||||
|
||||
// supported operations negative test 1
|
||||
TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest1) {
|
||||
Model model = createInvalidTestModel1_1_0();
|
||||
Return<void> ret = device->getSupportedOperations(
|
||||
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
|
||||
(void)supported;
|
||||
});
|
||||
EXPECT_TRUE(ret.isOk());
|
||||
}
|
||||
|
||||
// supported operations negative test 2
|
||||
TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest2) {
|
||||
Model model = createInvalidTestModel2_1_0();
|
||||
Return<void> ret = device->getSupportedOperations(
|
||||
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
|
||||
(void)supported;
|
||||
});
|
||||
EXPECT_TRUE(ret.isOk());
|
||||
}
|
||||
|
||||
// prepare simple model positive test
|
||||
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelPositiveTest) {
|
||||
sp<IPreparedModel> preparedModel;
|
||||
doPrepareModelShortcut(device, &preparedModel);
|
||||
}
|
||||
|
||||
// prepare simple model negative test 1
|
||||
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest1) {
|
||||
Model model = createInvalidTestModel1_1_0();
|
||||
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
|
||||
ASSERT_NE(nullptr, preparedModelCallback.get());
|
||||
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
|
||||
ASSERT_TRUE(prepareLaunchStatus.isOk());
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
|
||||
|
||||
preparedModelCallback->wait();
|
||||
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
|
||||
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
|
||||
EXPECT_EQ(nullptr, preparedModel.get());
|
||||
}
|
||||
|
||||
// prepare simple model negative test 2
|
||||
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest2) {
|
||||
Model model = createInvalidTestModel2_1_0();
|
||||
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
|
||||
ASSERT_NE(nullptr, preparedModelCallback.get());
|
||||
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
|
||||
ASSERT_TRUE(prepareLaunchStatus.isOk());
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
|
||||
|
||||
preparedModelCallback->wait();
|
||||
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
|
||||
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
|
||||
EXPECT_EQ(nullptr, preparedModel.get());
|
||||
}
|
||||
|
||||
// execute simple graph positive test
|
||||
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphPositiveTest) {
|
||||
std::vector<float> outputData = {-1.0f, -1.0f, -1.0f, -1.0f};
|
||||
std::vector<float> expectedData = {6.0f, 8.0f, 10.0f, 12.0f};
|
||||
const uint32_t OUTPUT = 1;
|
||||
|
||||
sp<IPreparedModel> preparedModel;
|
||||
ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
|
||||
if (preparedModel == nullptr) {
|
||||
return;
|
||||
}
|
||||
Request request = createValidTestRequest();
|
||||
|
||||
auto postWork = [&] {
|
||||
sp<IMemory> outputMemory = mapMemory(request.pools[OUTPUT]);
|
||||
if (outputMemory == nullptr) {
|
||||
return false;
|
||||
}
|
||||
float* outputPtr = reinterpret_cast<float*>(static_cast<void*>(outputMemory->getPointer()));
|
||||
if (outputPtr == nullptr) {
|
||||
return false;
|
||||
}
|
||||
outputMemory->read();
|
||||
std::copy(outputPtr, outputPtr + outputData.size(), outputData.begin());
|
||||
outputMemory->commit();
|
||||
return true;
|
||||
};
|
||||
|
||||
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
|
||||
ASSERT_NE(nullptr, executionCallback.get());
|
||||
executionCallback->on_finish(postWork);
|
||||
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
|
||||
ASSERT_TRUE(executeLaunchStatus.isOk());
|
||||
EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executeLaunchStatus));
|
||||
|
||||
executionCallback->wait();
|
||||
ErrorStatus executionReturnStatus = executionCallback->getStatus();
|
||||
EXPECT_EQ(ErrorStatus::NONE, executionReturnStatus);
|
||||
EXPECT_EQ(expectedData, outputData);
|
||||
}
|
||||
|
||||
// execute simple graph negative test 1
|
||||
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest1) {
|
||||
sp<IPreparedModel> preparedModel;
|
||||
ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
|
||||
if (preparedModel == nullptr) {
|
||||
return;
|
||||
}
|
||||
Request request = createInvalidTestRequest1();
|
||||
|
||||
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
|
||||
ASSERT_NE(nullptr, executionCallback.get());
|
||||
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
|
||||
ASSERT_TRUE(executeLaunchStatus.isOk());
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
|
||||
|
||||
executionCallback->wait();
|
||||
ErrorStatus executionReturnStatus = executionCallback->getStatus();
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
|
||||
}
|
||||
|
||||
// execute simple graph negative test 2
|
||||
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest2) {
|
||||
sp<IPreparedModel> preparedModel;
|
||||
ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
|
||||
if (preparedModel == nullptr) {
|
||||
return;
|
||||
}
|
||||
Request request = createInvalidTestRequest2();
|
||||
|
||||
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
|
||||
ASSERT_NE(nullptr, executionCallback.get());
|
||||
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
|
||||
ASSERT_TRUE(executeLaunchStatus.isOk());
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
|
||||
|
||||
executionCallback->wait();
|
||||
ErrorStatus executionReturnStatus = executionCallback->getStatus();
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
|
||||
}
|
||||
|
||||
} // namespace functional
|
||||
} // namespace vts
|
||||
} // namespace V1_0
|
||||
} // namespace neuralnetworks
|
||||
} // namespace hardware
|
||||
} // namespace android
|
||||
|
||||
using android::hardware::neuralnetworks::V1_0::vts::functional::NeuralnetworksHidlEnvironment;
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
::testing::AddGlobalTestEnvironment(NeuralnetworksHidlEnvironment::getInstance());
|
||||
::testing::InitGoogleTest(&argc, argv);
|
||||
NeuralnetworksHidlEnvironment::getInstance()->init(&argc, argv);
|
||||
|
||||
int status = RUN_ALL_TESTS();
|
||||
return status;
|
||||
}
|
||||
@@ -17,9 +17,12 @@
|
||||
cc_test {
|
||||
name: "VtsHalNeuralnetworksV1_1TargetTest",
|
||||
srcs: [
|
||||
"VtsHalNeuralnetworksV1_1.cpp",
|
||||
"VtsHalNeuralnetworksV1_1BasicTest.cpp",
|
||||
"VtsHalNeuralnetworksV1_1GeneratedTest.cpp",
|
||||
"BasicTests.cpp",
|
||||
"GeneratedTests.cpp",
|
||||
"ValidateModel.cpp",
|
||||
"ValidateRequest.cpp",
|
||||
"ValidationTests.cpp",
|
||||
"VtsHalNeuralnetworks.cpp",
|
||||
],
|
||||
defaults: ["VtsHalTargetTestDefaults"],
|
||||
static_libs: [
|
||||
|
||||
58
neuralnetworks/1.1/vts/functional/BasicTests.cpp
Normal file
58
neuralnetworks/1.1/vts/functional/BasicTests.cpp
Normal file
@@ -0,0 +1,58 @@
|
||||
/*
|
||||
* Copyright (C) 2018 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
||||
|
||||
#include "VtsHalNeuralnetworks.h"
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
namespace neuralnetworks {
|
||||
namespace V1_1 {
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
|
||||
// create device test
|
||||
TEST_F(NeuralnetworksHidlTest, CreateDevice) {}
|
||||
|
||||
// status test
|
||||
TEST_F(NeuralnetworksHidlTest, StatusTest) {
|
||||
Return<DeviceStatus> status = device->getStatus();
|
||||
ASSERT_TRUE(status.isOk());
|
||||
EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
|
||||
}
|
||||
|
||||
// initialization
|
||||
TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) {
|
||||
Return<void> ret =
|
||||
device->getCapabilities_1_1([](ErrorStatus status, const Capabilities& capabilities) {
|
||||
EXPECT_EQ(ErrorStatus::NONE, status);
|
||||
EXPECT_LT(0.0f, capabilities.float32Performance.execTime);
|
||||
EXPECT_LT(0.0f, capabilities.float32Performance.powerUsage);
|
||||
EXPECT_LT(0.0f, capabilities.quantized8Performance.execTime);
|
||||
EXPECT_LT(0.0f, capabilities.quantized8Performance.powerUsage);
|
||||
EXPECT_LT(0.0f, capabilities.relaxedFloat32toFloat16Performance.execTime);
|
||||
EXPECT_LT(0.0f, capabilities.relaxedFloat32toFloat16Performance.powerUsage);
|
||||
});
|
||||
EXPECT_TRUE(ret.isOk());
|
||||
}
|
||||
|
||||
} // namespace functional
|
||||
} // namespace vts
|
||||
} // namespace V1_1
|
||||
} // namespace neuralnetworks
|
||||
} // namespace hardware
|
||||
} // namespace android
|
||||
@@ -16,54 +16,33 @@
|
||||
|
||||
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
||||
|
||||
#include "VtsHalNeuralnetworksV1_1.h"
|
||||
#include "VtsHalNeuralnetworks.h"
|
||||
|
||||
#include "Callbacks.h"
|
||||
#include "TestHarness.h"
|
||||
#include "Utils.h"
|
||||
|
||||
#include <android-base/logging.h>
|
||||
#include <android/hardware/neuralnetworks/1.1/IDevice.h>
|
||||
#include <android/hardware/neuralnetworks/1.1/types.h>
|
||||
#include <android/hidl/memory/1.0/IMemory.h>
|
||||
#include <hidlmemory/mapping.h>
|
||||
|
||||
using ::android::hardware::neuralnetworks::V1_0::IPreparedModel;
|
||||
using ::android::hardware::neuralnetworks::V1_0::Capabilities;
|
||||
using ::android::hardware::neuralnetworks::V1_0::DeviceStatus;
|
||||
using ::android::hardware::neuralnetworks::V1_0::ErrorStatus;
|
||||
using ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc;
|
||||
using ::android::hardware::neuralnetworks::V1_0::Operand;
|
||||
using ::android::hardware::neuralnetworks::V1_0::OperandLifeTime;
|
||||
using ::android::hardware::neuralnetworks::V1_0::OperandType;
|
||||
using ::android::hardware::neuralnetworks::V1_0::Request;
|
||||
using ::android::hardware::neuralnetworks::V1_1::IDevice;
|
||||
using ::android::hardware::neuralnetworks::V1_1::Model;
|
||||
using ::android::hardware::neuralnetworks::V1_1::Operation;
|
||||
using ::android::hardware::neuralnetworks::V1_1::OperationType;
|
||||
using ::android::hardware::Return;
|
||||
using ::android::hardware::Void;
|
||||
using ::android::hardware::hidl_memory;
|
||||
using ::android::hardware::hidl_string;
|
||||
using ::android::hardware::hidl_vec;
|
||||
using ::android::hidl::allocator::V1_0::IAllocator;
|
||||
using ::android::hidl::memory::V1_0::IMemory;
|
||||
using ::android::sp;
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
namespace neuralnetworks {
|
||||
|
||||
namespace generated_tests {
|
||||
using ::generated_tests::MixedTypedExampleType;
|
||||
extern void Execute(sp<V1_1::IDevice>&, std::function<Model(void)>, std::function<bool(int)>,
|
||||
const std::vector<MixedTypedExampleType>&);
|
||||
extern void Execute(const sp<V1_1::IDevice>&, std::function<V1_1::Model(void)>,
|
||||
std::function<bool(int)>, const std::vector<MixedTypedExampleType>&);
|
||||
} // namespace generated_tests
|
||||
|
||||
namespace V1_1 {
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
|
||||
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
|
||||
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
|
||||
using ::android::nn::allocateSharedMemory;
|
||||
|
||||
// Mixed-typed examples
|
||||
typedef generated_tests::MixedTypedExampleType MixedTypedExample;
|
||||
323
neuralnetworks/1.1/vts/functional/Models.h
Normal file
323
neuralnetworks/1.1/vts/functional/Models.h
Normal file
@@ -0,0 +1,323 @@
|
||||
/*
|
||||
* Copyright (C) 2018 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef VTS_HAL_NEURALNETWORKS_V1_1_VTS_FUNCTIONAL_MODELS_H
|
||||
#define VTS_HAL_NEURALNETWORKS_V1_1_VTS_FUNCTIONAL_MODELS_H
|
||||
|
||||
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
||||
|
||||
#include "TestHarness.h"
|
||||
|
||||
#include <android/hardware/neuralnetworks/1.0/types.h>
|
||||
#include <android/hardware/neuralnetworks/1.1/types.h>
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
namespace neuralnetworks {
|
||||
namespace V1_1 {
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
|
||||
using MixedTypedExample = generated_tests::MixedTypedExampleType;
|
||||
|
||||
#define FOR_EACH_TEST_MODEL(FN) \
|
||||
FN(add) \
|
||||
FN(add_broadcast_quant8) \
|
||||
FN(add_quant8) \
|
||||
FN(add_relaxed) \
|
||||
FN(avg_pool_float_1) \
|
||||
FN(avg_pool_float_1_relaxed) \
|
||||
FN(avg_pool_float_2) \
|
||||
FN(avg_pool_float_2_relaxed) \
|
||||
FN(avg_pool_float_3) \
|
||||
FN(avg_pool_float_3_relaxed) \
|
||||
FN(avg_pool_float_4) \
|
||||
FN(avg_pool_float_4_relaxed) \
|
||||
FN(avg_pool_float_5) \
|
||||
FN(avg_pool_quant8_1) \
|
||||
FN(avg_pool_quant8_2) \
|
||||
FN(avg_pool_quant8_3) \
|
||||
FN(avg_pool_quant8_4) \
|
||||
FN(avg_pool_quant8_5) \
|
||||
FN(batch_to_space) \
|
||||
FN(batch_to_space_float_1) \
|
||||
FN(batch_to_space_quant8_1) \
|
||||
FN(concat_float_1) \
|
||||
FN(concat_float_1_relaxed) \
|
||||
FN(concat_float_2) \
|
||||
FN(concat_float_2_relaxed) \
|
||||
FN(concat_float_3) \
|
||||
FN(concat_float_3_relaxed) \
|
||||
FN(concat_quant8_1) \
|
||||
FN(concat_quant8_2) \
|
||||
FN(concat_quant8_3) \
|
||||
FN(conv_1_h3_w2_SAME) \
|
||||
FN(conv_1_h3_w2_SAME_relaxed) \
|
||||
FN(conv_1_h3_w2_VALID) \
|
||||
FN(conv_1_h3_w2_VALID_relaxed) \
|
||||
FN(conv_3_h3_w2_SAME) \
|
||||
FN(conv_3_h3_w2_SAME_relaxed) \
|
||||
FN(conv_3_h3_w2_VALID) \
|
||||
FN(conv_3_h3_w2_VALID_relaxed) \
|
||||
FN(conv_float) \
|
||||
FN(conv_float_2) \
|
||||
FN(conv_float_channels) \
|
||||
FN(conv_float_channels_relaxed) \
|
||||
FN(conv_float_channels_weights_as_inputs) \
|
||||
FN(conv_float_channels_weights_as_inputs_relaxed) \
|
||||
FN(conv_float_large) \
|
||||
FN(conv_float_large_relaxed) \
|
||||
FN(conv_float_large_weights_as_inputs) \
|
||||
FN(conv_float_large_weights_as_inputs_relaxed) \
|
||||
FN(conv_float_relaxed) \
|
||||
FN(conv_float_weights_as_inputs) \
|
||||
FN(conv_float_weights_as_inputs_relaxed) \
|
||||
FN(conv_quant8) \
|
||||
FN(conv_quant8_2) \
|
||||
FN(conv_quant8_channels) \
|
||||
FN(conv_quant8_channels_weights_as_inputs) \
|
||||
FN(conv_quant8_large) \
|
||||
FN(conv_quant8_large_weights_as_inputs) \
|
||||
FN(conv_quant8_overflow) \
|
||||
FN(conv_quant8_overflow_weights_as_inputs) \
|
||||
FN(conv_quant8_weights_as_inputs) \
|
||||
FN(depth_to_space_float_1) \
|
||||
FN(depth_to_space_float_1_relaxed) \
|
||||
FN(depth_to_space_float_2) \
|
||||
FN(depth_to_space_float_2_relaxed) \
|
||||
FN(depth_to_space_float_3) \
|
||||
FN(depth_to_space_float_3_relaxed) \
|
||||
FN(depth_to_space_quant8_1) \
|
||||
FN(depth_to_space_quant8_2) \
|
||||
FN(depthwise_conv) \
|
||||
FN(depthwise_conv2d_float) \
|
||||
FN(depthwise_conv2d_float_2) \
|
||||
FN(depthwise_conv2d_float_large) \
|
||||
FN(depthwise_conv2d_float_large_2) \
|
||||
FN(depthwise_conv2d_float_large_2_weights_as_inputs) \
|
||||
FN(depthwise_conv2d_float_large_relaxed) \
|
||||
FN(depthwise_conv2d_float_large_weights_as_inputs) \
|
||||
FN(depthwise_conv2d_float_large_weights_as_inputs_relaxed) \
|
||||
FN(depthwise_conv2d_float_weights_as_inputs) \
|
||||
FN(depthwise_conv2d_quant8) \
|
||||
FN(depthwise_conv2d_quant8_2) \
|
||||
FN(depthwise_conv2d_quant8_large) \
|
||||
FN(depthwise_conv2d_quant8_large_weights_as_inputs) \
|
||||
FN(depthwise_conv2d_quant8_weights_as_inputs) \
|
||||
FN(depthwise_conv_relaxed) \
|
||||
FN(dequantize) \
|
||||
FN(div) \
|
||||
FN(embedding_lookup) \
|
||||
FN(embedding_lookup_relaxed) \
|
||||
FN(floor) \
|
||||
FN(floor_relaxed) \
|
||||
FN(fully_connected_float) \
|
||||
FN(fully_connected_float_2) \
|
||||
FN(fully_connected_float_large) \
|
||||
FN(fully_connected_float_large_weights_as_inputs) \
|
||||
FN(fully_connected_float_relaxed) \
|
||||
FN(fully_connected_float_weights_as_inputs) \
|
||||
FN(fully_connected_float_weights_as_inputs_relaxed) \
|
||||
FN(fully_connected_quant8) \
|
||||
FN(fully_connected_quant8_2) \
|
||||
FN(fully_connected_quant8_large) \
|
||||
FN(fully_connected_quant8_large_weights_as_inputs) \
|
||||
FN(fully_connected_quant8_weights_as_inputs) \
|
||||
FN(hashtable_lookup_float) \
|
||||
FN(hashtable_lookup_float_relaxed) \
|
||||
FN(hashtable_lookup_quant8) \
|
||||
FN(l2_normalization) \
|
||||
FN(l2_normalization_2) \
|
||||
FN(l2_normalization_large) \
|
||||
FN(l2_normalization_large_relaxed) \
|
||||
FN(l2_normalization_relaxed) \
|
||||
FN(l2_pool_float) \
|
||||
FN(l2_pool_float_2) \
|
||||
FN(l2_pool_float_large) \
|
||||
FN(l2_pool_float_relaxed) \
|
||||
FN(local_response_norm_float_1) \
|
||||
FN(local_response_norm_float_1_relaxed) \
|
||||
FN(local_response_norm_float_2) \
|
||||
FN(local_response_norm_float_2_relaxed) \
|
||||
FN(local_response_norm_float_3) \
|
||||
FN(local_response_norm_float_3_relaxed) \
|
||||
FN(local_response_norm_float_4) \
|
||||
FN(local_response_norm_float_4_relaxed) \
|
||||
FN(logistic_float_1) \
|
||||
FN(logistic_float_1_relaxed) \
|
||||
FN(logistic_float_2) \
|
||||
FN(logistic_float_2_relaxed) \
|
||||
FN(logistic_quant8_1) \
|
||||
FN(logistic_quant8_2) \
|
||||
FN(lsh_projection) \
|
||||
FN(lsh_projection_2) \
|
||||
FN(lsh_projection_2_relaxed) \
|
||||
FN(lsh_projection_relaxed) \
|
||||
FN(lsh_projection_weights_as_inputs) \
|
||||
FN(lsh_projection_weights_as_inputs_relaxed) \
|
||||
FN(lstm) \
|
||||
FN(lstm2) \
|
||||
FN(lstm2_relaxed) \
|
||||
FN(lstm2_state) \
|
||||
FN(lstm2_state2) \
|
||||
FN(lstm2_state2_relaxed) \
|
||||
FN(lstm2_state_relaxed) \
|
||||
FN(lstm3) \
|
||||
FN(lstm3_relaxed) \
|
||||
FN(lstm3_state) \
|
||||
FN(lstm3_state2) \
|
||||
FN(lstm3_state2_relaxed) \
|
||||
FN(lstm3_state3) \
|
||||
FN(lstm3_state3_relaxed) \
|
||||
FN(lstm3_state_relaxed) \
|
||||
FN(lstm_relaxed) \
|
||||
FN(lstm_state) \
|
||||
FN(lstm_state2) \
|
||||
FN(lstm_state2_relaxed) \
|
||||
FN(lstm_state_relaxed) \
|
||||
FN(max_pool_float_1) \
|
||||
FN(max_pool_float_1_relaxed) \
|
||||
FN(max_pool_float_2) \
|
||||
FN(max_pool_float_2_relaxed) \
|
||||
FN(max_pool_float_3) \
|
||||
FN(max_pool_float_3_relaxed) \
|
||||
FN(max_pool_float_4) \
|
||||
FN(max_pool_quant8_1) \
|
||||
FN(max_pool_quant8_2) \
|
||||
FN(max_pool_quant8_3) \
|
||||
FN(max_pool_quant8_4) \
|
||||
FN(mean) \
|
||||
FN(mean_float_1) \
|
||||
FN(mean_float_2) \
|
||||
FN(mean_quant8_1) \
|
||||
FN(mean_quant8_2) \
|
||||
FN(mobilenet_224_gender_basic_fixed) \
|
||||
FN(mobilenet_224_gender_basic_fixed_relaxed) \
|
||||
FN(mobilenet_quantized) \
|
||||
FN(mul) \
|
||||
FN(mul_broadcast_quant8) \
|
||||
FN(mul_quant8) \
|
||||
FN(mul_relaxed) \
|
||||
FN(mul_relu) \
|
||||
FN(mul_relu_relaxed) \
|
||||
FN(pad) \
|
||||
FN(pad_float_1) \
|
||||
FN(relu1_float_1) \
|
||||
FN(relu1_float_1_relaxed) \
|
||||
FN(relu1_float_2) \
|
||||
FN(relu1_float_2_relaxed) \
|
||||
FN(relu1_quant8_1) \
|
||||
FN(relu1_quant8_2) \
|
||||
FN(relu6_float_1) \
|
||||
FN(relu6_float_1_relaxed) \
|
||||
FN(relu6_float_2) \
|
||||
FN(relu6_float_2_relaxed) \
|
||||
FN(relu6_quant8_1) \
|
||||
FN(relu6_quant8_2) \
|
||||
FN(relu_float_1) \
|
||||
FN(relu_float_1_relaxed) \
|
||||
FN(relu_float_2) \
|
||||
FN(relu_quant8_1) \
|
||||
FN(relu_quant8_2) \
|
||||
FN(reshape) \
|
||||
FN(reshape_quant8) \
|
||||
FN(reshape_quant8_weights_as_inputs) \
|
||||
FN(reshape_relaxed) \
|
||||
FN(reshape_weights_as_inputs) \
|
||||
FN(reshape_weights_as_inputs_relaxed) \
|
||||
FN(resize_bilinear) \
|
||||
FN(resize_bilinear_2) \
|
||||
FN(resize_bilinear_relaxed) \
|
||||
FN(rnn) \
|
||||
FN(rnn_relaxed) \
|
||||
FN(rnn_state) \
|
||||
FN(rnn_state_relaxed) \
|
||||
FN(softmax_float_1) \
|
||||
FN(softmax_float_1_relaxed) \
|
||||
FN(softmax_float_2) \
|
||||
FN(softmax_float_2_relaxed) \
|
||||
FN(softmax_quant8_1) \
|
||||
FN(softmax_quant8_2) \
|
||||
FN(space_to_batch) \
|
||||
FN(space_to_batch_float_1) \
|
||||
FN(space_to_batch_float_2) \
|
||||
FN(space_to_batch_float_3) \
|
||||
FN(space_to_batch_quant8_1) \
|
||||
FN(space_to_batch_quant8_2) \
|
||||
FN(space_to_batch_quant8_3) \
|
||||
FN(space_to_depth_float_1) \
|
||||
FN(space_to_depth_float_1_relaxed) \
|
||||
FN(space_to_depth_float_2) \
|
||||
FN(space_to_depth_float_2_relaxed) \
|
||||
FN(space_to_depth_float_3) \
|
||||
FN(space_to_depth_float_3_relaxed) \
|
||||
FN(space_to_depth_quant8_1) \
|
||||
FN(space_to_depth_quant8_2) \
|
||||
FN(squeeze) \
|
||||
FN(squeeze_float_1) \
|
||||
FN(squeeze_quant8_1) \
|
||||
FN(strided_slice) \
|
||||
FN(strided_slice_float_1) \
|
||||
FN(strided_slice_float_10) \
|
||||
FN(strided_slice_float_2) \
|
||||
FN(strided_slice_float_3) \
|
||||
FN(strided_slice_float_4) \
|
||||
FN(strided_slice_float_5) \
|
||||
FN(strided_slice_float_6) \
|
||||
FN(strided_slice_float_7) \
|
||||
FN(strided_slice_float_8) \
|
||||
FN(strided_slice_float_9) \
|
||||
FN(strided_slice_qaunt8_10) \
|
||||
FN(strided_slice_quant8_1) \
|
||||
FN(strided_slice_quant8_2) \
|
||||
FN(strided_slice_quant8_3) \
|
||||
FN(strided_slice_quant8_4) \
|
||||
FN(strided_slice_quant8_5) \
|
||||
FN(strided_slice_quant8_6) \
|
||||
FN(strided_slice_quant8_7) \
|
||||
FN(strided_slice_quant8_8) \
|
||||
FN(strided_slice_quant8_9) \
|
||||
FN(sub) \
|
||||
FN(svdf) \
|
||||
FN(svdf2) \
|
||||
FN(svdf2_relaxed) \
|
||||
FN(svdf_relaxed) \
|
||||
FN(svdf_state) \
|
||||
FN(svdf_state_relaxed) \
|
||||
FN(tanh) \
|
||||
FN(tanh_relaxed) \
|
||||
FN(transpose) \
|
||||
FN(transpose_float_1) \
|
||||
FN(transpose_quant8_1)
|
||||
|
||||
#define FORWARD_DECLARE_GENERATED_OBJECTS(function) \
|
||||
namespace function { \
|
||||
extern std::vector<MixedTypedExample> examples; \
|
||||
Model createTestModel(); \
|
||||
}
|
||||
|
||||
FOR_EACH_TEST_MODEL(FORWARD_DECLARE_GENERATED_OBJECTS)
|
||||
|
||||
#undef FORWARD_DECLARE_GENERATED_OBJECTS
|
||||
|
||||
} // namespace functional
|
||||
} // namespace vts
|
||||
} // namespace V1_1
|
||||
} // namespace neuralnetworks
|
||||
} // namespace hardware
|
||||
} // namespace android
|
||||
|
||||
#endif // VTS_HAL_NEURALNETWORKS_V1_1_VTS_FUNCTIONAL_MODELS_H
|
||||
513
neuralnetworks/1.1/vts/functional/ValidateModel.cpp
Normal file
513
neuralnetworks/1.1/vts/functional/ValidateModel.cpp
Normal file
@@ -0,0 +1,513 @@
|
||||
/*
|
||||
* Copyright (C) 2018 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
||||
|
||||
#include "VtsHalNeuralnetworks.h"
|
||||
|
||||
#include "Callbacks.h"
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
namespace neuralnetworks {
|
||||
namespace V1_1 {
|
||||
|
||||
using V1_0::IPreparedModel;
|
||||
using V1_0::Operand;
|
||||
using V1_0::OperandLifeTime;
|
||||
using V1_0::OperandType;
|
||||
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
|
||||
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
|
||||
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
|
||||
|
||||
///////////////////////// UTILITY FUNCTIONS /////////////////////////
|
||||
|
||||
static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
|
||||
const V1_1::Model& model) {
|
||||
SCOPED_TRACE(message + " [getSupportedOperations_1_1]");
|
||||
|
||||
Return<void> ret =
|
||||
device->getSupportedOperations_1_1(model, [&](ErrorStatus status, const hidl_vec<bool>&) {
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
|
||||
});
|
||||
EXPECT_TRUE(ret.isOk());
|
||||
}
|
||||
|
||||
static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
|
||||
const V1_1::Model& model) {
|
||||
SCOPED_TRACE(message + " [prepareModel_1_1]");
|
||||
|
||||
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
|
||||
ASSERT_NE(nullptr, preparedModelCallback.get());
|
||||
Return<ErrorStatus> prepareLaunchStatus =
|
||||
device->prepareModel_1_1(model, preparedModelCallback);
|
||||
ASSERT_TRUE(prepareLaunchStatus.isOk());
|
||||
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
|
||||
|
||||
preparedModelCallback->wait();
|
||||
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
|
||||
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
|
||||
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
|
||||
ASSERT_EQ(nullptr, preparedModel.get());
|
||||
}
|
||||
|
||||
// Primary validation function. This function will take a valid model, apply a
|
||||
// mutation to it to invalidate the model, then pass it to interface calls that
|
||||
// use the model. Note that the model here is passed by value, and any mutation
|
||||
// to the model does not leave this function.
|
||||
static void validate(const sp<IDevice>& device, const std::string& message, V1_1::Model model,
|
||||
const std::function<void(Model*)>& mutation) {
|
||||
mutation(&model);
|
||||
validateGetSupportedOperations(device, message, model);
|
||||
validatePrepareModel(device, message, model);
|
||||
}
|
||||
|
||||
// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
|
||||
// so this is efficiently accomplished by moving the element to the end and
|
||||
// resizing the hidl_vec to one less.
|
||||
template <typename Type>
|
||||
static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
|
||||
if (vec) {
|
||||
std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
|
||||
vec->resize(vec->size() - 1);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
|
||||
// assume vec is valid
|
||||
const uint32_t index = vec->size();
|
||||
vec->resize(index + 1);
|
||||
(*vec)[index] = value;
|
||||
return index;
|
||||
}
|
||||
|
||||
static uint32_t addOperand(Model* model) {
|
||||
return hidl_vec_push_back(&model->operands,
|
||||
{
|
||||
.type = OperandType::INT32,
|
||||
.dimensions = {},
|
||||
.numberOfConsumers = 0,
|
||||
.scale = 0.0f,
|
||||
.zeroPoint = 0,
|
||||
.lifetime = OperandLifeTime::MODEL_INPUT,
|
||||
.location = {.poolIndex = 0, .offset = 0, .length = 0},
|
||||
});
|
||||
}
|
||||
|
||||
static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
|
||||
uint32_t index = addOperand(model);
|
||||
model->operands[index].numberOfConsumers = 1;
|
||||
model->operands[index].lifetime = lifetime;
|
||||
return index;
|
||||
}
|
||||
|
||||
///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
|
||||
|
||||
static const int32_t invalidOperandTypes[] = {
|
||||
static_cast<int32_t>(OperandType::FLOAT32) - 1, // lower bound fundamental
|
||||
static_cast<int32_t>(OperandType::TENSOR_QUANT8_ASYMM) + 1, // upper bound fundamental
|
||||
static_cast<int32_t>(OperandType::OEM) - 1, // lower bound OEM
|
||||
static_cast<int32_t>(OperandType::TENSOR_OEM_BYTE) + 1, // upper bound OEM
|
||||
};
|
||||
|
||||
static void mutateOperandTypeTest(const sp<IDevice>& device, const V1_1::Model& model) {
|
||||
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
||||
for (int32_t invalidOperandType : invalidOperandTypes) {
|
||||
const std::string message = "mutateOperandTypeTest: operand " +
|
||||
std::to_string(operand) + " set to value " +
|
||||
std::to_string(invalidOperandType);
|
||||
validate(device, message, model, [operand, invalidOperandType](Model* model) {
|
||||
model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// VALIDATE OPERAND RANK /////////////////////////
|
||||
|
||||
static uint32_t getInvalidRank(OperandType type) {
|
||||
switch (type) {
|
||||
case OperandType::FLOAT32:
|
||||
case OperandType::INT32:
|
||||
case OperandType::UINT32:
|
||||
return 1;
|
||||
case OperandType::TENSOR_FLOAT32:
|
||||
case OperandType::TENSOR_INT32:
|
||||
case OperandType::TENSOR_QUANT8_ASYMM:
|
||||
return 0;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
static void mutateOperandRankTest(const sp<IDevice>& device, const V1_1::Model& model) {
|
||||
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
||||
const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
|
||||
const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
|
||||
" has rank of " + std::to_string(invalidRank);
|
||||
validate(device, message, model, [operand, invalidRank](Model* model) {
|
||||
model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
|
||||
|
||||
static float getInvalidScale(OperandType type) {
|
||||
switch (type) {
|
||||
case OperandType::FLOAT32:
|
||||
case OperandType::INT32:
|
||||
case OperandType::UINT32:
|
||||
case OperandType::TENSOR_FLOAT32:
|
||||
return 1.0f;
|
||||
case OperandType::TENSOR_INT32:
|
||||
return -1.0f;
|
||||
case OperandType::TENSOR_QUANT8_ASYMM:
|
||||
return 0.0f;
|
||||
default:
|
||||
return 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
static void mutateOperandScaleTest(const sp<IDevice>& device, const V1_1::Model& model) {
|
||||
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
||||
const float invalidScale = getInvalidScale(model.operands[operand].type);
|
||||
const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
|
||||
" has scale of " + std::to_string(invalidScale);
|
||||
validate(device, message, model, [operand, invalidScale](Model* model) {
|
||||
model->operands[operand].scale = invalidScale;
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
|
||||
|
||||
static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
|
||||
switch (type) {
|
||||
case OperandType::FLOAT32:
|
||||
case OperandType::INT32:
|
||||
case OperandType::UINT32:
|
||||
case OperandType::TENSOR_FLOAT32:
|
||||
case OperandType::TENSOR_INT32:
|
||||
return {1};
|
||||
case OperandType::TENSOR_QUANT8_ASYMM:
|
||||
return {-1, 256};
|
||||
default:
|
||||
return {};
|
||||
}
|
||||
}
|
||||
|
||||
static void mutateOperandZeroPointTest(const sp<IDevice>& device, const V1_1::Model& model) {
|
||||
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
||||
const std::vector<int32_t> invalidZeroPoints =
|
||||
getInvalidZeroPoints(model.operands[operand].type);
|
||||
for (int32_t invalidZeroPoint : invalidZeroPoints) {
|
||||
const std::string message = "mutateOperandZeroPointTest: operand " +
|
||||
std::to_string(operand) + " has zero point of " +
|
||||
std::to_string(invalidZeroPoint);
|
||||
validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
|
||||
model->operands[operand].zeroPoint = invalidZeroPoint;
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// VALIDATE EXTRA ??? /////////////////////////
|
||||
|
||||
// TODO: Operand::lifetime
|
||||
// TODO: Operand::location
|
||||
|
||||
///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
|
||||
|
||||
static void mutateOperand(Operand* operand, OperandType type) {
|
||||
Operand newOperand = *operand;
|
||||
newOperand.type = type;
|
||||
switch (type) {
|
||||
case OperandType::FLOAT32:
|
||||
case OperandType::INT32:
|
||||
case OperandType::UINT32:
|
||||
newOperand.dimensions = hidl_vec<uint32_t>();
|
||||
newOperand.scale = 0.0f;
|
||||
newOperand.zeroPoint = 0;
|
||||
break;
|
||||
case OperandType::TENSOR_FLOAT32:
|
||||
newOperand.dimensions =
|
||||
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
|
||||
newOperand.scale = 0.0f;
|
||||
newOperand.zeroPoint = 0;
|
||||
break;
|
||||
case OperandType::TENSOR_INT32:
|
||||
newOperand.dimensions =
|
||||
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
|
||||
newOperand.zeroPoint = 0;
|
||||
break;
|
||||
case OperandType::TENSOR_QUANT8_ASYMM:
|
||||
newOperand.dimensions =
|
||||
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
|
||||
newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
|
||||
break;
|
||||
case OperandType::OEM:
|
||||
case OperandType::TENSOR_OEM_BYTE:
|
||||
default:
|
||||
break;
|
||||
}
|
||||
*operand = newOperand;
|
||||
}
|
||||
|
||||
static bool mutateOperationOperandTypeSkip(size_t operand, const V1_1::Model& model) {
|
||||
// LSH_PROJECTION's second argument is allowed to have any type. This is the
|
||||
// only operation that currently has a type that can be anything independent
|
||||
// from any other type. Changing the operand type to any other type will
|
||||
// result in a valid model for LSH_PROJECTION. If this is the case, skip the
|
||||
// test.
|
||||
for (const Operation& operation : model.operations) {
|
||||
if (operation.type == OperationType::LSH_PROJECTION && operand == operation.inputs[1]) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const V1_1::Model& model) {
|
||||
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
||||
if (mutateOperationOperandTypeSkip(operand, model)) {
|
||||
continue;
|
||||
}
|
||||
for (OperandType invalidOperandType : hidl_enum_iterator<OperandType>{}) {
|
||||
// Do not test OEM types
|
||||
if (invalidOperandType == model.operands[operand].type ||
|
||||
invalidOperandType == OperandType::OEM ||
|
||||
invalidOperandType == OperandType::TENSOR_OEM_BYTE) {
|
||||
continue;
|
||||
}
|
||||
const std::string message = "mutateOperationOperandTypeTest: operand " +
|
||||
std::to_string(operand) + " set to type " +
|
||||
toString(invalidOperandType);
|
||||
validate(device, message, model, [operand, invalidOperandType](Model* model) {
|
||||
mutateOperand(&model->operands[operand], invalidOperandType);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
|
||||
|
||||
static const int32_t invalidOperationTypes[] = {
|
||||
static_cast<int32_t>(OperationType::ADD) - 1, // lower bound fundamental
|
||||
static_cast<int32_t>(OperationType::TRANSPOSE) + 1, // upper bound fundamental
|
||||
static_cast<int32_t>(OperationType::OEM_OPERATION) - 1, // lower bound OEM
|
||||
static_cast<int32_t>(OperationType::OEM_OPERATION) + 1, // upper bound OEM
|
||||
};
|
||||
|
||||
static void mutateOperationTypeTest(const sp<IDevice>& device, const V1_1::Model& model) {
|
||||
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
||||
for (int32_t invalidOperationType : invalidOperationTypes) {
|
||||
const std::string message = "mutateOperationTypeTest: operation " +
|
||||
std::to_string(operation) + " set to value " +
|
||||
std::to_string(invalidOperationType);
|
||||
validate(device, message, model, [operation, invalidOperationType](Model* model) {
|
||||
model->operations[operation].type =
|
||||
static_cast<OperationType>(invalidOperationType);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
|
||||
|
||||
static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device,
|
||||
const V1_1::Model& model) {
|
||||
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
||||
const uint32_t invalidOperand = model.operands.size();
|
||||
for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
|
||||
const std::string message = "mutateOperationInputOperandIndexTest: operation " +
|
||||
std::to_string(operation) + " input " +
|
||||
std::to_string(input);
|
||||
validate(device, message, model, [operation, input, invalidOperand](Model* model) {
|
||||
model->operations[operation].inputs[input] = invalidOperand;
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
|
||||
|
||||
static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device,
|
||||
const V1_1::Model& model) {
|
||||
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
||||
const uint32_t invalidOperand = model.operands.size();
|
||||
for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
|
||||
const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
|
||||
std::to_string(operation) + " output " +
|
||||
std::to_string(output);
|
||||
validate(device, message, model, [operation, output, invalidOperand](Model* model) {
|
||||
model->operations[operation].outputs[output] = invalidOperand;
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
|
||||
|
||||
static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
|
||||
if (vec) {
|
||||
// remove elements matching "value"
|
||||
auto last = std::remove(vec->begin(), vec->end(), value);
|
||||
vec->resize(std::distance(vec->begin(), last));
|
||||
|
||||
// decrement elements exceeding "value"
|
||||
std::transform(vec->begin(), vec->end(), vec->begin(),
|
||||
[value](uint32_t v) { return v > value ? v-- : v; });
|
||||
}
|
||||
}
|
||||
|
||||
static void removeOperand(Model* model, uint32_t index) {
|
||||
hidl_vec_removeAt(&model->operands, index);
|
||||
for (Operation& operation : model->operations) {
|
||||
removeValueAndDecrementGreaterValues(&operation.inputs, index);
|
||||
removeValueAndDecrementGreaterValues(&operation.outputs, index);
|
||||
}
|
||||
removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
|
||||
removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
|
||||
}
|
||||
|
||||
static void removeOperandTest(const sp<IDevice>& device, const V1_1::Model& model) {
|
||||
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
|
||||
const std::string message = "removeOperandTest: operand " + std::to_string(operand);
|
||||
validate(device, message, model,
|
||||
[operand](Model* model) { removeOperand(model, operand); });
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// REMOVE OPERATION /////////////////////////
|
||||
|
||||
static void removeOperation(Model* model, uint32_t index) {
|
||||
for (uint32_t operand : model->operations[index].inputs) {
|
||||
model->operands[operand].numberOfConsumers--;
|
||||
}
|
||||
hidl_vec_removeAt(&model->operations, index);
|
||||
}
|
||||
|
||||
static void removeOperationTest(const sp<IDevice>& device, const V1_1::Model& model) {
|
||||
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
||||
const std::string message = "removeOperationTest: operation " + std::to_string(operation);
|
||||
validate(device, message, model,
|
||||
[operation](Model* model) { removeOperation(model, operation); });
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// REMOVE OPERATION INPUT /////////////////////////
|
||||
|
||||
static void removeOperationInputTest(const sp<IDevice>& device, const V1_1::Model& model) {
|
||||
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
||||
for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
|
||||
const V1_1::Operation& op = model.operations[operation];
|
||||
// CONCATENATION has at least 2 inputs, with the last element being
|
||||
// INT32. Skip this test if removing one of CONCATENATION's
|
||||
// inputs still produces a valid model.
|
||||
if (op.type == V1_1::OperationType::CONCATENATION && op.inputs.size() > 2 &&
|
||||
input != op.inputs.size() - 1) {
|
||||
continue;
|
||||
}
|
||||
const std::string message = "removeOperationInputTest: operation " +
|
||||
std::to_string(operation) + ", input " +
|
||||
std::to_string(input);
|
||||
validate(device, message, model, [operation, input](Model* model) {
|
||||
uint32_t operand = model->operations[operation].inputs[input];
|
||||
model->operands[operand].numberOfConsumers--;
|
||||
hidl_vec_removeAt(&model->operations[operation].inputs, input);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
|
||||
|
||||
static void removeOperationOutputTest(const sp<IDevice>& device, const V1_1::Model& model) {
|
||||
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
||||
for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
|
||||
const std::string message = "removeOperationOutputTest: operation " +
|
||||
std::to_string(operation) + ", output " +
|
||||
std::to_string(output);
|
||||
validate(device, message, model, [operation, output](Model* model) {
|
||||
hidl_vec_removeAt(&model->operations[operation].outputs, output);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// MODEL VALIDATION /////////////////////////
|
||||
|
||||
// TODO: remove model input
|
||||
// TODO: remove model output
|
||||
// TODO: add unused operation
|
||||
|
||||
///////////////////////// ADD OPERATION INPUT /////////////////////////
|
||||
|
||||
static void addOperationInputTest(const sp<IDevice>& device, const V1_1::Model& model) {
|
||||
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
||||
const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
|
||||
validate(device, message, model, [operation](Model* model) {
|
||||
uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
|
||||
hidl_vec_push_back(&model->operations[operation].inputs, index);
|
||||
hidl_vec_push_back(&model->inputIndexes, index);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// ADD OPERATION OUTPUT /////////////////////////
|
||||
|
||||
static void addOperationOutputTest(const sp<IDevice>& device, const V1_1::Model& model) {
|
||||
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
|
||||
const std::string message =
|
||||
"addOperationOutputTest: operation " + std::to_string(operation);
|
||||
validate(device, message, model, [operation](Model* model) {
|
||||
uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
|
||||
hidl_vec_push_back(&model->operations[operation].outputs, index);
|
||||
hidl_vec_push_back(&model->outputIndexes, index);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////// ENTRY POINT //////////////////////////////
|
||||
|
||||
void ValidationTest::validateModel(const V1_1::Model& model) {
|
||||
mutateOperandTypeTest(device, model);
|
||||
mutateOperandRankTest(device, model);
|
||||
mutateOperandScaleTest(device, model);
|
||||
mutateOperandZeroPointTest(device, model);
|
||||
mutateOperationOperandTypeTest(device, model);
|
||||
mutateOperationTypeTest(device, model);
|
||||
mutateOperationInputOperandIndexTest(device, model);
|
||||
mutateOperationOutputOperandIndexTest(device, model);
|
||||
removeOperandTest(device, model);
|
||||
removeOperationTest(device, model);
|
||||
removeOperationInputTest(device, model);
|
||||
removeOperationOutputTest(device, model);
|
||||
addOperationInputTest(device, model);
|
||||
addOperationOutputTest(device, model);
|
||||
}
|
||||
|
||||
} // namespace functional
|
||||
} // namespace vts
|
||||
} // namespace V1_1
|
||||
} // namespace neuralnetworks
|
||||
} // namespace hardware
|
||||
} // namespace android
|
||||
262
neuralnetworks/1.1/vts/functional/ValidateRequest.cpp
Normal file
262
neuralnetworks/1.1/vts/functional/ValidateRequest.cpp
Normal file
@@ -0,0 +1,262 @@
|
||||
/*
|
||||
* Copyright (C) 2018 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
||||
|
||||
#include "VtsHalNeuralnetworks.h"
|
||||
|
||||
#include "Callbacks.h"
|
||||
#include "TestHarness.h"
|
||||
#include "Utils.h"
|
||||
|
||||
#include <android-base/logging.h>
|
||||
#include <android/hidl/memory/1.0/IMemory.h>
|
||||
#include <hidlmemory/mapping.h>
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
namespace neuralnetworks {
|
||||
namespace V1_1 {
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
|
||||
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
|
||||
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
|
||||
using ::android::hidl::memory::V1_0::IMemory;
|
||||
using generated_tests::MixedTyped;
|
||||
using generated_tests::MixedTypedExampleType;
|
||||
using generated_tests::for_all;
|
||||
|
||||
///////////////////////// UTILITY FUNCTIONS /////////////////////////
|
||||
|
||||
static void createPreparedModel(const sp<IDevice>& device, const V1_1::Model& model,
|
||||
sp<IPreparedModel>* preparedModel) {
|
||||
ASSERT_NE(nullptr, preparedModel);
|
||||
|
||||
// see if service can handle model
|
||||
bool fullySupportsModel = false;
|
||||
Return<void> supportedOpsLaunchStatus = device->getSupportedOperations_1_1(
|
||||
model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
|
||||
ASSERT_EQ(ErrorStatus::NONE, status);
|
||||
ASSERT_NE(0ul, supported.size());
|
||||
fullySupportsModel =
|
||||
std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
|
||||
});
|
||||
ASSERT_TRUE(supportedOpsLaunchStatus.isOk());
|
||||
|
||||
// launch prepare model
|
||||
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
|
||||
ASSERT_NE(nullptr, preparedModelCallback.get());
|
||||
Return<ErrorStatus> prepareLaunchStatus =
|
||||
device->prepareModel_1_1(model, preparedModelCallback);
|
||||
ASSERT_TRUE(prepareLaunchStatus.isOk());
|
||||
ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
|
||||
|
||||
// retrieve prepared model
|
||||
preparedModelCallback->wait();
|
||||
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
|
||||
*preparedModel = preparedModelCallback->getPreparedModel();
|
||||
|
||||
// The getSupportedOperations_1_1 call returns a list of operations that are
|
||||
// guaranteed not to fail if prepareModel_1_1 is called, and
|
||||
// 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
|
||||
// If a driver has any doubt that it can prepare an operation, it must
|
||||
// return false. So here, if a driver isn't sure if it can support an
|
||||
// operation, but reports that it successfully prepared the model, the test
|
||||
// can continue.
|
||||
if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
|
||||
ASSERT_EQ(nullptr, preparedModel->get());
|
||||
LOG(INFO) << "NN VTS: Unable to test Request validation because vendor service cannot "
|
||||
"prepare model that it does not support.";
|
||||
std::cout << "[ ] Unable to test Request validation because vendor service "
|
||||
"cannot prepare model that it does not support."
|
||||
<< std::endl;
|
||||
return;
|
||||
}
|
||||
ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
|
||||
ASSERT_NE(nullptr, preparedModel->get());
|
||||
}
|
||||
|
||||
// Primary validation function. This function will take a valid request, apply a
|
||||
// mutation to it to invalidate the request, then pass it to interface calls
|
||||
// that use the request. Note that the request here is passed by value, and any
|
||||
// mutation to the request does not leave this function.
|
||||
static void validate(const sp<IPreparedModel>& preparedModel, const std::string& message,
|
||||
Request request, const std::function<void(Request*)>& mutation) {
|
||||
mutation(&request);
|
||||
SCOPED_TRACE(message + " [execute]");
|
||||
|
||||
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
|
||||
ASSERT_NE(nullptr, executionCallback.get());
|
||||
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
|
||||
ASSERT_TRUE(executeLaunchStatus.isOk());
|
||||
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
|
||||
|
||||
executionCallback->wait();
|
||||
ErrorStatus executionReturnStatus = executionCallback->getStatus();
|
||||
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
|
||||
}
|
||||
|
||||
// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
|
||||
// so this is efficiently accomplished by moving the element to the end and
|
||||
// resizing the hidl_vec to one less.
|
||||
template <typename Type>
|
||||
static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
|
||||
if (vec) {
|
||||
std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
|
||||
vec->resize(vec->size() - 1);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
|
||||
// assume vec is valid
|
||||
const uint32_t index = vec->size();
|
||||
vec->resize(index + 1);
|
||||
(*vec)[index] = value;
|
||||
return index;
|
||||
}
|
||||
|
||||
///////////////////////// REMOVE INPUT ////////////////////////////////////
|
||||
|
||||
static void removeInputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
|
||||
for (size_t input = 0; input < request.inputs.size(); ++input) {
|
||||
const std::string message = "removeInput: removed input " + std::to_string(input);
|
||||
validate(preparedModel, message, request,
|
||||
[input](Request* request) { hidl_vec_removeAt(&request->inputs, input); });
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////// REMOVE OUTPUT ////////////////////////////////////
|
||||
|
||||
static void removeOutputTest(const sp<IPreparedModel>& preparedModel, const Request& request) {
|
||||
for (size_t output = 0; output < request.outputs.size(); ++output) {
|
||||
const std::string message = "removeOutput: removed Output " + std::to_string(output);
|
||||
validate(preparedModel, message, request,
|
||||
[output](Request* request) { hidl_vec_removeAt(&request->outputs, output); });
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////// ENTRY POINT //////////////////////////////////
|
||||
|
||||
std::vector<Request> createRequests(const std::vector<MixedTypedExampleType>& examples) {
|
||||
const uint32_t INPUT = 0;
|
||||
const uint32_t OUTPUT = 1;
|
||||
|
||||
std::vector<Request> requests;
|
||||
|
||||
for (auto& example : examples) {
|
||||
const MixedTyped& inputs = example.first;
|
||||
const MixedTyped& outputs = example.second;
|
||||
|
||||
std::vector<RequestArgument> inputs_info, outputs_info;
|
||||
uint32_t inputSize = 0, outputSize = 0;
|
||||
|
||||
// This function only partially specifies the metadata (vector of RequestArguments).
|
||||
// The contents are copied over below.
|
||||
for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) {
|
||||
if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1);
|
||||
RequestArgument arg = {
|
||||
.location = {.poolIndex = INPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
|
||||
.dimensions = {},
|
||||
};
|
||||
RequestArgument arg_empty = {
|
||||
.hasNoValue = true,
|
||||
};
|
||||
inputs_info[index] = s ? arg : arg_empty;
|
||||
inputSize += s;
|
||||
});
|
||||
// Compute offset for inputs 1 and so on
|
||||
{
|
||||
size_t offset = 0;
|
||||
for (auto& i : inputs_info) {
|
||||
if (!i.hasNoValue) i.location.offset = offset;
|
||||
offset += i.location.length;
|
||||
}
|
||||
}
|
||||
|
||||
// Go through all outputs, initialize RequestArgument descriptors
|
||||
for_all(outputs, [&outputs_info, &outputSize](int index, auto, auto s) {
|
||||
if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
|
||||
RequestArgument arg = {
|
||||
.location = {.poolIndex = OUTPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
|
||||
.dimensions = {},
|
||||
};
|
||||
outputs_info[index] = arg;
|
||||
outputSize += s;
|
||||
});
|
||||
// Compute offset for outputs 1 and so on
|
||||
{
|
||||
size_t offset = 0;
|
||||
for (auto& i : outputs_info) {
|
||||
i.location.offset = offset;
|
||||
offset += i.location.length;
|
||||
}
|
||||
}
|
||||
std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
|
||||
nn::allocateSharedMemory(outputSize)};
|
||||
if (pools[INPUT].size() == 0 || pools[OUTPUT].size() == 0) {
|
||||
return {};
|
||||
}
|
||||
|
||||
// map pool
|
||||
sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
|
||||
if (inputMemory == nullptr) {
|
||||
return {};
|
||||
}
|
||||
char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer()));
|
||||
if (inputPtr == nullptr) {
|
||||
return {};
|
||||
}
|
||||
|
||||
// initialize pool
|
||||
inputMemory->update();
|
||||
for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) {
|
||||
char* begin = (char*)p;
|
||||
char* end = begin + s;
|
||||
// TODO: handle more than one input
|
||||
std::copy(begin, end, inputPtr + inputs_info[index].location.offset);
|
||||
});
|
||||
inputMemory->commit();
|
||||
|
||||
requests.push_back({.inputs = inputs_info, .outputs = outputs_info, .pools = pools});
|
||||
}
|
||||
|
||||
return requests;
|
||||
}
|
||||
|
||||
void ValidationTest::validateRequests(const V1_1::Model& model,
|
||||
const std::vector<Request>& requests) {
|
||||
// create IPreparedModel
|
||||
sp<IPreparedModel> preparedModel;
|
||||
ASSERT_NO_FATAL_FAILURE(createPreparedModel(device, model, &preparedModel));
|
||||
if (preparedModel == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
// validate each request
|
||||
for (const Request& request : requests) {
|
||||
removeInputTest(preparedModel, request);
|
||||
removeOutputTest(preparedModel, request);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace functional
|
||||
} // namespace vts
|
||||
} // namespace V1_1
|
||||
} // namespace neuralnetworks
|
||||
} // namespace hardware
|
||||
} // namespace android
|
||||
50
neuralnetworks/1.1/vts/functional/ValidationTests.cpp
Normal file
50
neuralnetworks/1.1/vts/functional/ValidationTests.cpp
Normal file
@@ -0,0 +1,50 @@
|
||||
/*
|
||||
* Copyright (C) 2018 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
||||
|
||||
#include "Models.h"
|
||||
#include "VtsHalNeuralnetworks.h"
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
namespace neuralnetworks {
|
||||
namespace V1_1 {
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
|
||||
// forward declarations
|
||||
std::vector<Request> createRequests(const std::vector<MixedTypedExample>& examples);
|
||||
|
||||
// generate validation tests
|
||||
#define VTS_CURRENT_TEST_CASE(TestName) \
|
||||
TEST_F(ValidationTest, TestName) { \
|
||||
const Model model = TestName::createTestModel(); \
|
||||
const std::vector<Request> requests = createRequests(TestName::examples); \
|
||||
validateModel(model); \
|
||||
validateRequests(model, requests); \
|
||||
}
|
||||
|
||||
FOR_EACH_TEST_MODEL(VTS_CURRENT_TEST_CASE)
|
||||
|
||||
#undef VTS_CURRENT_TEST_CASE
|
||||
|
||||
} // namespace functional
|
||||
} // namespace vts
|
||||
} // namespace V1_1
|
||||
} // namespace neuralnetworks
|
||||
} // namespace hardware
|
||||
} // namespace android
|
||||
@@ -16,16 +16,7 @@
|
||||
|
||||
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
||||
|
||||
#include "VtsHalNeuralnetworksV1_1.h"
|
||||
#include "Utils.h"
|
||||
|
||||
#include <android-base/logging.h>
|
||||
#include <hidlmemory/mapping.h>
|
||||
|
||||
using ::android::hardware::hidl_memory;
|
||||
using ::android::hidl::allocator::V1_0::IAllocator;
|
||||
using ::android::hidl::memory::V1_0::IMemory;
|
||||
using ::android::sp;
|
||||
#include "VtsHalNeuralnetworks.h"
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
@@ -34,11 +25,6 @@ namespace V1_1 {
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
|
||||
// allocator helper
|
||||
hidl_memory allocateSharedMemory(int64_t size) {
|
||||
return nn::allocateSharedMemory(size);
|
||||
}
|
||||
|
||||
// A class for test environment setup
|
||||
NeuralnetworksHidlEnvironment::NeuralnetworksHidlEnvironment() {}
|
||||
|
||||
@@ -52,23 +38,49 @@ NeuralnetworksHidlEnvironment* NeuralnetworksHidlEnvironment::getInstance() {
|
||||
}
|
||||
|
||||
void NeuralnetworksHidlEnvironment::registerTestServices() {
|
||||
registerTestService<V1_1::IDevice>();
|
||||
registerTestService<IDevice>();
|
||||
}
|
||||
|
||||
// The main test class for NEURALNETWORK HIDL HAL.
|
||||
NeuralnetworksHidlTest::NeuralnetworksHidlTest() {}
|
||||
|
||||
NeuralnetworksHidlTest::~NeuralnetworksHidlTest() {}
|
||||
|
||||
void NeuralnetworksHidlTest::SetUp() {
|
||||
device = ::testing::VtsHalHidlTargetTestBase::getService<V1_1::IDevice>(
|
||||
::testing::VtsHalHidlTargetTestBase::SetUp();
|
||||
device = ::testing::VtsHalHidlTargetTestBase::getService<IDevice>(
|
||||
NeuralnetworksHidlEnvironment::getInstance());
|
||||
ASSERT_NE(nullptr, device.get());
|
||||
}
|
||||
|
||||
void NeuralnetworksHidlTest::TearDown() {}
|
||||
void NeuralnetworksHidlTest::TearDown() {
|
||||
device = nullptr;
|
||||
::testing::VtsHalHidlTargetTestBase::TearDown();
|
||||
}
|
||||
|
||||
} // namespace functional
|
||||
} // namespace vts
|
||||
|
||||
::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus) {
|
||||
return os << toString(errorStatus);
|
||||
}
|
||||
|
||||
::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus) {
|
||||
return os << toString(deviceStatus);
|
||||
}
|
||||
|
||||
} // namespace V1_1
|
||||
} // namespace neuralnetworks
|
||||
} // namespace hardware
|
||||
} // namespace android
|
||||
|
||||
using android::hardware::neuralnetworks::V1_1::vts::functional::NeuralnetworksHidlEnvironment;
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
::testing::AddGlobalTestEnvironment(NeuralnetworksHidlEnvironment::getInstance());
|
||||
::testing::InitGoogleTest(&argc, argv);
|
||||
NeuralnetworksHidlEnvironment::getInstance()->init(&argc, argv);
|
||||
|
||||
int status = RUN_ALL_TESTS();
|
||||
return status;
|
||||
}
|
||||
@@ -17,65 +17,71 @@
|
||||
#ifndef VTS_HAL_NEURALNETWORKS_V1_1_H
|
||||
#define VTS_HAL_NEURALNETWORKS_V1_1_H
|
||||
|
||||
#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
|
||||
#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
|
||||
#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
|
||||
#include <android/hardware/neuralnetworks/1.0/types.h>
|
||||
#include <android/hardware/neuralnetworks/1.1/IDevice.h>
|
||||
#include <android/hardware/neuralnetworks/1.1/types.h>
|
||||
#include <android/hidl/allocator/1.0/IAllocator.h>
|
||||
|
||||
#include <VtsHalHidlTargetTestBase.h>
|
||||
#include <VtsHalHidlTargetTestEnvBase.h>
|
||||
|
||||
#include <android-base/macros.h>
|
||||
#include <gtest/gtest.h>
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
namespace neuralnetworks {
|
||||
namespace V1_1 {
|
||||
|
||||
using V1_0::Request;
|
||||
using V1_0::DeviceStatus;
|
||||
using V1_0::ErrorStatus;
|
||||
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
hidl_memory allocateSharedMemory(int64_t size);
|
||||
|
||||
// A class for test environment setup
|
||||
class NeuralnetworksHidlEnvironment : public ::testing::VtsHalHidlTargetTestEnvBase {
|
||||
DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlEnvironment);
|
||||
NeuralnetworksHidlEnvironment();
|
||||
NeuralnetworksHidlEnvironment(const NeuralnetworksHidlEnvironment&) = delete;
|
||||
NeuralnetworksHidlEnvironment(NeuralnetworksHidlEnvironment&&) = delete;
|
||||
NeuralnetworksHidlEnvironment& operator=(const NeuralnetworksHidlEnvironment&) = delete;
|
||||
NeuralnetworksHidlEnvironment& operator=(NeuralnetworksHidlEnvironment&&) = delete;
|
||||
~NeuralnetworksHidlEnvironment() override;
|
||||
|
||||
public:
|
||||
~NeuralnetworksHidlEnvironment() override;
|
||||
static NeuralnetworksHidlEnvironment* getInstance();
|
||||
void registerTestServices() override;
|
||||
};
|
||||
|
||||
// The main test class for NEURALNETWORKS HIDL HAL.
|
||||
class NeuralnetworksHidlTest : public ::testing::VtsHalHidlTargetTestBase {
|
||||
DISALLOW_COPY_AND_ASSIGN(NeuralnetworksHidlTest);
|
||||
|
||||
public:
|
||||
NeuralnetworksHidlTest();
|
||||
~NeuralnetworksHidlTest() override;
|
||||
void SetUp() override;
|
||||
void TearDown() override;
|
||||
|
||||
sp<V1_1::IDevice> device;
|
||||
protected:
|
||||
sp<IDevice> device;
|
||||
};
|
||||
|
||||
// Tag for the validation tests
|
||||
class ValidationTest : public NeuralnetworksHidlTest {
|
||||
protected:
|
||||
void validateModel(const Model& model);
|
||||
void validateRequests(const Model& model, const std::vector<Request>& request);
|
||||
};
|
||||
|
||||
// Tag for the generated tests
|
||||
class GeneratedTest : public NeuralnetworksHidlTest {};
|
||||
|
||||
} // namespace functional
|
||||
} // namespace vts
|
||||
|
||||
// pretty-print values for error messages
|
||||
|
||||
template <typename CharT, typename Traits>
|
||||
::std::basic_ostream<CharT, Traits>& operator<<(::std::basic_ostream<CharT, Traits>& os,
|
||||
V1_0::ErrorStatus errorStatus) {
|
||||
return os << toString(errorStatus);
|
||||
}
|
||||
|
||||
template <typename CharT, typename Traits>
|
||||
::std::basic_ostream<CharT, Traits>& operator<<(::std::basic_ostream<CharT, Traits>& os,
|
||||
V1_0::DeviceStatus deviceStatus) {
|
||||
return os << toString(deviceStatus);
|
||||
}
|
||||
::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus);
|
||||
::std::ostream& operator<<(::std::ostream& os, DeviceStatus deviceStatus);
|
||||
|
||||
} // namespace V1_1
|
||||
} // namespace neuralnetworks
|
||||
@@ -1,468 +0,0 @@
|
||||
/*
|
||||
* Copyright (C) 2018 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#define LOG_TAG "neuralnetworks_hidl_hal_test"
|
||||
|
||||
#include "VtsHalNeuralnetworksV1_1.h"
|
||||
|
||||
#include "Callbacks.h"
|
||||
#include "Models.h"
|
||||
#include "TestHarness.h"
|
||||
|
||||
#include <android-base/logging.h>
|
||||
#include <android/hardware/neuralnetworks/1.1/IDevice.h>
|
||||
#include <android/hardware/neuralnetworks/1.1/types.h>
|
||||
#include <android/hidl/memory/1.0/IMemory.h>
|
||||
#include <hidlmemory/mapping.h>
|
||||
|
||||
using ::android::hardware::neuralnetworks::V1_0::IPreparedModel;
|
||||
using ::android::hardware::neuralnetworks::V1_0::DeviceStatus;
|
||||
using ::android::hardware::neuralnetworks::V1_0::ErrorStatus;
|
||||
using ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc;
|
||||
using ::android::hardware::neuralnetworks::V1_0::Operand;
|
||||
using ::android::hardware::neuralnetworks::V1_0::OperandLifeTime;
|
||||
using ::android::hardware::neuralnetworks::V1_0::OperandType;
|
||||
using ::android::hardware::neuralnetworks::V1_0::Request;
|
||||
using ::android::hardware::neuralnetworks::V1_1::Capabilities;
|
||||
using ::android::hardware::neuralnetworks::V1_1::IDevice;
|
||||
using ::android::hardware::neuralnetworks::V1_1::Model;
|
||||
using ::android::hardware::neuralnetworks::V1_1::Operation;
|
||||
using ::android::hardware::neuralnetworks::V1_1::OperationType;
|
||||
using ::android::hardware::Return;
|
||||
using ::android::hardware::Void;
|
||||
using ::android::hardware::hidl_memory;
|
||||
using ::android::hardware::hidl_string;
|
||||
using ::android::hardware::hidl_vec;
|
||||
using ::android::hidl::allocator::V1_0::IAllocator;
|
||||
using ::android::hidl::memory::V1_0::IMemory;
|
||||
using ::android::sp;
|
||||
|
||||
namespace android {
|
||||
namespace hardware {
|
||||
namespace neuralnetworks {
|
||||
namespace V1_1 {
|
||||
namespace vts {
|
||||
namespace functional {
|
||||
using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
|
||||
using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
|
||||
|
||||
static void doPrepareModelShortcut(const sp<IDevice>& device, sp<IPreparedModel>* preparedModel) {
|
||||
ASSERT_NE(nullptr, preparedModel);
|
||||
Model model = createValidTestModel_1_1();
|
||||
|
||||
// see if service can handle model
|
||||
bool fullySupportsModel = false;
|
||||
Return<void> supportedOpsLaunchStatus = device->getSupportedOperations_1_1(
|
||||
model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
|
||||
ASSERT_EQ(ErrorStatus::NONE, status);
|
||||
ASSERT_NE(0ul, supported.size());
|
||||
fullySupportsModel =
|
||||
std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
|
||||
});
|
||||
ASSERT_TRUE(supportedOpsLaunchStatus.isOk());
|
||||
|
||||
// launch prepare model
|
||||
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
|
||||
ASSERT_NE(nullptr, preparedModelCallback.get());
|
||||
Return<ErrorStatus> prepareLaunchStatus =
|
||||
device->prepareModel_1_1(model, preparedModelCallback);
|
||||
ASSERT_TRUE(prepareLaunchStatus.isOk());
|
||||
ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
|
||||
|
||||
// retrieve prepared model
|
||||
preparedModelCallback->wait();
|
||||
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
|
||||
*preparedModel = preparedModelCallback->getPreparedModel();
|
||||
|
||||
// The getSupportedOperations call returns a list of operations that are
|
||||
// guaranteed not to fail if prepareModel is called, and
|
||||
// 'fullySupportsModel' is true i.f.f. the entire model is guaranteed.
|
||||
// If a driver has any doubt that it can prepare an operation, it must
|
||||
// return false. So here, if a driver isn't sure if it can support an
|
||||
// operation, but reports that it successfully prepared the model, the test
|
||||
// can continue.
|
||||
if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
|
||||
ASSERT_EQ(nullptr, preparedModel->get());
|
||||
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
|
||||
"prepare model that it does not support.";
|
||||
std::cout << "[ ] Early termination of test because vendor service cannot "
|
||||
"prepare model that it does not support."
|
||||
<< std::endl;
|
||||
return;
|
||||
}
|
||||
ASSERT_EQ(ErrorStatus::NONE, prepareReturnStatus);
|
||||
ASSERT_NE(nullptr, preparedModel->get());
|
||||
}
|
||||
|
||||
// create device test
|
||||
TEST_F(NeuralnetworksHidlTest, CreateDevice) {}
|
||||
|
||||
// status test
|
||||
TEST_F(NeuralnetworksHidlTest, StatusTest) {
|
||||
Return<DeviceStatus> status = device->getStatus();
|
||||
ASSERT_TRUE(status.isOk());
|
||||
EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast<DeviceStatus>(status));
|
||||
}
|
||||
|
||||
// initialization
|
||||
TEST_F(NeuralnetworksHidlTest, GetCapabilitiesTest) {
|
||||
Return<void> ret =
|
||||
device->getCapabilities_1_1([](ErrorStatus status, const Capabilities& capabilities) {
|
||||
EXPECT_EQ(ErrorStatus::NONE, status);
|
||||
EXPECT_LT(0.0f, capabilities.float32Performance.execTime);
|
||||
EXPECT_LT(0.0f, capabilities.float32Performance.powerUsage);
|
||||
EXPECT_LT(0.0f, capabilities.quantized8Performance.execTime);
|
||||
EXPECT_LT(0.0f, capabilities.quantized8Performance.powerUsage);
|
||||
EXPECT_LT(0.0f, capabilities.relaxedFloat32toFloat16Performance.execTime);
|
||||
EXPECT_LT(0.0f, capabilities.relaxedFloat32toFloat16Performance.powerUsage);
|
||||
});
|
||||
EXPECT_TRUE(ret.isOk());
|
||||
}
|
||||
|
||||
// supported operations positive test
|
||||
TEST_F(NeuralnetworksHidlTest, SupportedOperationsPositiveTest) {
|
||||
Model model = createValidTestModel_1_1();
|
||||
Return<void> ret = device->getSupportedOperations_1_1(
|
||||
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
|
||||
EXPECT_EQ(ErrorStatus::NONE, status);
|
||||
EXPECT_EQ(model.operations.size(), supported.size());
|
||||
});
|
||||
EXPECT_TRUE(ret.isOk());
|
||||
}
|
||||
|
||||
// supported operations negative test 1
|
||||
TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest1) {
|
||||
Model model = createInvalidTestModel1_1_1();
|
||||
Return<void> ret = device->getSupportedOperations_1_1(
|
||||
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
|
||||
(void)supported;
|
||||
});
|
||||
EXPECT_TRUE(ret.isOk());
|
||||
}
|
||||
|
||||
// supported operations negative test 2
|
||||
TEST_F(NeuralnetworksHidlTest, SupportedOperationsNegativeTest2) {
|
||||
Model model = createInvalidTestModel2_1_1();
|
||||
Return<void> ret = device->getSupportedOperations_1_1(
|
||||
model, [&](ErrorStatus status, const hidl_vec<bool>& supported) {
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
|
||||
(void)supported;
|
||||
});
|
||||
EXPECT_TRUE(ret.isOk());
|
||||
}
|
||||
|
||||
// prepare simple model positive test
|
||||
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelPositiveTest) {
|
||||
sp<IPreparedModel> preparedModel;
|
||||
doPrepareModelShortcut(device, &preparedModel);
|
||||
}
|
||||
|
||||
// prepare simple model negative test 1
|
||||
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest1) {
|
||||
Model model = createInvalidTestModel1_1_1();
|
||||
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
|
||||
ASSERT_NE(nullptr, preparedModelCallback.get());
|
||||
Return<ErrorStatus> prepareLaunchStatus =
|
||||
device->prepareModel_1_1(model, preparedModelCallback);
|
||||
ASSERT_TRUE(prepareLaunchStatus.isOk());
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
|
||||
|
||||
preparedModelCallback->wait();
|
||||
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
|
||||
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
|
||||
EXPECT_EQ(nullptr, preparedModel.get());
|
||||
}
|
||||
|
||||
// prepare simple model negative test 2
|
||||
TEST_F(NeuralnetworksHidlTest, SimplePrepareModelNegativeTest2) {
|
||||
Model model = createInvalidTestModel2_1_1();
|
||||
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
|
||||
ASSERT_NE(nullptr, preparedModelCallback.get());
|
||||
Return<ErrorStatus> prepareLaunchStatus =
|
||||
device->prepareModel_1_1(model, preparedModelCallback);
|
||||
ASSERT_TRUE(prepareLaunchStatus.isOk());
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
|
||||
|
||||
preparedModelCallback->wait();
|
||||
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
|
||||
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
|
||||
EXPECT_EQ(nullptr, preparedModel.get());
|
||||
}
|
||||
|
||||
// execute simple graph positive test
|
||||
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphPositiveTest) {
|
||||
std::vector<float> outputData = {-1.0f, -1.0f, -1.0f, -1.0f};
|
||||
std::vector<float> expectedData = {6.0f, 8.0f, 10.0f, 12.0f};
|
||||
const uint32_t OUTPUT = 1;
|
||||
|
||||
sp<IPreparedModel> preparedModel;
|
||||
ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
|
||||
if (preparedModel == nullptr) {
|
||||
return;
|
||||
}
|
||||
Request request = createValidTestRequest();
|
||||
|
||||
auto postWork = [&] {
|
||||
sp<IMemory> outputMemory = mapMemory(request.pools[OUTPUT]);
|
||||
if (outputMemory == nullptr) {
|
||||
return false;
|
||||
}
|
||||
float* outputPtr = reinterpret_cast<float*>(static_cast<void*>(outputMemory->getPointer()));
|
||||
if (outputPtr == nullptr) {
|
||||
return false;
|
||||
}
|
||||
outputMemory->read();
|
||||
std::copy(outputPtr, outputPtr + outputData.size(), outputData.begin());
|
||||
outputMemory->commit();
|
||||
return true;
|
||||
};
|
||||
|
||||
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
|
||||
ASSERT_NE(nullptr, executionCallback.get());
|
||||
executionCallback->on_finish(postWork);
|
||||
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
|
||||
ASSERT_TRUE(executeLaunchStatus.isOk());
|
||||
EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executeLaunchStatus));
|
||||
|
||||
executionCallback->wait();
|
||||
ErrorStatus executionReturnStatus = executionCallback->getStatus();
|
||||
EXPECT_EQ(ErrorStatus::NONE, executionReturnStatus);
|
||||
EXPECT_EQ(expectedData, outputData);
|
||||
}
|
||||
|
||||
// execute simple graph negative test 1
|
||||
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest1) {
|
||||
sp<IPreparedModel> preparedModel;
|
||||
ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
|
||||
if (preparedModel == nullptr) {
|
||||
return;
|
||||
}
|
||||
Request request = createInvalidTestRequest1();
|
||||
|
||||
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
|
||||
ASSERT_NE(nullptr, executionCallback.get());
|
||||
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
|
||||
ASSERT_TRUE(executeLaunchStatus.isOk());
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
|
||||
|
||||
executionCallback->wait();
|
||||
ErrorStatus executionReturnStatus = executionCallback->getStatus();
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
|
||||
}
|
||||
|
||||
// execute simple graph negative test 2
|
||||
TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest2) {
|
||||
sp<IPreparedModel> preparedModel;
|
||||
ASSERT_NO_FATAL_FAILURE(doPrepareModelShortcut(device, &preparedModel));
|
||||
if (preparedModel == nullptr) {
|
||||
return;
|
||||
}
|
||||
Request request = createInvalidTestRequest2();
|
||||
|
||||
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
|
||||
ASSERT_NE(nullptr, executionCallback.get());
|
||||
Return<ErrorStatus> executeLaunchStatus = preparedModel->execute(request, executionCallback);
|
||||
ASSERT_TRUE(executeLaunchStatus.isOk());
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(executeLaunchStatus));
|
||||
|
||||
executionCallback->wait();
|
||||
ErrorStatus executionReturnStatus = executionCallback->getStatus();
|
||||
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
|
||||
}
|
||||
|
||||
class NeuralnetworksInputsOutputsTest
|
||||
: public NeuralnetworksHidlTest,
|
||||
public ::testing::WithParamInterface<std::tuple<bool, bool>> {
|
||||
protected:
|
||||
virtual void SetUp() { NeuralnetworksHidlTest::SetUp(); }
|
||||
virtual void TearDown() { NeuralnetworksHidlTest::TearDown(); }
|
||||
V1_1::Model createModel(const std::vector<uint32_t>& inputs,
|
||||
const std::vector<uint32_t>& outputs) {
|
||||
// We set up the operands as floating-point with no designated
|
||||
// model inputs and outputs, and then patch type and lifetime
|
||||
// later on in this function.
|
||||
|
||||
std::vector<Operand> operands = {
|
||||
{
|
||||
.type = OperandType::TENSOR_FLOAT32,
|
||||
.dimensions = {1},
|
||||
.numberOfConsumers = 1,
|
||||
.scale = 0.0f,
|
||||
.zeroPoint = 0,
|
||||
.lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
|
||||
.location = {.poolIndex = 0, .offset = 0, .length = 0},
|
||||
},
|
||||
{
|
||||
.type = OperandType::TENSOR_FLOAT32,
|
||||
.dimensions = {1},
|
||||
.numberOfConsumers = 1,
|
||||
.scale = 0.0f,
|
||||
.zeroPoint = 0,
|
||||
.lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
|
||||
.location = {.poolIndex = 0, .offset = 0, .length = 0},
|
||||
},
|
||||
{
|
||||
.type = OperandType::INT32,
|
||||
.dimensions = {},
|
||||
.numberOfConsumers = 1,
|
||||
.scale = 0.0f,
|
||||
.zeroPoint = 0,
|
||||
.lifetime = OperandLifeTime::CONSTANT_COPY,
|
||||
.location = {.poolIndex = 0, .offset = 0, .length = sizeof(int32_t)},
|
||||
},
|
||||
{
|
||||
.type = OperandType::TENSOR_FLOAT32,
|
||||
.dimensions = {1},
|
||||
.numberOfConsumers = 0,
|
||||
.scale = 0.0f,
|
||||
.zeroPoint = 0,
|
||||
.lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
|
||||
.location = {.poolIndex = 0, .offset = 0, .length = 0},
|
||||
},
|
||||
};
|
||||
|
||||
const std::vector<Operation> operations = {{
|
||||
.type = OperationType::ADD, .inputs = {0, 1, 2}, .outputs = {3},
|
||||
}};
|
||||
|
||||
std::vector<uint8_t> operandValues;
|
||||
int32_t activation[1] = {static_cast<int32_t>(FusedActivationFunc::NONE)};
|
||||
operandValues.insert(operandValues.end(), reinterpret_cast<const uint8_t*>(&activation[0]),
|
||||
reinterpret_cast<const uint8_t*>(&activation[1]));
|
||||
|
||||
if (kQuantized) {
|
||||
for (auto& operand : operands) {
|
||||
if (operand.type == OperandType::TENSOR_FLOAT32) {
|
||||
operand.type = OperandType::TENSOR_QUANT8_ASYMM;
|
||||
operand.scale = 1.0f;
|
||||
operand.zeroPoint = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
auto patchLifetime = [&operands](const std::vector<uint32_t>& operandIndexes,
|
||||
OperandLifeTime lifetime) {
|
||||
for (uint32_t index : operandIndexes) {
|
||||
operands[index].lifetime = lifetime;
|
||||
}
|
||||
};
|
||||
if (kInputHasPrecedence) {
|
||||
patchLifetime(outputs, OperandLifeTime::MODEL_OUTPUT);
|
||||
patchLifetime(inputs, OperandLifeTime::MODEL_INPUT);
|
||||
} else {
|
||||
patchLifetime(inputs, OperandLifeTime::MODEL_INPUT);
|
||||
patchLifetime(outputs, OperandLifeTime::MODEL_OUTPUT);
|
||||
}
|
||||
|
||||
return {
|
||||
.operands = operands,
|
||||
.operations = operations,
|
||||
.inputIndexes = inputs,
|
||||
.outputIndexes = outputs,
|
||||
.operandValues = operandValues,
|
||||
.pools = {},
|
||||
};
|
||||
}
|
||||
void check(const std::string& name,
|
||||
bool expectation, // true = success
|
||||
const std::vector<uint32_t>& inputs, const std::vector<uint32_t>& outputs) {
|
||||
SCOPED_TRACE(name + " (HAL calls should " + (expectation ? "succeed" : "fail") + ", " +
|
||||
(kInputHasPrecedence ? "input" : "output") + " precedence, " +
|
||||
(kQuantized ? "quantized" : "float"));
|
||||
|
||||
V1_1::Model model = createModel(inputs, outputs);
|
||||
|
||||
// ensure that getSupportedOperations_1_1() checks model validity
|
||||
ErrorStatus supportedOpsErrorStatus = ErrorStatus::GENERAL_FAILURE;
|
||||
Return<void> supportedOpsReturn = device->getSupportedOperations_1_1(
|
||||
model, [&model, &supportedOpsErrorStatus](ErrorStatus status,
|
||||
const hidl_vec<bool>& supported) {
|
||||
supportedOpsErrorStatus = status;
|
||||
if (status == ErrorStatus::NONE) {
|
||||
ASSERT_EQ(supported.size(), model.operations.size());
|
||||
}
|
||||
});
|
||||
ASSERT_TRUE(supportedOpsReturn.isOk());
|
||||
ASSERT_EQ(supportedOpsErrorStatus,
|
||||
(expectation ? ErrorStatus::NONE : ErrorStatus::INVALID_ARGUMENT));
|
||||
|
||||
// ensure that prepareModel_1_1() checks model validity
|
||||
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback;
|
||||
ASSERT_NE(preparedModelCallback.get(), nullptr);
|
||||
Return<ErrorStatus> prepareLaunchReturn =
|
||||
device->prepareModel_1_1(model, preparedModelCallback);
|
||||
ASSERT_TRUE(prepareLaunchReturn.isOk());
|
||||
ASSERT_TRUE(prepareLaunchReturn == ErrorStatus::NONE ||
|
||||
prepareLaunchReturn == ErrorStatus::INVALID_ARGUMENT);
|
||||
bool preparationOk = (prepareLaunchReturn == ErrorStatus::NONE);
|
||||
if (preparationOk) {
|
||||
preparedModelCallback->wait();
|
||||
preparationOk = (preparedModelCallback->getStatus() == ErrorStatus::NONE);
|
||||
}
|
||||
|
||||
if (preparationOk) {
|
||||
ASSERT_TRUE(expectation);
|
||||
} else {
|
||||
// Preparation can fail for reasons other than an invalid model --
|
||||
// for example, perhaps not all operations are supported, or perhaps
|
||||
// the device hit some kind of capacity limit.
|
||||
bool invalid = prepareLaunchReturn == ErrorStatus::INVALID_ARGUMENT ||
|
||||
preparedModelCallback->getStatus() == ErrorStatus::INVALID_ARGUMENT;
|
||||
ASSERT_NE(expectation, invalid);
|
||||
}
|
||||
}
|
||||
|
||||
// Indicates whether an operand that appears in both the inputs
|
||||
// and outputs vector should have lifetime appropriate for input
|
||||
// rather than for output.
|
||||
const bool kInputHasPrecedence = std::get<0>(GetParam());
|
||||
|
||||
// Indicates whether we should test TENSOR_QUANT8_ASYMM rather
|
||||
// than TENSOR_FLOAT32.
|
||||
const bool kQuantized = std::get<1>(GetParam());
|
||||
};
|
||||
|
||||
TEST_P(NeuralnetworksInputsOutputsTest, Validate) {
|
||||
check("Ok", true, {0, 1}, {3});
|
||||
check("InputIsOutput", false, {0, 1}, {3, 0});
|
||||
check("OutputIsInput", false, {0, 1, 3}, {3});
|
||||
check("DuplicateInputs", false, {0, 1, 0}, {3});
|
||||
check("DuplicateOutputs", false, {0, 1}, {3, 3});
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Flavor, NeuralnetworksInputsOutputsTest,
|
||||
::testing::Combine(::testing::Bool(), ::testing::Bool()));
|
||||
|
||||
} // namespace functional
|
||||
} // namespace vts
|
||||
} // namespace V1_1
|
||||
} // namespace neuralnetworks
|
||||
} // namespace hardware
|
||||
} // namespace android
|
||||
|
||||
using android::hardware::neuralnetworks::V1_1::vts::functional::NeuralnetworksHidlEnvironment;
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
::testing::AddGlobalTestEnvironment(NeuralnetworksHidlEnvironment::getInstance());
|
||||
::testing::InitGoogleTest(&argc, argv);
|
||||
NeuralnetworksHidlEnvironment::getInstance()->init(&argc, argv);
|
||||
|
||||
int status = RUN_ALL_TESTS();
|
||||
return status;
|
||||
}
|
||||
Reference in New Issue
Block a user